Journal of Algebraic Systems Vol. 5, No. 2, (2017), pp 99-109

ON (n-1, n)- Φ_m -PRIME AND (n-1, n)-WEAKLY PRIME SUBMODULES

M. EBRAHIMPOUR* AND F. MIRZAEE

ABSTRACT. Let $m, n \geq 2$ be two positive integers, R a commutative ring with identity and M a unitary R-module. A proper submodule P of M is an (n-1,n)- Φ_m -prime ((n-1,n)-weakly prime) submodule if $a_1, \ldots, a_{n-1} \in R$, $x \in M$ with $a_1 \ldots a_{n-1} x \in P \setminus (P : M)^{m-1}P$ ($0 \neq a_1 \ldots a_{n-1} x \in P$) implies $a_1 \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$, for some $i \in \{1, \ldots, n-1\}$ or $a_1 \ldots a_{n-1} \in (P : M)$. In this paper we study these type of submodules, giving some useful results and examples concerning them.

1. INTRODUCTION

Throughout this article, all rings are assumed to be commutative with identity and all modules are unital. We remind that a proper ideal P of R is called prime if, for $a, b \in R$, $ab \in P$ implies $a \in P$ or $b \in P$.

Let P be a submodule of M. Then $(P: M) = \{r \in R | rM \subseteq P\}$ is an ideal of R. An R-module M is faithful if $Ann_R M = (0: M) = 0$. Also, M is a multiplication R-module if for every submodule N of M there exists an ideal I of R such that N = IM. It is easy to show that N = (N: M)M.

A proper submodule P of M is called prime if, for $r \in R$, $x \in M$ and $rx \in P$ we have $x \in N$ or $r \in (P : M)$. It is easy to show that if P is a prime submodule of M, then (P : M) is a prime ideal of R.

MSC(2010): Primary: 13C05; Secondary: 13C13.

Keywords: Quasi-local ring, weakly prime submodule, (n-1, n)-weakly prime submodule,

 $[\]phi_m$ -prime submodule, (n-1, n)- Φ_m -prime submodule.

Received: 16 May 2016, Accepted: 26 October 2017.

^{*}Corresponding author.

EBRAHIMPOUR AND MIRZAEE

In [10, 12], Ebrahimpour and Nekooei show that a proper submodule P of M is (n-1, n)-prime if $a_1...a_{n-1}x \in P$, implies $a_1...a_{i-1}a_{i+1}...a_{n-1}x \in P$, for some $i \in \{1, ..., n-1\}$ or $a_1...a_{n-1} \in (P : M)$, where $a_1, ..., a_{n-1} \in R$ and $x \in M$. So, a (1, 2)-prime submodule is just prime.

In [1], authors defined a weakly prime ideal as a proper ideal P of R with the property that for $a, b \in R$, if $0 \neq ab \in P$ then $a \in P$ or $b \in P$. The notion of a weakly prime element (i.e., an element $p \in R$ such that (p) is a weakly prime ideal) was introduced by Galovich [14] in his study of unique factorization rings with zero divisors. It is hoped that weakly prime elements and weakly prime ideals will prove useful in the study of commutative rings with zero divisors and in particular, factorization in such rings.

In [22], Nekooei extends this concept to the case of submodules. He defines a weakly prime submodule as a proper submodule P of M with the property that for $r \in R$ and $x \in M$, if $0 \neq rx \in P$ then $x \in P$ or $r \in (P : M)$.

In [10], Ebrahimpour and Nekooei defined a (n-1, n)-weakly prime ideal as a proper ideal P of R with the property that for $a_1, \ldots, a_n \in$ R, if $0 \neq a_1 \ldots a_n \in P$ then $a_1 \ldots a_{i-1}a_{i+1} \ldots a_n \in P$, for some $i \in$ $\{1, \ldots, n\}$. So, a (1, 2)-weakly prime ideal is just weakly prime and every proper ideal of a quasi-local ring (R, M) with $M^n = 0$ is (n-1, n)weakly prime.

Also, in [11], Ebrahimpour and Nekooei defined a proper submodule P of M as an (n - 1, n)-weakly prime submodule such that for $a_1, \ldots, a_{n-1} \in R$ and $x \in M, 0 \neq a_1 \ldots a_{n-1} x \in P$ implies $a_1 \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$, for some $i \in \{1, \ldots, n-1\}$ or $a_1 \ldots a_{n-1} \in (P : M)$. So a (1, 2)-weakly prime submodule is just weakly prime.

