ON $(n-1, n)-\Phi_{m}$-PRIME AND $(n-1, n)$-WEAKLY PRIME SUBMODULES

M. EBRAHIMPOUR* AND F. MIRZAEE

Abstract

Let $m, n \geq 2$ be two positive integers, R a commutative ring with identity and M a unitary R-module. A proper submodule P of M is an $(n-1, n)$ - Φ_{m}-prime ($(n-1, n)$-weakly prime) submodule if $a_{1}, \ldots, a_{n-1} \in R, x \in M$ with $a_{1} \ldots a_{n-1} x \in P \backslash(P$: $M)^{m-1} P\left(0 \neq a_{1} \ldots a_{n-1} x \in P\right)$ implies $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in$ P, for some $i \in\{1, \ldots, n-1\}$ or $a_{1} \ldots a_{n-1} \in(P: M)$. In this paper we study these type of submodules, giving some useful results and examples concerning them.

1. Introduction

Throughout this article, all rings are assumed to be commutative with identity and all modules are unital. We remind that a proper ideal P of R is called prime if, for $a, b \in R, a b \in P$ implies $a \in P$ or $b \in P$.

Let P be a submodule of M. Then $(P: M)=\{r \in R \mid r M \subseteq P\}$ is an ideal of R. An R-module M is faithful if $A n n_{R} M=(0: M)=0$. Also, M is a multiplication R-module if for every submodule N of M there exists an ideal I of R such that $N=I M$. It is easy to show that $N=(N: M) M$.

A proper submodule P of M is called prime if, for $r \in R, x \in M$ and $r x \in P$ we have $x \in N$ or $r \in(P: M)$. It is easy to show that if P is a prime submodule of M, then $(P: M)$ is a prime ideal of R.

[^0]In [10, 12], Ebrahimpour and Nekooei show that a proper submodule P of M is $(n-1, n)$-prime if $a_{1} \ldots a_{n-1} x \in P$, implies $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x$ $\in P$, for some $i \in\{1, \ldots, n-1\}$ or $a_{1} \ldots a_{n-1} \in(P: M)$, where $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$. So, a (1,2)-prime submodule is just prime.

In [1], authors defined a weakly prime ideal as a proper ideal P of R with the property that for $a, b \in R$, if $0 \neq a b \in P$ then $a \in P$ or $b \in P$. The notion of a weakly prime element (i.e., an element $p \in R$ such that (p) is a weakly prime ideal) was introduced by Galovich [14] in his study of unique factorization rings with zero divisors. It is hoped that weakly prime elements and weakly prime ideals will prove useful in the study of commutative rings with zero divisors and in particular, factorization in such rings.

In [22], Nekooei extends this concept to the case of submodules. He defines a weakly prime submodule as a proper submodule P of M with the property that for $r \in R$ and $x \in M$, if $0 \neq r x \in P$ then $x \in P$ or $r \in(P: M)$.

In [10], Ebrahimpour and Nekooei defined a $(n-1, n)$-weakly prime ideal as a proper ideal P of R with the property that for $a_{1}, \ldots, a_{n} \in$ R, if $0 \neq a_{1} \ldots a_{n} \in P$ then $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} \in P$, for some $i \in$ $\{1, \ldots, n\}$. So, a $(1,2)$-weakly prime ideal is just weakly prime and every proper ideal of a quasi-local ring (R, M) with $M^{n}=0$ is $(n-1, n)$ weakly prime.

Also, in [11], Ebrahimpour and Nekooei defined a proper submodule P of M as an $(n-1, n)$-weakly prime submodule such that for $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M, 0 \neq a_{1} \ldots a_{n-1} x \in P$ implies $a_{1} \ldots a_{i-1} a_{i+1}$ $\ldots a_{n-1} x \in P$, for some $i \in\{1, \ldots, n-1\}$ or $a_{1} \ldots a_{n-1} \in(P: M)$. So a $(1,2)$-weakly prime submodule is just weakly prime.

In studying unique factorization domains, Bhatwadekar and Sharma [8] defined an almost prime ideal as a proper ideal P of R with the property that for $a, b \in R$, if $a b \in P \backslash P^{2}$ then $a \in P$ or $b \in P$. Thus, a weakly prime ideal is almost prime and any proper idempotent ideal is also almost prime.

