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ON (n− 1, n)-Φm-PRIME AND (n− 1, n)-WEAKLY PRIME
SUBMODULES

M. EBRAHIMPOUR∗ AND F. MIRZAEE

Abstract. Let m,n ≥ 2 be two positive integers, R a commuta-
tive ring with identity and M a unitary R-module. A proper sub-
module P of M is an (n−1, n)-Φm-prime ((n−1, n)-weakly prime)
submodule if a1, . . . , an−1 ∈ R, x ∈ M with a1 . . . an−1x ∈ P\(P :
M)m−1P (0 ̸= a1 . . . an−1x ∈ P ) implies a1 . . . ai−1ai+1 . . . an−1x ∈
P , for some i ∈ {1, . . . , n− 1} or a1 . . . an−1 ∈ (P : M). In this pa-
per we study these type of submodules, giving some useful results
and examples concerning them.

1. Introduction

Throughout this article, all rings are assumed to be commutative
with identity and all modules are unital. We remind that a proper
ideal P of R is called prime if, for a, b ∈ R, ab ∈ P implies a ∈ P or
b ∈ P .

Let P be a submodule of M . Then (P : M) = {r ∈ R|rM ⊆ P} is
an ideal of R. An R-module M is faithful if AnnRM = (0 : M) = 0.
Also, M is a multiplication R-module if for every submodule N of M
there exists an ideal I of R such that N = IM . It is easy to show that
N = (N : M)M .

A proper submodule P of M is called prime if, for r ∈ R, x ∈ M
and rx ∈ P we have x ∈ N or r ∈ (P : M). It is easy to show that if
P is a prime submodule of M , then (P : M) is a prime ideal of R.
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In [10, 12], Ebrahimpour and Nekooei show that a proper submodule
P ofM is (n−1, n)-prime if a1...an−1x ∈ P , implies a1...ai−1ai+1...an−1x
∈ P , for some i ∈ {1, . . . , n − 1} or a1...an−1 ∈ (P : M), where
a1, ..., an−1 ∈ R and x ∈ M . So, a (1, 2)-prime submodule is just
prime.

In [1], authors defined a weakly prime ideal as a proper ideal P of
R with the property that for a, b ∈ R, if 0 ̸= ab ∈ P then a ∈ P or
b ∈ P . The notion of a weakly prime element (i.e., an element p ∈ R
such that (p) is a weakly prime ideal) was introduced by Galovich [14]
in his study of unique factorization rings with zero divisors. It is hoped
that weakly prime elements and weakly prime ideals will prove useful
in the study of commutative rings with zero divisors and in particular,
factorization in such rings.

In [22], Nekooei extends this concept to the case of submodules. He
defines a weakly prime submodule as a proper submodule P of M with
the property that for r ∈ R and x ∈ M , if 0 ̸= rx ∈ P then x ∈ P or
r ∈ (P : M).

In [10], Ebrahimpour and Nekooei defined a (n− 1, n)-weakly prime
ideal as a proper ideal P of R with the property that for a1, . . . , an ∈
R, if 0 ̸= a1 . . . an ∈ P then a1 . . . ai−1ai+1 . . . an ∈ P , for some i ∈
{1, . . . , n}. So, a (1, 2)-weakly prime ideal is just weakly prime and
every proper ideal of a quasi-local ring (R,M) withMn = 0 is (n−1, n)-
weakly prime.

Also, in [11], Ebrahimpour and Nekooei defined a proper submod-
ule P of M as an (n − 1, n)-weakly prime submodule such that for
a1, . . . , an−1 ∈ R and x ∈ M , 0 ̸= a1 . . . an−1x ∈ P implies a1 . . . ai−1ai+1

. . . an−1x ∈ P , for some i ∈ {1, . . . , n− 1} or a1...an−1 ∈ (P : M). So a
(1, 2)-weakly prime submodule is just weakly prime.

In studying unique factorization domains, Bhatwadekar and Sharma
[8] defined an almost prime ideal as a proper ideal P of R with the
property that for a, b ∈ R, if ab ∈ P\P 2 then a ∈ P or b ∈ P . Thus,
a weakly prime ideal is almost prime and any proper idempotent ideal
is also almost prime.