In studying unique factorization domains, Bhatwadekar and Sharma [8] defined an almost prime ideal as a proper ideal P of R with the property that for $a, b \in R$, if $ab \in P \setminus P^2$ then $a \in P$ or $b \in P$. Thus, a weakly prime ideal is almost prime and any proper idempotent ideal is also almost prime.

In [14], Anderson and Bataineh defined a Φ -prime ideal as follows: Let R be a commutative ring and S(R) be the set of all ideals of R. Let $\Phi : S(R) \to S(R) \cup \{\emptyset\}$ be a function. Then a proper ideal P of R is called Φ -prime if for $a, b \in R$, $ab \in P \setminus \Phi(P)$ implies $a \in P$ or $b \in P$. They defined $\Phi_m : S(R) \to S(R) \cup \{\emptyset\}$ with $\Phi_m(J) = J^m$, for all $J \in S(R)$ and $m \geq 2$.

In [10], Ebrahimpour and Nekooei defined an (n-1, n)- Φ_m -prime ideal as a proper ideal P of R with the property that for $a_1, \ldots, a_n \in$

100

R, if $a_1 \ldots a_n \in P \setminus P^m$ then $a_1 \ldots a_{i-1} a_{i+1} \ldots a_n \in P$, for some $i \in \{1, \ldots, n\}$; $(m, n \ge 2)$.

In [24], Zamani defined ϕ -prime submodule as follows: Let S(M) be the set of all submodules of M and $\phi : S(M) \to S(M) \cup \{\emptyset\}$ be a function. A proper submodule P of M is called ϕ -prime submodule if for $r \in R$ and $x \in M$, $rx \in P \setminus \phi(P)$ implies $r \in (P:M)$ or $x \in P$. He defined $\Phi_m : S(M) \to S(M) \cup \{\emptyset\}$ with $\Phi_m(N) = (N:M)^{m-1}N$, for all $N \in S(M)$; $(m \geq 2)$.

In [11], Ebrahimpour and Nekooei show that P is an (n-1,n)- ϕ_m -prime submodule of M if $a_1 \ldots a_{n-1}x \in P \setminus (P:M)^{m-1}P$ implies $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}x \in P$, for some $i \in \{1, \ldots, n-1\}$ or $a_1 \ldots a_{n-1} \in (P:M)$, where $a_1, \ldots, a_{n-1} \in R$ and $x \in M$. So a (1,2)- Φ_2 -prime submodule is just almost prime. We shall call (1,2)- Φ_m -prime submodules " Φ_m -prime". In this paper we study (n-1,n)-weakly prime and (n-1,n)- Φ_m -prime submodules, which are generalizations of weakly prime and almost prime submodules, respectively; $(n, m \geq 2)$.

Some of our results use the R(+)M construction. Let R be a ring and M be an R-module. Then $R(+)M = R \times M$ is a ring with identity (1,0) under addition defined by (r,m) + (s,n) = (r+s,m+n) and multiplication defined by (r,m)(s,n) = (rs, rn + sm).

Let R be an integral domain with quotient field K and M a torsionfree R-module. Then the following conditions are equivalent, by [20].

1) For all $y \in K$ and all $x \in M, yx \in M$ or $y^{-1}M \subseteq M$.

2) For all $y \in K$, $yM \subseteq M$ or $y^{-1}M \subseteq M$. M is called *valuation* R-module if one of these conditions holds.

Let R be a ring and M an R-module. We show the set of all prime ideals of R by Spec(R) and the set of all prime submodules of M by Spec(M).

In this paper, we study (n-1, n)-weakly prime and $(n-1, n) - \phi_m$ prime submodules. Also, we prove some interesting results and give some examples about these types of submodules.

2. Main Results

It is clear that every (n-1, n)-prime submodule is (n-1, n)-weakly prime; $(n \ge 2)$. In Example 2.1 and Example 2.2, we show that the converse is not true in general.