In [14], Anderson and Bataineh defined a Φ-prime ideal as follows: Let R be a commutative ring and $S(R)$ be the set of all ideals of R. Let $\Phi: S(R) \rightarrow S(R) \cup\{\emptyset\}$ be a function. Then a proper ideal P of R is called Φ-prime if for $a, b \in R, a b \in P \backslash \Phi(P)$ implies $a \in P$ or $b \in P$. They defined $\Phi_{m}: S(R) \rightarrow S(R) \cup\{\emptyset\}$ with $\Phi_{m}(J)=J^{m}$, for all $J \in S(R)$ and $m \geq 2$.

In [10], Ebrahimpour and Nekooei defined an $(n-1, n)-\Phi_{m}$-prime ideal as a proper ideal P of R with the property that for $a_{1}, \ldots, a_{n} \in$
R, if $a_{1} \ldots a_{n} \in P \backslash P^{m}$ then $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} \in P$, for some $i \in$ $\{1, \ldots, n\} ;(m, n \geq 2)$.

In [24], Zamani defined ϕ-prime submodule as follows: Let $S(M)$ be the set of all submodules of M and $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function. A proper submodule P of M is called ϕ-prime submodule if for $r \in R$ and $x \in M, r x \in P \backslash \phi(P)$ implies $r \in(P: M)$ or $x \in P$. He defined $\Phi_{m}: S(M) \rightarrow S(M) \cup\{\emptyset\}$ with $\Phi_{m}(N)=(N: M)^{m-1} N$, for all $N \in S(M) ;(m \geq 2)$.

In [11], Ebrahimpour and Nekooei show that P is an $(n-1, n)$ -ϕ_{m}-prime submodule of M if $a_{1} \ldots a_{n-1} x \in P \backslash(P: M)^{m-1} P$ implies $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$, for some $i \in\{1, \ldots, n-1\}$ or $a_{1} \ldots a_{n-1} \in$ $(P: M)$, where $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$. So a $(1,2)-\Phi_{2}$-prime submodule is just almost prime. We shall call $(1,2)-\Phi_{m}$-prime submodules $" \Phi_{m}$-prime". In this paper we study $(n-1, n)$-weakly prime and $(n-1, n)-\Phi_{m}$-prime submodules, which are generalizations of weakly prime and almost prime submodules, respectively; $(n, m \geq 2)$.

Some of our results use the $R(+) M$ construction. Let R be a ring and M be an R-module. Then $R(+) M=R \times M$ is a ring with identity $(1,0)$ under addition defined by $(r, m)+(s, n)=(r+s, m+n)$ and multiplication defined by $(r, m)(s, n)=(r s, r n+s m)$.

Let R be an integral domain with quotient field K and M a torsionfree R-module. Then the following conditions are equivalent, by [20].

1) For all $y \in K$ and all $x \in M, y x \in M$ or $y^{-1} M \subseteq M$.
2) For all $y \in K, y M \subseteq M$ or $y^{-1} M \subseteq M . M$ is called valuation R-module if one of these conditions holds.

Let R be a ring and M an R-module. We show the set of all prime ideals of R by $\operatorname{Spec}(R)$ and the set of all prime submodules of M by $\operatorname{Spec}(M)$.

In this paper, we study $(n-1, n)$-weakly prime and $(n-1, n)-\phi_{m^{-}}$ prime submodules. Also, we prove some interesting results and give some examples about these types of submodules.

2. Main Results

It is clear that every $(n-1, n)$-prime submodule is $(n-1, n)$-weakly prime; $(n \geq 2)$. In Example 2.1 and Example 2.2, we show that the converse is not true in general.

Example 2.1. Let Q be a maximal ideal of a ring R. Then, $\bar{R}=\frac{R}{Q^{2}}$ is a quasi-local ring with unique maximal ideal \bar{Q} and $\bar{Q}^{2}=0$. Let J be a proper ideal of \bar{R}. It is easy to show that J is \bar{Q}-primary. Suppose $S=\bar{R}[x]$ and $M=S$ as an S-module. We show that $J[x]$ is a weakly prime submodule of M. We know that $J[x]$ is $\bar{Q}[x]$-primary. Suppose $0 \neq f g \in J[x]$. Both f and g can not be in $\bar{Q}[x]$. Let $g \notin \bar{Q}[x]$. Since $J[x]$ is $\bar{Q}[x]$-primary, we have $f \in J[x]$. So, $J[x]$ is a weakly prime submodule and hence, it is an $(n-1, n)$-weakly prime submodule. Thus, $J[x]$ is an $(n-1, n)-\phi_{m}$-prime submodule of M. Moreover, if $J \neq \bar{Q}$, then $J[x]$ is a weakly prime submodule that is not prime; $(n, m \geq 2)$.
Example 2.2. Let $R=\frac{K[x, y]}{\left(x^{2} y^{2}\right)}$, where K is a field, $M=\frac{K[x, y]}{(x, y)} \simeq K$ as an R-module, $D=R(+) M$ and $M^{\prime}=D$ as an D-module. The submodule $N=0(+) M$ of M^{\prime} is a weakly prime submodule that is not prime.