In [14], Anderson and Bataineh defined a Φ-prime ideal as follows:
Let R be a commutative ring and S(R) be the set of all ideals of R.
Let Φ : S(R) → S(R) ∪ {∅} be a function. Then a proper ideal P of
R is called Φ-prime if for a, b ∈ R, ab ∈ P\Φ(P ) implies a ∈ P or
b ∈ P . They defined Φm : S(R) → S(R) ∪ {∅} with Φm(J) = Jm, for
all J ∈ S(R) and m ≥ 2.
In [10], Ebrahimpour and Nekooei defined an (n − 1, n)-Φm-prime

ideal as a proper ideal P of R with the property that for a1, . . . , an ∈
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R, if a1 . . . an ∈ P\Pm then a1 . . . ai−1ai+1 . . . an ∈ P , for some i ∈
{1, . . . , n}; (m,n ≥ 2).

In [24], Zamani defined ϕ-prime submodule as follows: Let S(M) be
the set of all submodules of M and ϕ : S(M) → S(M) ∪ {∅} be a
function. A proper submodule P of M is called ϕ-prime submodule if
for r ∈ R and x ∈ M , rx ∈ P\ϕ(P ) implies r ∈ (P : M) or x ∈ P . He
defined Φm : S(M) → S(M) ∪ {∅} with Φm(N) = (N : M)m−1N , for
all N ∈ S(M); (m ≥ 2).

In [11], Ebrahimpour and Nekooei show that P is an (n − 1, n)-
ϕm-prime submodule of M if a1 . . . an−1x ∈ P\(P : M)m−1P implies
a1 . . . ai−1ai+1 . . . an−1x ∈ P , for some i ∈ {1, . . . , n−1} or a1 . . . an−1 ∈
(P : M), where a1, . . . , an−1 ∈ R and x ∈ M . So a (1, 2)-Φ2-prime sub-
module is just almost prime. We shall call (1, 2)-Φm-prime submod-
ules ”Φm-prime”. In this paper we study (n− 1, n)-weakly prime and
(n − 1, n)-Φm-prime submodules, which are generalizations of weakly
prime and almost prime submodules, respectively; (n,m ≥ 2).

Some of our results use the R(+)M construction. Let R be a ring
and M be an R-module. Then R(+)M = R×M is a ring with identity
(1, 0) under addition defined by (r,m) + (s, n) = (r + s,m + n) and
multiplication defined by (r,m)(s, n) = (rs, rn+ sm).

Let R be an integral domain with quotient field K and M a tor-
sionfree R-module. Then the following conditions are equivalent, by
[20].

1) For all y ∈ K and all x ∈ M, yx ∈ M or y−1M ⊆ M .

2) For all y ∈ K, yM ⊆ M or y−1M ⊆ M . M is called valuation
R-module if one of these conditions holds.

Let R be a ring and M an R-module. We show the set of all prime
ideals of R by Spec(R) and the set of all prime submodules of M by
Spec(M).
In this paper, we study (n− 1, n)-weakly prime and (n− 1, n)−ϕm-

prime submodules. Also, we prove some interesting results and give
some examples about these types of submodules.

2. Main Results

It is clear that every (n− 1, n)-prime submodule is (n− 1, n)-weakly
prime; (n ≥ 2). In Example 2.1 and Example 2.2, we show that the
converse is not true in general.
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Example 2.1. Let Q be a maximal ideal of a ring R. Then, R = R
Q2

is a quasi-local ring with unique maximal ideal Q and Q
2
= 0. Let

J be a proper ideal of R. It is easy to show that J is Q-primary.
Suppose S = R[x] and M = S as an S-module. We show that J [x] is
a weakly prime submodule of M . We know that J [x] is Q[x]-primary.
Suppose 0 ̸= fg ∈ J [x]. Both f and g can not be in Q[x]. Let g ̸∈ Q[x].
Since J [x] is Q[x]-primary, we have f ∈ J [x]. So, J [x] is a weakly prime
submodule and hence, it is an (n−1, n)-weakly prime submodule. Thus,
J [x] is an (n − 1, n)-ϕm-prime submodule of M . Moreover, if J ̸= Q,
then J [x] is a weakly prime submodule that is not prime; (n,m ≥ 2).