Example 2.1. Let Q be a maximal ideal of a ring R. Then, $\overline{R} = \frac{R}{Q^2}$ is a quasi-local ring with unique maximal ideal \overline{Q} and $\overline{Q}^2 = 0$. Let J be a proper ideal of \overline{R} . It is easy to show that J is \overline{Q} -primary. Suppose $S = \overline{R}[x]$ and M = S as an S-module. We show that J[x] is a weakly prime submodule of M. We know that J[x] is $\overline{Q}[x]$ -primary. Suppose $0 \neq fg \in J[x]$. Both f and g can not be in $\overline{Q}[x]$. Let $g \notin \overline{Q}[x]$. Since J[x] is $\overline{Q}[x]$ -primary, we have $f \in J[x]$. So, J[x] is a weakly prime submodule. Thus, J[x] is an (n-1, n)- ϕ_m -prime submodule of M. Moreover, if $J \neq \overline{Q}$, then J[x] is a weakly prime submodule that is not prime; $(n, m \geq 2)$.

Example 2.2. Let $R = \frac{K[x,y]}{(x^2y^2)}$, where K is a field, $M = \frac{K[x,y]}{(x,y)} \simeq K$ as an *R*-module, D = R(+)M and M' = D as an *D*-module. The submodule N = 0(+)M of M' is a weakly prime submodule that is not prime.

Example 2.3. Let (R, Q) be a quasi-local ring, M an R-module and P a proper submodule of M. If $P \cap Q^{n-1}M = 0$, then P is an (n-1, n)-weakly prime submodule of M. For, if $0 \neq a_1 \dots a_{n-1}x \in P$, then $a_1 \dots a_{n-1} \notin Q^{n-1}$. So, there exists an $i \in \{1, \dots, n-1\}$ such that a_i is a unit of R. Thus $a_1 \dots a_{i-1}a_{i+1} \dots a_{n-1}x \in P$. Similarly, if $P \cap Q^{n-1}M \subseteq (P:M)^{m-1}P$, then P is an (n-1,n)- Φ_m -prime submodule of M, where $m, n \geq 2$. For example, let $R = \frac{k[[x,y]]}{(x)(x,y)}$, where k is a field, $Q = (\overline{x}, \overline{y})$ be the unique maximal ideal of R and M = R as an R-module. Let $P = (\overline{x})$. Then, $P \cap Q^{n-1}M = 0$; $(n \geq 2)$. Therefore, P is (n-1,n)-weakly prime and hence is (n-1,n)- Φ_m -prime; $(m \geq 2)$.

Next, we show that for a principal submodule Rx with ann(x) = 0 $(Rx \cong R)$ the concepts (n - 1, n)- Φ_m -prime and (n - 1, n)-prime are the same; $(m, n \ge 2)$.

Lemma 2.4. Let R be a ring, M an R-module and x a non-zero element of M such that $Rx \neq M$ and ann(x) = 0. Let $m, n \geq 2$ be two integers. If Rx is not an (n-1,n)-prime submodule, then there exist $a_1, \ldots, a_{n-1} \in R$ and $y \in M$ such that $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}y \notin Rx$, for all $i \in \{1, \ldots, n-1\}$ and $a_1 \ldots a_{n-1} \notin (Rx : M)$ and $a_1 \ldots a_{n-1}y \in Rx$. But, $a_1 \ldots a_{n-1}y \notin (Rx : M)^{m-1}Rx$.

Proof. Since Rx is not (n-1, n)-prime, there exist $a_1, \ldots, a_{n-1} \in R$ and $y \in M$ such that $a_1 \ldots a_{n-1}y \in Rx$ but $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}y \notin Rx$, for all $i \in \{1, \ldots, n-1\}$ and $a_1 \ldots a_{n-1} \notin (Rx : M)$. If $a_1 \ldots a_{n-1}y \notin (Rx : M)^{m-1}Rx$, we are done. So, we assume that $a_1 \ldots a_{n-1}y \in (Rx : M)^{m-1}Rx$.