Example 2.3. Let (R, Q) be a quasi-local ring, M an R-module and P a proper submodule of M. If $P \cap Q^{n-1} M=0$, then P is an $(n-1, n)$ weakly prime submodule of M. For, if $0 \neq a_{1} \ldots a_{n-1} x \in P$, then $a_{1} \ldots a_{n-1} \notin Q^{n-1}$. So, there exists an $i \in\{1, \ldots, n-1\}$ such that a_{i} is a unit of R. Thus $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$. Similarly, if $P \cap Q^{n-1} M \subseteq$ $(P: M)^{m-1} P$, then P is an $(n-1, n)-\Phi_{m}$-prime submodule of M, where $m, n \geq 2$. For example, let $R=\frac{k[|x, y|]}{(x)(x, y)}$, where k is a field, $Q=(\bar{x}, \bar{y})$ be the unique maximal ideal of R and $M=R$ as an R-module. Let $P=(\bar{x})$. Then, $P \cap Q^{n-1} M=0 ;(n \geq 2)$. Therefore, P is $(n-1, n)-$ weakly prime and hence is $(n-1, n)-\Phi_{m}$-prime; $(m \geq 2)$.

Next, we show that for a principal submodule $R x$ with $\operatorname{ann}(x)=0$ $(R x \cong R)$ the concepts $(n-1, n)-\Phi_{m}$-prime and $(n-1, n)$-prime are the same; $(m, n \geq 2)$.

Lemma 2.4. Let R be a ring, M an R-module and x a non-zero element of M such that $R x \neq M$ and $\operatorname{ann}(x)=0$. Let $m, n \geq 2$ be two integers. If $R x$ is not an $(n-1, n)$-prime submodule, then there exist $a_{1}, \ldots, a_{n-1} \in R$ and $y \in M$ such that $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} y \notin R x$, for all $i \in\{1, \ldots, n-1\}$ and $a_{1} \ldots a_{n-1} \notin(R x: M)$ and $a_{1} \ldots a_{n-1} y \in$ $R x$. But, $a_{1} \ldots a_{n-1} y \notin(R x: M)^{m-1} R x$.

Proof. Since $R x$ is not $(n-1, n)$-prime, there exist $a_{1}, \ldots, a_{n-1} \in R$ and $y \in M$ such that $a_{1} \ldots a_{n-1} y \in R x$ but $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} y \notin R x$, for all $i \in\{1, \ldots, n-1\}$ and $a_{1} \ldots a_{n-1} \notin(R x: M)$. If $a_{1} \ldots a_{n-1} y \notin$ $(R x: M)^{m-1} R x$, we are done. So, we assume that $a_{1} \ldots a_{n-1} y \in(R x$: $M)^{m-1} R x$.

Let $y^{\prime}=y+x$. Then, $a_{1} \ldots a_{n-1} y^{\prime} \in R x$ and $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} y^{\prime}$ $\notin R x$, for all $i \in\{1, \ldots, n-1\}$ and $a_{1} \ldots a_{n-1} \notin(R x: M)$. If $a_{1} \ldots a_{n-1} y^{\prime} \in(R x: M)^{m-1} R x$, then $a_{1} \ldots, a_{n-1} x \in(R x: M)^{m-1} R x$. So, there exists $r \in(R x: M)^{m-1}$ such that $a_{1} \ldots a_{n-1} x=r x$ and hence $a_{1} \ldots a_{n-1}=r \in(R x: M)^{m-1} \subseteq(R x: M)$, which is a contradiction. Therefore, $a_{1} \ldots a_{n-1} y^{\prime} \notin(R x: M)^{m-1} R x$, as wanted.