Example 2.2. Let R = K[x,y]
(x2y2)

, where K is a field, M = K[x,y]
(x,y)

≃ K

as an R-module, D = R(+)M and M ′ = D as an D-module. The
submodule N = 0(+)M of M ′ is a weakly prime submodule that is not
prime.

Example 2.3. Let (R,Q) be a quasi-local ring, M an R-module and P
a proper submodule of M . If P ∩Qn−1M = 0, then P is an (n− 1, n)-
weakly prime submodule of M . For, if 0 ̸= a1 . . . an−1x ∈ P , then
a1 . . . an−1 ̸∈ Qn−1. So, there exists an i ∈ {1, . . . , n−1} such that ai is a
unit of R. Thus a1 . . . ai−1ai+1 . . . an−1x ∈ P . Similarly, if P∩Qn−1M ⊆
(P : M)m−1P , then P is an (n−1, n)-Φm-prime submodule ofM , where

m,n ≥ 2. For example, let R = k[|x,y|]
(x)(x,y)

, where k is a field, Q = (x, y)

be the unique maximal ideal of R and M = R as an R-module. Let
P = (x). Then, P ∩ Qn−1M = 0; (n ≥ 2). Therefore, P is (n − 1, n)-
weakly prime and hence is (n− 1, n)-Φm-prime; (m ≥ 2).

Next, we show that for a principal submodule Rx with ann(x) = 0
(Rx ∼= R) the concepts (n − 1, n)-Φm-prime and (n − 1, n)-prime are
the same; (m,n ≥ 2).

Lemma 2.4. Let R be a ring, M an R-module and x a non-zero ele-
ment of M such that Rx ̸= M and ann(x) = 0. Let m,n ≥ 2 be two
integers. If Rx is not an (n − 1, n)-prime submodule, then there exist
a1, . . . , an−1 ∈ R and y ∈ M such that a1 . . . ai−1ai+1 . . . an−1y ̸∈ Rx,
for all i ∈ {1, . . . , n − 1} and a1...an−1 ̸∈ (Rx : M) and a1 . . . an−1y ∈
Rx. But, a1 . . . an−1y ̸∈ (Rx : M)m−1Rx.

Proof. Since Rx is not (n−1, n)-prime, there exist a1, . . . , an−1 ∈ R and
y ∈ M such that a1 . . . an−1y ∈ Rx but a1 . . . ai−1ai+1 . . . an−1y ̸∈ Rx,
for all i ∈ {1, . . . , n − 1} and a1...an−1 ̸∈ (Rx : M). If a1 . . . an−1y ̸∈
(Rx : M)m−1Rx, we are done. So, we assume that a1 . . . an−1y ∈ (Rx :
M)m−1Rx.
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Let y′ = y+x. Then, a1 . . . an−1y
′ ∈ Rx and a1 . . . ai−1ai+1 . . . an−1y

′

̸∈ Rx, for all i ∈ {1, . . . , n − 1} and a1 . . . an−1 ̸∈ (Rx : M). If
a1 . . . an−1y

′ ∈ (Rx : M)m−1Rx, then a1 . . . , an−1x ∈ (Rx : M)m−1Rx.
So, there exists r ∈ (Rx : M)m−1 such that a1 . . . an−1x = rx and hence
a1 . . . an−1 = r ∈ (Rx : M)m−1 ⊆ (Rx : M), which is a contradiction.
Therefore, a1 . . . an−1y

′ ̸∈ (Rx : M)m−1Rx, as wanted. □
Corollary 2.5. Let R be a ring, M an R-module and x a non-zero
element of M such that Rx ̸= M and ann(x) = 0. Then, Rx is an
(n − 1, n)-Φm-prime submodule of M if and only if Rx is (n − 1, n)-
prime; (n,m ≥ 2).

Proof. (⇐) If Rx is an (n − 1, n)-prime submodule of M , then it is
clear that Rx is (n− 1, n)-Φm-prime.