102

Let y' = y + x. Then, $a_1 \dots a_{n-1}y' \in Rx$ and $a_1 \dots a_{i-1}a_{i+1} \dots a_{n-1}y' \notin Rx$, for all $i \in \{1, \dots, n-1\}$ and $a_1 \dots a_{n-1} \notin (Rx : M)$. If $a_1 \dots a_{n-1}y' \in (Rx : M)^{m-1}Rx$, then $a_1 \dots a_{n-1}x \in (Rx : M)^{m-1}Rx$. So, there exists $r \in (Rx : M)^{m-1}$ such that $a_1 \dots a_{n-1}x = rx$ and hence $a_1 \dots a_{n-1} = r \in (Rx : M)^{m-1} \subseteq (Rx : M)$, which is a contradiction. Therefore, $a_1 \dots a_{n-1}y' \notin (Rx : M)^{m-1}Rx$, as wanted. \Box

Corollary 2.5. Let R be a ring, M an R-module and x a non-zero element of M such that $Rx \neq M$ and ann(x) = 0. Then, Rx is an (n-1,n)- Φ_m -prime submodule of M if and only if Rx is (n-1,n)-prime; $(n,m \geq 2)$.

Proof. (\Leftarrow) If Rx is an (n-1, n)-prime submodule of M, then it is clear that Rx is (n-1, n)- Φ_m -prime.

 (\Rightarrow) If Rx is not (n-1,n)-prime, then there exist $a_1 \ldots a_{n-1} \in R$ and $y \in M$ such that $a_1 \ldots a_{n-1}y \in Rx \setminus (Rx : M)^{m-1}Rx$ such that $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}y \notin Rx$, for all $i \in \{1, \ldots, n-1\}$ and $a_1 \ldots a_{n-1} \notin (Rx : M)$, by Lemma 2.4, which is a contradiction. \Box

Lemma 2.6. Let R be an integral domain, M a multiplication Rmodule, J and K two submodules such that (J : M) and (K : M)are non-zero, finitely generated ideals of R, $(J : M) \not\subseteq (K : M)$ and $(K : M) \not\subseteq (J : M)$. If $((J \cap K) : M)$ is Φ_n -prime, then the radical of J equals the radical of K; $(n \ge 2)$.

Proof. We show that $K \subseteq radJ$. If $(K : M) \subseteq (P : M)$, for every minimal prime submodule P over J, then $(K : M) \subseteq (radJ : M)$. Since M is a multiplication module, we have $K \subseteq radJ$.

So, we assume that there exists a prime submodule P of M minimal over J such that $(K : M) \not\subseteq (P : M)$. Set (P : M) = q. Choose an element $r \in (K : M) \setminus q$. Clearly, for $(J : M)^{(n)} = (J : M)^n R_q \cap R$, we have $(J : M)^n R_q = (J : M)^{(n)} R_q$. Since (J : M) is finitely generated, $(J : M) R_q \neq (J : M)^n R_q$. Thus, $(J : M) R_q \neq (J : M)^{(n)} R_q$, and consequently $(J : M) \not\subseteq (J : M)^{(n)}$. Since $(J : M) \not\subseteq (K : M)$ and $(J : M) \not\subseteq (J : M)^{(n)}$, we have $(J : M) \not\subseteq (K : M) \cup (J : M)^{(n)}$.

Choose an element $s \in (J : M) \setminus ((K : M) \cup (J : M)^{(n)})$. Then, $r, s \notin (J : M) \cap (K : M)$, but $rs \in (J : M) \cap (K : M) = ((J \cap K) : M)$. We claim that $rs \notin ((J \cap K) : M)^n$. Otherwise, $rs \in (J : M)^n \subseteq (J : M)^{(n)}$. However, $r \in R \setminus q$ and $rs \in (J : M)^{(n)}$ implies that $s \in (J : M)^{(n)}$, which is a contradiction. So, we have $rs \in ((J \cap K) : M) \setminus ((J \cap K) : M)^n$ and $r, s \notin (J \cap K : M)$. This contradicts the fact that $((J \cap K) : M)$ is Φ_n -prime. Thus $K \subseteq radJ$, and then $radK \subseteq radJ$. Similarly, $radJ \subseteq radK$. Therefore we have radK = radJ, as desired. **Theorem 2.7.** Let R be a Noetherian domain, M a finitely generated multiplication R-module and P be a submodule of M such that (P : M) is a non-zero Φ_n -prime ideal of R. Then, P is a primary submodule of M; $(n \ge 2)$.