Corollary 2.5. Let R be a ring, M an R-module and x a non-zero element of M such that $R x \neq M$ and ann $(x)=0$. Then, $R x$ is an $(n-1, n)-\Phi_{m}$-prime submodule of M if and only if $R x$ is $(n-1, n)$ prime; ($n, m \geq 2$).

Proof. (\Leftarrow) If $R x$ is an $(n-1, n)$-prime submodule of M, then it is clear that $R x$ is $(n-1, n)-\Phi_{m}$-prime.
(\Rightarrow) If $R x$ is not $(n-1, n)$-prime, then there exist $a_{1} \ldots a_{n-1} \in R$ and $y \in M$ such that $a_{1} \ldots a_{n-1} y \in R x \backslash(R x: M)^{m-1} R x$ such that $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} y \notin R x$, for all $i \in\{1, \ldots, n-1\}$ and $a_{1} \ldots a_{n-1} \notin$ $(R x: M)$, by Lemma 2.4, which is a contradiction.

Lemma 2.6. Let R be an integral domain, M a multiplication R module, J and K two submodules such that $(J: M)$ and $(K: M)$ are non-zero, finitely generated ideals of $R,(J: M) \nsubseteq(K: M)$ and $(K: M) \nsubseteq(J: M)$. If $((J \cap K): M)$ is Φ_{n}-prime, then the radical of J equals the radical of K; $(n \geq 2)$.
Proof. We show that $K \subseteq \operatorname{radJ}$. If $(K: M) \subseteq(P: M)$, for every minimal prime submodule P over J, then $(K: M) \subseteq(\operatorname{rad} J: M)$. Since M is a multiplication module, we have $K \subseteq \operatorname{rad} J$.

So, we assume that there exists a prime submodule P of M minimal over J such that $(K: M) \nsubseteq(P: M)$. Set $(P: M)=q$. Choose an element $r \in(K: M) \backslash q$. Clearly, for $(J: M)^{(n)}=(J: M)^{n} R_{q} \cap R$, we have $(J: M)^{n} R_{q}=(J: M)^{(n)} R_{q}$. Since $(J: M)$ is finitely generated, $(J: M) R_{q} \neq(J: M)^{n} R_{q}$. Thus, $(J: M) R_{q} \neq(J: M)^{(n)} R_{q}$, and consequently $(J: M) \nsubseteq(J: M)^{(n)}$. Since $(J: M) \nsubseteq(K: M)$ and $(J: M) \nsubseteq(J: M)^{(n)}$, we have $(J: M) \nsubseteq(K: M) \cup(J: M)^{(n)}$.

Choose an element $s \in(J: M) \backslash\left((K: M) \cup(J: M)^{(n)}\right)$. Then, $r, s \notin(J: M) \cap(K: M)$, but $r s \in(J: M) \cap(K: M)=((J \cap$ $K): M)$. We claim that rs $\notin((J \cap K): M)^{n}$. Otherwise, rs \in $(J: M)^{n} \subseteq(J: M)^{(n)}$. However, $r \in R \backslash q$ and $r s \in(J: M)^{(n)}$ implies that $s \in(J: M)^{(n)}$, which is a contradiction. So, we have $r s \in((J \cap K): M) \backslash((J \cap K): M)^{n}$ and $r, s \notin(J \cap K: M)$. This contradicts the fact that $((J \cap K): M)$ is Φ_{n}-prime. Thus $K \subseteq \operatorname{rad} J$, and then $\operatorname{radK} \subseteq \operatorname{rad} J$. Similarly, $r a d J \subseteq \operatorname{radK}$. Therefore we have $\operatorname{rad} K=\operatorname{rad} J$, as desired.

Theorem 2.7. Let R be a Noetherian domain, M a finitely generated multiplication R-module and P be a submodule of M such that $(P: M)$ is a non-zero Φ_{n}-prime ideal of R. Then, P is a primary submodule of M; $(n \geq 2)$.

Proof. If P is not primary, then every minimal primary decomposition of P must have at least two components. Take a minimal primary decomposition of P and let Q be a primary component of this decomposition. If K is the intersection of all other primary components in the decomposition, then $P=Q \cap K$, where $Q \nsubseteq K$ and $K \nsubseteq Q$ and $\operatorname{rad}(Q: M) \neq \operatorname{rad}(K: M)$. Since $Q \nsubseteq K$ and M is a multiplication module, we have $(Q: M) \nsubseteq(K: M)$. Similarly, we get $(K: M) \nsubseteq(Q: M)$. So, by Lemma 2.6, we have $\operatorname{rad} Q=\operatorname{radK}$. Thus, $(\operatorname{radQ}: M)=(\operatorname{rad} K: M)$. Since M is finitely generated, we have $\operatorname{rad}(Q: M)=\operatorname{rad}(K: M)$, by [19, Theorem 4.4], which is a contradiction.