(⇒) If Rx is not (n − 1, n)-prime, then there exist a1 . . . an−1 ∈ R
and y ∈ M such that a1...an−1y ∈ Rx \ (Rx : M)m−1Rx such that
a1 . . . ai−1ai+1 . . . an−1y ̸∈ Rx, for all i ∈ {1, . . . , n− 1} and a1...an−1 ̸∈
(Rx : M), by Lemma 2.4, which is a contradiction. □
Lemma 2.6. Let R be an integral domain, M a multiplication R-
module, J and K two submodules such that (J : M) and (K : M)
are non-zero, finitely generated ideals of R, (J : M) ̸⊆ (K : M) and
(K : M) ̸⊆ (J : M). If ((J ∩K) : M) is Φn-prime, then the radical of
J equals the radical of K; (n ≥ 2).

Proof. We show that K ⊆ radJ . If (K : M) ⊆ (P : M), for every
minimal prime submodule P over J , then (K : M) ⊆ (radJ : M).
Since M is a multiplication module, we have K ⊆ radJ .

So, we assume that there exists a prime submodule P of M minimal
over J such that (K : M) ̸⊆ (P : M). Set (P : M) = q. Choose an
element r ∈ (K : M) \ q. Clearly, for (J : M)(n) = (J : M)nRq ∩R, we
have (J : M)nRq = (J : M)(n)Rq. Since (J : M) is finitely generated,
(J : M)Rq ̸= (J : M)nRq. Thus, (J : M)Rq ̸= (J : M)(n)Rq, and
consequently (J : M) ̸⊆ (J : M)(n). Since (J : M) ̸⊆ (K : M) and
(J : M) ̸⊆ (J : M)(n), we have (J : M) ̸⊆ (K : M) ∪ (J : M)(n).

Choose an element s ∈ (J : M) \ ((K : M) ∪ (J : M)(n)). Then,
r, s ̸∈ (J : M) ∩ (K : M), but rs ∈ (J : M) ∩ (K : M) = ((J ∩
K) : M). We claim that rs ̸∈ ((J ∩ K) : M)n. Otherwise, rs ∈
(J : M)n ⊆ (J : M)(n). However, r ∈ R\q and rs ∈ (J : M)(n)

implies that s ∈ (J : M)(n), which is a contradiction. So, we have
rs ∈ ((J ∩ K) : M) \ ((J ∩ K) : M)n and r, s ̸∈ (J ∩ K : M). This
contradicts the fact that ((J ∩K) : M) is Φn-prime. Thus K ⊆ radJ ,
and then radK ⊆ radJ . Similarly, radJ ⊆ radK. Therefore we have
radK = radJ , as desired. □
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Theorem 2.7. Let R be a Noetherian domain, M a finitely generated
multiplication R-module and P be a submodule of M such that (P : M)
is a non-zero Φn-prime ideal of R. Then, P is a primary submodule of
M ; (n ≥ 2).

Proof. If P is not primary, then every minimal primary decomposition
of P must have at least two components. Take a minimal primary
decomposition of P and let Q be a primary component of this de-
composition. If K is the intersection of all other primary components
in the decomposition, then P = Q ∩ K, where Q ̸⊆ K and K ̸⊆ Q
and rad(Q : M) ̸= rad(K : M). Since Q ̸⊆ K and M is a multi-
plication module, we have (Q : M) ̸⊆ (K : M). Similarly, we get
(K : M) ̸⊆ (Q : M). So, by Lemma 2.6, we have radQ = radK.
Thus, (radQ : M) = (radK : M). Since M is finitely generated, we
have rad(Q : M) = rad(K : M), by [19, Theorem 4.4], which is a
contradiction. □

Let R be a ring, M a multiplication R-module and N1, N2 be two
submodules of M . There exist ideals I1, I2 of R such that N1 = I1M
and N2 = I2M . Ameri in [2] defined the product of N1N2 by I1I2M .
We use this notion in proving the following theorem.

A ring R is said to be locally UFD, if Rp is a UFD, for every
p ∈ Spec(R). It is clear that if R is a UFD, then it is locally UFD.
Example 2.8 shows that the converse is not true in general.