Let R be a ring, M a multiplication R-module and N_{1}, N_{2} be two submodules of M. There exist ideals I_{1}, I_{2} of R such that $N_{1}=I_{1} M$ and $N_{2}=I_{2} M$. Ameri in [2] defined the product of $N_{1} N_{2}$ by $I_{1} I_{2} M$. We use this notion in proving the following theorem.

A ring R is said to be locally $U F D$, if R_{p} is a $U F D$, for every $p \in \operatorname{Spec}(R)$. It is clear that if R is a $U F D$, then it is locally $U F D$. Example 2.8 shows that the converse is not true in general.
Example 2.8. Let $R=\mathbf{Z}[\sqrt{5} i]$, where \mathbf{Z} is the ring of integers. We know that R is a Dedekind domain and the element 2 does not admit a factorization into prime elements, by [15, Example 13.8]. So, R is not a $U F D$. But, R_{p} is a PID, for every $p \in \operatorname{Spec}(R)$.

Theorem 2.9. Let R be a domain and M a finitely generated faithful multiplication R-module. If every proper submodule of M is a product of Φ_{n}-prime submodules, then R is locally UFD; $(n \geq 2)$.
Proof. Let $p \in \operatorname{Spec}(R), I_{p}$ be a proper principal ideal of R_{p} and $N=$ $I M$. If $I M=N=M=R M$, then by [13, Thoorem 3.1], we have $I=R$, which is a contradiction. So, N is a proper submodule of M. Suppose that $N=N_{1} \ldots N_{k}$, where N_{i} is a ϕ_{n}-prime submodule of M, for all $i \in\{1, \ldots, k\}$. Then $N=I_{1} \ldots I_{k} M$, where $N_{i}=I_{i} M$, for $i \in\{1, \ldots, k\}$. Thus, $I=I_{1} \ldots I_{k}$, by [13, Theorem 3.1]. Since N_{i} is ϕ_{n}-prime, then I_{i} is ϕ_{n}-prime, by [11, Lemma 4.3(i)].

In domain R_{p}, every nonzero principal ideal is invertible. We know that a factor of an invertible ideal is also invertible. Since R_{p} is quasilocal, an invertible ideal is principal. So, I_{p} is a product of principal
Φ_{n}-prime ideals and hence I_{p} is a product of principal prime ideals, by Corollary 2.5. Therefore, R_{p} is a $U F D$ and R is locally $U F D$.

In Example 2.10, we show that a finitely generated faithful multiplication R-module M is not cyclic in general.

Example 2.10. Let R be a Dedekind domain. We know that every ideal of R is a multiplication R-module, by [16, Page 223]. Also, every ideal of a Dedekind domain is generated by at most two elements, by [23, Corollary 2, Page 125]. So, every ideal of R is a finitely generated faithful multiplication R-module.

Let R be an integral domain with quotient field K and M a torsionfree R-module. In [20], Moghaderi and Nekooei proved that for $y=$ $\frac{r}{s} \in K$ and $x \in M, y x \in M$ if there exists $m \in M$ such that $r x=s m$. They also proved that M is a valuation R-module if M satisfies one of the following equivalent conditions:
(1) For every $y \in K$ and every $x \in M, y x \in M$ or $y^{-1} M \subseteq M$.
(2) For every $y \in K, y M \subseteq M$ or $y^{-1} M \subseteq M$.

Next, we show that in a multiplicative valuation module, the concepts $(n-1, n)$ - Φ_{n}-prime and $(n-1, n)$-prime are the same, for some submodules; $(n \geq 2)$.

Lemma 2.11. Let R be a ring, M a multiplicative valuation R-module and N_{1}, N_{2} be two submodules of M. Then, $N_{1} \subseteq N_{2}$ or $N_{2} \subseteq N_{1}$.

Proof. Let N_{1}, N_{2} be two submodules of M. Since M is a multiplication R-module, then there exist the ideals I_{1}, I_{2} of R such that $N_{1}=I_{1} M$ and $N_{2}=I_{2} M$. We know that R is a valuation ring, by [20, Lemma 2.11]. So, $I_{1} \subseteq I_{2}$ or $I_{2} \subseteq I_{1}$, and therefore $N_{1} \subseteq N_{2}$ or $N_{2} \subseteq N_{1}$, as desired.

Theorem 2.12. Let R be a ring, M a multiplicative valuation R module and P a submodule of M with ann $(x)=0$, for some $0 \neq x \in P$. Then, P is $(n-1, n)$ - Φ_{n}-prime if and only if it is $(n-1, n)$-prime; ($n \geq 2$).

Proof. (\Rightarrow) Let $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$ with $a_{1} \ldots a_{n-1} x \in P$. Assume $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \notin P$, for all $i \in\{1, \ldots, n-1\}$ and $a_{1} \ldots a_{n-1} \notin(P: M)$. So $\left(a_{i}\right) \nsubseteq(P: M)$, for all $i \in\{1, \ldots, n-1\}$. We know that R is a valuation ring, by [20, Lemma 2.11]. So we have $(P: M) \subseteq\left(a_{i}\right)$, for all $i \in\{1, \ldots, n-1\}$. Hence $(P: M)^{n-1} P \subseteq$ $\left(a_{1} \ldots a_{n-1} x\right)$. If $(P: M)^{n-1} P \neq\left(a_{1} \ldots a_{n-1} x\right)$, then $a_{1} \ldots a_{n-1} x \in$ $P \backslash(P: M)^{n-1} P$. Since P is $(n-1, n)$ - Φ_{n}-prime, this implies that $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$, for some $i \in\{1, \ldots, n-1\}$ or $a_{1} \ldots a_{n-1} \in$
$(P: M)$, which are contradictions. So we have $\left(a_{1} \ldots a_{n-1} x\right)=(P:$ $M)^{n-1} P$. Then P being a factor of a principal submodule is principal, by Lemma 2.11. So there exists $y \in M$ such that $P=R y$. Hence $x=r y$, for some $r \in R$. So we have $\operatorname{ann}(y)=0$. Thus, by Corollary 2.5, P is $(n-1, n)$-prime.
(\Leftarrow) This holds for any module.
Let R be a ring, M an R-module and N a submodule of M. We know that $\operatorname{rad} N=\cap_{N \subseteq P \in S p e c(M)} P$. If there exists no prime submodule over N, then $\operatorname{rad} N=M$. Moreover, N is said to be a radical submodule if $\operatorname{rad} N=N$.

Prüfer modules has been defined by Naoum and Al-Alwan in [21, page 407]. The next example shows that in a Prüfer Module M, the above result is not necessarily true.

Example 2.13. Let R be the ring of all algebraic integers and $M=R$ as an R-module. Then every radical submodule of M is idempotent. So, let $N_{1} \neq N_{2}$ be two maximal submodules of M. Hence, $N_{1} N_{2}=$ $N_{1} \cap N_{2}$ and $\left(N_{1} N_{2}\right)^{2}=N_{1} N_{2}$. So, $N_{1} N_{2}$ is $(n-1, n)$ - Φ_{n}-prime, but not a prime submodule; $(n \geq 2)$.

Let R be a ring, M an R-module and $D=R(+) M$. We observe that for an ideal I of R and a positive integer $n \geq 1$, we have $(I(+) M)^{n}=$ $I^{n}(+) I^{n-1} M$.
Theorem 2.14. Let R be a ring, M a finitely generated faithful multiplication R-module and P a ϕ_{n}-prime submodule of M. If for $a, b \in R$ and $(x, y) \in M$ with $(a, x)(b, y) \in(P: M)^{n}(+) M$ and $a, b \notin(P: M)$; $a y+b x \in(P: M)^{n-1} M$, then $(P: M)(+) M$ is a Φ_{n}-prime ideal of $D=R(+) M ;(n \geq 2)$.
Proof. Set $q=(P: M)$. Suppose that $(a, x)(b, y) \in q(+) M \backslash(q(+) M)^{n}$. So $(a, x)(b, y) \in q(+) M \backslash\left(q^{n}(+) q^{n-1} M\right)$ and hence $a b \in q$. If $a b \notin q^{n}$, then $a b \in q \backslash q^{n}$. Since $P=q M$ is ϕ_{n}-prime, then q is ϕ_{n}-prime, by [11, Lemma 4.3]. So, $a \in q$ or $b \in q$. Hence, $(a, x) \in q(+) M$ or $(b, y) \in q(+) M$. Now assume that $a b \in q^{n}$. If $a, b \notin q$, then $a y+b x \in$ $q^{n-1} M$, by hypothesis. So, $(a, x)(b, y) \in q^{n}(+) q^{n-1} M=(q(+) M)^{n}$, a contradiction.