Example 2.8. Let R = Z[
√
5i], where Z is the ring of integers. We

know that R is a Dedekind domain and the element 2 does not admit a
factorization into prime elements, by [15, Example 13.8]. So, R is not
a UFD. But, Rp is a PID, for every p ∈ Spec(R).

Theorem 2.9. Let R be a domain and M a finitely generated faithful
multiplication R-module. If every proper submodule of M is a product
of Φn-prime submodules, then R is locally UFD; (n ≥ 2).

Proof. Let p ∈ Spec(R), Ip be a proper principal ideal of Rp and N =
IM . If IM = N = M = RM , then by [13, Thoorem 3.1], we have
I = R, which is a contradiction. So, N is a proper submodule of
M . Suppose that N = N1...Nk, where Ni is a ϕn-prime submodule of
M , for all i ∈ {1, . . . , k}. Then N = I1...IkM , where Ni = IiM , for
i ∈ {1, ..., k}. Thus, I = I1...Ik, by [13, Theorem 3.1]. Since Ni is
ϕn-prime, then Ii is ϕn-prime, by [11, Lemma 4.3(i)].

In domain Rp, every nonzero principal ideal is invertible. We know
that a factor of an invertible ideal is also invertible. Since Rp is quasi-
local, an invertible ideal is principal. So, Ip is a product of principal
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Φn-prime ideals and hence Ip is a product of principal prime ideals, by
Corollary 2.5. Therefore, Rp is a UFD and R is locally UFD. □

In Example 2.10, we show that a finitely generated faithful multipli-
cation R-module M is not cyclic in general.

Example 2.10. Let R be a Dedekind domain. We know that every
ideal of R is a multiplication R-module, by [16, Page 223]. Also, every
ideal of a Dedekind domain is generated by at most two elements, by
[23, Corollary 2, Page 125]. So, every ideal of R is a finitely generated
faithful multiplication R-module.

Let R be an integral domain with quotient field K and M a torsion-
free R-module. In [20], Moghaderi and Nekooei proved that for y =
r
s
∈ K and x ∈ M , yx ∈ M if there exists m ∈ M such that rx = sm.

They also proved that M is a valuation R-module if M satisfies one of
the following equivalent conditions:

(1) For every y ∈ K and every x ∈ M , yx ∈ M or y−1M ⊆ M .
(2) For every y ∈ K, yM ⊆ M or y−1M ⊆ M .
Next, we show that in a multiplicative valuation module, the con-

cepts (n− 1, n)-Φn-prime and (n− 1, n)-prime are the same, for some
submodules; (n ≥ 2).

Lemma 2.11. Let R be a ring, M a multiplicative valuation R-module
and N1, N2 be two submodules of M . Then, N1 ⊆ N2 or N2 ⊆ N1.

Proof. Let N1, N2 be two submodules ofM . SinceM is a multiplication
R-module, then there exist the ideals I1, I2 of R such that N1 = I1M
and N2 = I2M . We know that R is a valuation ring, by [20, Lemma
2.11]. So, I1 ⊆ I2 or I2 ⊆ I1, and therefore N1 ⊆ N2 or N2 ⊆ N1, as
desired. □
Theorem 2.12. Let R be a ring, M a multiplicative valuation R-
module and P a submodule of M with ann(x) = 0, for some 0 ̸= x ∈ P .
Then, P is (n − 1, n)-Φn-prime if and only if it is (n − 1, n)-prime;
(n ≥ 2).

Proof. (⇒) Let a1, . . . , an−1 ∈ R and x ∈ M with a1 . . . an−1x ∈ P .
Assume a1 . . . ai−1ai+1 . . . an−1x ̸∈ P , for all i ∈ {1, . . . , n − 1} and
a1...an−1 ̸∈ (P : M). So (ai) ̸⊆ (P : M), for all i ∈ {1, . . . , n − 1}.
We know that R is a valuation ring, by [20, Lemma 2.11]. So we have
(P : M) ⊆ (ai), for all i ∈ {1, . . . , n − 1}. Hence (P : M)n−1P ⊆
(a1 . . . an−1x). If (P : M)n−1P ̸= (a1...an−1x), then a1...an−1x ∈
P\(P : M)n−1P . Since P is (n − 1, n)-Φn-prime, this implies that
a1 . . . ai−1ai+1 . . . an−1x ∈ P , for some i ∈ {1, . . . , n− 1} or a1...an−1 ∈
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(P : M), which are contradictions. So we have (a1 . . . an−1x) = (P :
M)n−1P . Then P being a factor of a principal submodule is principal,
by Lemma 2.11. So there exists y ∈ M such that P = Ry. Hence
x = ry, for some r ∈ R. So we have ann(y) = 0. Thus, by Corollary
2.5, P is (n− 1, n)-prime.