Now, we study the converse of Theorem 2.14, for $n=2$.
Theorem 2.15. Let R be a ring, M a finitely generated faithful multiplication R-module and P a submodule of M. If $(P: M)(+) M$ is an almost prime ideal of $D=R(+) M$ and there exists a $Q \in \operatorname{Max}(R)$ such that $(P: M) \subseteq Q,(P: M) \cap Q^{2}=0$ and $\bigcap_{n \geq 1} Q^{n}=0$, then P is an almost prime submodule of M.

Proof. Set $q=(P: M)$. Suppose that $q(+) M$ is almost prime. Let $a b \in q \backslash q^{2}$, where $a, b \in R$. Then $(a, 0)(b, 0) \in(q(+) M) \backslash\left(q^{2}(+) q M\right)$, and hence $(a, 0)(b, 0) \in(q(+) M) \backslash(q(+) M)^{2}$. So, $a \in q$ or $b \in q$. Thus q is almost prime and $P=q M$ is an almost prime submodule of M, by [11, Lemma 4.3].

Theorem 2.16. Let R be a ring and M a finitely generated faithful multiplication R-module. Then every prime ideal of $D=R(+) M$ is of the form $(P: M)(+) M$, for some prime submodule P of M.

Proof. We know from [17, Theorem 25.1 (3)] that every prime ideal of $D=R(+) M$ is of the form $q(+) M$, for some prime ideal q of R. Let P be a prime submodule of M. So, $(P: M)$ is a prime ideal of R, by [18, Proposition 1]. Thus, $(P: M)(+) M$ is a prime ideal of D.

Now, assume that $q(+) M$ is a prime ideal of D. Set $P=q M$. If $P=$ $q M=M=R M$, then $q=R$, by [13, Theorem 3.1], a contradiction. So, $P \in \operatorname{Spec}(M)$, by [13, Lemma 2.10], and therefore $(P: M)=q$, by [13, Theorem 3.1].

Unlike the case of prime ideals, an $(n-1, n)$-weakly prime or $(n-$ $1, n)-\Phi_{m}$-prime ideal of $D=R(+) M$ need not have the form $I(+) M$. For example, $0(+) 0$ is $(n-1, n)$-weakly prime and as a result $(n-1, n)$ -ϕ_{m}-prime; ($n, m \geq 2$).

Let R be a ring and M an R-module. Two elements $x, y \in M$ are associates, denoted $x \sim y$, if $R x=R y$. A non-zero element $x \in M$ with $R x \neq M$ is n-irreducible if $x=a_{1} \ldots a_{n-1} y$, where $a_{1}, \ldots, a_{n-1} \in R$ and $y \in M$, implies $x \sim a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} y$, for some $i \in\{1, \ldots, n-1\}$ or $a_{1} \ldots a_{n-1} \in(R x: M) ;(n \geq 2)$.
Theorem 2.17. Let R be a ring, M an R-module and P a proper submodule of M. Suppose that every non-zero element of P is n irreducible. Then P is $(n-1, n)$-weakly prime and hence $(n-1, n)$ -Φ_{m}-prime; $(n, m \geq 2)$.
Proof. Let $a_{1} \ldots a_{n-1} x \in P \backslash\{0\}$, where $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$. So, $a_{1} \ldots a_{n-1} x$ is n-irreducible and hence

$$
\left(a_{1} \ldots a_{n-1} x\right)=\left(a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x\right),
$$

for some $i \in\{1, \ldots, n-1\}$. Therefore $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$ or $a_{1} \ldots a_{n-1} \in\left(\left(a_{1} \ldots a_{n-1} x\right): M\right)$. But $\left(\left(a_{1} \ldots a_{n-1} x\right): M\right) \subseteq(P: M)$. So, P is $(n-1, n)$-weakly prime.

Corollary 2.18. Let (R, Q) be a quasi-local ring, M an R-module and $x \in M$. If x is n-irreducible and $Q x=0$, then $R x$ is $(n-1, n)$-weakly prime; ($n \geq 2$).

Proof. Since x is n-irreducible and $Q x=0$, every non-zero element of $R x$ is an associate of x and hence n-irreducible. So $R x$ is $(n-1, n)$ weakly prime, by Theorem 2.17.

Acknowledgments

The authors would like to thank the referees for their insightful comments.

References

 with zero divisors, Comm. Algebra, 27 (1999), 1967-1974.
2. R. Ameri, On the prime submodules of multiplication modules, IJMMS, $\mathbf{2 7}$ (2003), 1715-1724.
3. D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39 (2011), 1646-1672.
4. D. D. Anderson and M. Bataineh, Generalization of prime ideals, Comm. Algebra, 36 (2008), 686-696.
5. D. F. Anderson and S. T. Chapman, How far is an element from being prime?, J. Algebra Appl., 9 (2010), 779-789.
6. A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., 75 (2007), 417-429.
7. A. Badawi and A. Yousefian-Darani, On Weakly 2-absorbing ideals of commutative rings, Houston J. Math., 39 (2013), 441-452.
8. S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra, 33 (2005), 43-49.
9. A. Barnard, Multiplication Modules, J. Algebra, 71(1) (1981), 174-178.
10. M. Ebrahimpour and R. Nekooei, On Generalizations of Prime Ideals, Comm. Algebra, 40 (2012), 1268-1279.
11. M. Ebrahimpour and R. Nekooei, On Generalizations of Prime Submodules, Bull. Iran. Math. Soc., 39(5) (2013), 919-939.
12. M. Ebrahimpour, On Generalizations of Prime ideals (II), Comm. Algebra, 42 (2014), 3861-3875.
13. Z. A. El-Bast and P. F. Smith, Multiplication Modules, Comm. Algebra, 16(4) (1988), 755-779.
14. S. Galovich, Unique factorization rings with zero divisors, Math. Mag., 51 (1978), 276-283.
15. A. Gathmann, Commutative Algebra, Class Notes TU, Kaiserslautern, 2013/14.
16. N. S. Gopalakrishnan, Commutative Algebra, Oxonian Press Pvt. Ltd., New Delhi, 1984.
17. J. Hukaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York, Basil, USA, 1988.
18. C. P. Lu, Prime Submodules of Modules, Comment. Math. Univ. Sancti. Pauli., 33(1) (1984), 61-69.
19. R. L. McCasland, M. E. Moore and P. F. Smith, Modules with Bounded Spectra, Comm. Algebra, 26(10) (1998), 3403-3417.
20. J. Moghaderi and R. Nekooei, Discrete Valuation and Dedekind Module, Int. Electron. J. Algebra, 8 (2010), 18-29.
21. A. G. Naoum and F. H. Al-Alwan, Dedekind modules, Comm. Algebra, 24(2) (1996), 397-412.
22. R. Nekooei, Weakly prime submodules, FJMS, 39(2) (2010), 185-192.
23. I. B. S. Passi, Algebra: Some recent advances, Boston, Basel, Berlin: Birklauser, 1999.
24. N. Zamani, ϕ-prime submodules, Glasg. Math. J., (2009), 1-7.

M. Ebrahimpour

Department of Mathematics, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, P.O.Box 518, Rafsanjan, Iran
Email: m.ebrahimpour@vru.ac.ir

F. Mirzaee

Department of Mathematics, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
Email: mirzaee0269@yahoo.com

Journal of Algebraic Systems

ON $(n-1, n)-\Phi_{m}$-PRIME AND $(n-1, n)$-WEAKLY PRIME SUBMODULES
M. EBRAHIMPOUR AND F. MIRZAEE

> زيرمدولهاى (n-1,n)

 بتوان نتيجه كرفت $\left(0 \neq a_{1} \ldots a_{n-1} x \in P\right)$竍 $i \in\{1, \ldots, n-1\}$

مى $\}$
كلمات كليدى: زير مدولهاى اول ضعيف، زير مدولهاى (n - 1,n)-اول ضعيف، زيرمدولهاى .

[^0]: MSC(2010): Primary: 13C05; Secondary: 13C13.
 Keywords: Quasi-local ring, weakly prime submodule, $(n-1, n)$-weakly prime submodule, ϕ_{m}-prime submodule, $(n-1, n)$ - Φ_{m}-prime submodule.
 Received: 16 May 2016, Accepted: 26 October 2017.
 *Corresponding author.