(⇐) This holds for any module. □
Let R be a ring, M an R-module and N a submodule ofM . We know

that radN = ∩N⊆P∈Spec(M)P . If there exists no prime submodule over
N , then radN = M . Moreover, N is said to be a radical submodule if
radN = N .

Prüfer modules has been defined by Naoum and Al-Alwan in [21,
page 407]. The next example shows that in a Prüfer Module M , the
above result is not necessarily true.

Example 2.13. Let R be the ring of all algebraic integers and M = R
as an R-module. Then every radical submodule of M is idempotent.
So, let N1 ̸= N2 be two maximal submodules of M . Hence, N1N2 =
N1 ∩ N2 and (N1N2)

2 = N1N2. So, N1N2 is (n − 1, n)-Φn-prime, but
not a prime submodule; (n ≥ 2).

Let R be a ring, M an R-module and D = R(+)M . We observe that
for an ideal I of R and a positive integer n ≥ 1, we have (I(+)M)n =
In(+)In−1M .

Theorem 2.14. Let R be a ring, M a finitely generated faithful multi-
plication R-module and P a ϕn-prime submodule of M . If for a, b ∈ R
and (x, y) ∈ M with (a, x)(b, y) ∈ (P : M)n(+)M and a, b ̸∈ (P : M);
ay + bx ∈ (P : M)n−1M , then (P : M)(+)M is a Φn-prime ideal of
D = R(+)M ; (n ≥ 2).

Proof. Set q = (P : M). Suppose that (a, x)(b, y) ∈ q(+)M\(q(+)M)n.
So (a, x)(b, y) ∈ q(+)M \ (qn(+)qn−1M) and hence ab ∈ q. If ab ̸∈ qn,
then ab ∈ q \ qn. Since P = qM is ϕn-prime, then q is ϕn-prime,
by [11, Lemma 4.3]. So, a ∈ q or b ∈ q. Hence, (a, x) ∈ q(+)M or
(b, y) ∈ q(+)M . Now assume that ab ∈ qn. If a, b ̸∈ q, then ay + bx ∈
qn−1M , by hypothesis. So, (a, x)(b, y) ∈ qn(+)qn−1M = (q(+)M)n, a
contradiction. □

Now, we study the converse of Theorem 2.14, for n = 2.

Theorem 2.15. Let R be a ring, M a finitely generated faithful mul-
tiplication R-module and P a submodule of M . If (P : M)(+)M is an
almost prime ideal of D = R(+)M and there exists a Q ∈ Max(R)
such that (P : M) ⊆ Q, (P : M)∩Q2 = 0 and

∩
n≥1 Q

n = 0, then P is
an almost prime submodule of M .
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Proof. Set q = (P : M). Suppose that q(+)M is almost prime. Let
ab ∈ q \ q2, where a, b ∈ R. Then (a, 0)(b, 0) ∈ (q(+)M) \ (q2(+)qM),
and hence (a, 0)(b, 0) ∈ (q(+)M) \ (q(+)M)2. So, a ∈ q or b ∈ q. Thus
q is almost prime and P = qM is an almost prime submodule of M ,
by [11, Lemma 4.3]. □
Theorem 2.16. Let R be a ring and M a finitely generated faithful
multiplication R-module. Then every prime ideal of D = R(+)M is of
the form (P : M)(+)M , for some prime submodule P of M .

Proof. We know from [17, Theorem 25.1 (3)] that every prime ideal of
D = R(+)M is of the form q(+)M , for some prime ideal q of R. Let
P be a prime submodule of M . So, (P : M) is a prime ideal of R, by
[18, Proposition 1]. Thus, (P : M)(+)M is a prime ideal of D.

Now, assume that q(+)M is a prime ideal of D. Set P = qM . If P =
qM = M = RM , then q = R, by [13, Theorem 3.1], a contradiction.
So, P ∈ Spec(M), by [13, Lemma 2.10], and therefore (P : M) = q, by
[13, Theorem 3.1]. □

Unlike the case of prime ideals, an (n − 1, n)-weakly prime or (n −
1, n)-Φm-prime ideal of D = R(+)M need not have the form I(+)M .
For example, 0(+)0 is (n−1, n)-weakly prime and as a result (n−1, n)-
ϕm-prime; (n,m ≥ 2).

Let R be a ring and M an R-module. Two elements x, y ∈ M are
associates, denoted x ∼ y, if Rx = Ry. A non-zero element x ∈ M with
Rx ̸= M is n-irreducible if x = a1 . . . an−1y, where a1, ..., an−1 ∈ R and
y ∈ M , implies x ∼ a1 . . . ai−1ai+1 . . . an−1y, for some i ∈ {1, . . . , n−1}
or a1...an−1 ∈ (Rx : M); (n ≥ 2).

Theorem 2.17. Let R be a ring, M an R-module and P a proper
submodule of M . Suppose that every non-zero element of P is n-
irreducible. Then P is (n − 1, n)-weakly prime and hence (n − 1, n)-
Φm-prime; (n,m ≥ 2).

Proof. Let a1 . . . an−1x ∈ P \ {0}, where a1, . . . , an−1 ∈ R and x ∈ M .
So, a1 . . . an−1x is n-irreducible and hence

(a1 . . . an−1x) = (a1 . . . ai−1ai+1 . . . an−1x),

for some i ∈ {1, . . . , n − 1}. Therefore a1 . . . ai−1ai+1 . . . an−1x ∈ P or
a1...an−1 ∈ ((a1...an−1x) : M). But ((a1...an−1x) : M) ⊆ (P : M). So,
P is (n− 1, n)-weakly prime. □
Corollary 2.18. Let (R,Q) be a quasi-local ring, M an R-module and
x ∈ M . If x is n-irreducible and Qx = 0, then Rx is (n− 1, n)-weakly
prime; (n ≥ 2).
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Proof. Since x is n-irreducible and Qx = 0, every non-zero element of
Rx is an associate of x and hence n-irreducible. So Rx is (n − 1, n)-
weakly prime, by Theorem 2.17. □
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ON (n− 1, n)-Φm-PRIME AND (n− 1, n)-WEAKLY PRIME
SUBMODULES

M. EBRAHIMPOUR AND F. MIRZAEE

ضعیف اول -(n− ١, n) و اول -Φm-(n− ١, n) زیرمدول های
میرزائی٢ فاطمه ١و پور ابراهیم مهدیه

٢ کرمان باهنر شهید دانشگاه و ١ رفسنجان ولیعصر دانشگاه

-R یک M و یکدار و جابجایی حلقه ای R و مثبت، و صحیح عدد دو m,n ≥ ٢ کنید فرض
−n)-اول ١, n)) اول -Φm-(n− ١, n) زیرمدول یک M از P سره زیرمدول باشد. یکانی مدول
a١ . . . an−١x ∈ P\(P : M)m−١P که x ∈ M و a١, . . . , an−١ ∈ R از اگر است ضعیف)
آن در که ،a١ . . . ai−١ai+١ . . . an−١x ∈ P گرفت نتیجه بتوان (٠ ̸= a١ . . . an−١x ∈ P )
زیرمدول ها این مطالعه به مقاله این در .a١...an−١ ∈ (P : M) یا ،i ∈ {١, . . . , n − ١}

می شود. ارائه زیرمدول ها نوع این از مثال هایی و مفید نتایج برخی می پردازیم.

زیرمدول های ضعیف، −n)-اول ١, n) مدول های زیر ضعیف، اول مدول های زیر کلیدی: کلمات
اول. -Φm-(n− ١, n)

٢