Proof. If P is not primary, then every minimal primary decomposition of P must have at least two components. Take a minimal primary decomposition of P and let Q be a primary component of this decomposition. If K is the intersection of all other primary components in the decomposition, then $P = Q \cap K$, where $Q \not\subseteq K$ and $K \not\subseteq Q$ and $rad(Q : M) \neq rad(K : M)$. Since $Q \not\subseteq K$ and M is a multiplication module, we have $(Q : M) \not\subseteq (K : M)$. Similarly, we get $(K : M) \not\subseteq (Q : M)$. So, by Lemma 2.6, we have radQ = radK. Thus, (radQ : M) = (radK : M). Since M is finitely generated, we have rad(Q : M) = rad(K : M), by [19, Theorem 4.4], which is a contradiction. \Box

Let R be a ring, M a multiplication R-module and N_1, N_2 be two submodules of M. There exist ideals I_1, I_2 of R such that $N_1 = I_1M$ and $N_2 = I_2M$. Ameri in [2] defined the product of N_1N_2 by I_1I_2M . We use this notion in proving the following theorem.

A ring R is said to be locally UFD, if R_p is a UFD, for every $p \in Spec(R)$. It is clear that if R is a UFD, then it is locally UFD. Example 2.8 shows that the converse is not true in general.

Example 2.8. Let $R = \mathbb{Z}[\sqrt{5}i]$, where \mathbb{Z} is the ring of integers. We know that R is a Dedekind domain and the element 2 does not admit a factorization into prime elements, by [15, Example 13.8]. So, R is not a *UFD*. But, R_p is a *PID*, for every $p \in Spec(R)$.

Theorem 2.9. Let R be a domain and M a finitely generated faithful multiplication R-module. If every proper submodule of M is a product of Φ_n -prime submodules, then R is locally UFD; $(n \ge 2)$.

Proof. Let $p \in Spec(R)$, I_p be a proper principal ideal of R_p and N = IM. If IM = N = M = RM, then by [13, Theorem 3.1], we have I = R, which is a contradiction. So, N is a proper submodule of M. Suppose that $N = N_1...N_k$, where N_i is a ϕ_n -prime submodule of M, for all $i \in \{1, \ldots, k\}$. Then $N = I_1...I_kM$, where $N_i = I_iM$, for $i \in \{1, \ldots, k\}$. Thus, $I = I_1...I_k$, by [13, Theorem 3.1]. Since N_i is ϕ_n -prime, then I_i is ϕ_n -prime, by [11, Lemma 4.3(i)].

In domain R_p , every nonzero principal ideal is invertible. We know that a factor of an invertible ideal is also invertible. Since R_p is quasilocal, an invertible ideal is principal. So, I_p is a product of principal Φ_n -prime ideals and hence I_p is a product of principal prime ideals, by Corollary 2.5. Therefore, R_p is a UFD and R is locally UFD. \Box

In Example 2.10, we show that a finitely generated faithful multiplication R-module M is not cyclic in general.

Example 2.10. Let R be a Dedekind domain. We know that every ideal of R is a multiplication R-module, by [16, Page 223]. Also, every ideal of a Dedekind domain is generated by at most two elements, by [23, Corollary 2, Page 125]. So, every ideal of R is a finitely generated faithful multiplication R-module.

Let R be an integral domain with quotient field K and M a torsionfree R-module. In [20], Moghaderi and Nekooei proved that for $y = \frac{r}{s} \in K$ and $x \in M$, $yx \in M$ if there exists $m \in M$ such that rx = sm. They also proved that M is a valuation R-module if M satisfies one of the following equivalent conditions:

(1) For every $y \in K$ and every $x \in M$, $yx \in M$ or $y^{-1}M \subseteq M$.

(2) For every $y \in K$, $yM \subseteq M$ or $y^{-1}M \subseteq M$.

Next, we show that in a multiplicative valuation module, the concepts (n-1, n)- Φ_n -prime and (n-1, n)-prime are the same, for some submodules; $(n \ge 2)$.

Lemma 2.11. Let R be a ring, M a multiplicative valuation R-module and N_1, N_2 be two submodules of M. Then, $N_1 \subseteq N_2$ or $N_2 \subseteq N_1$.

Proof. Let N_1, N_2 be two submodules of M. Since M is a multiplication R-module, then there exist the ideals I_1, I_2 of R such that $N_1 = I_1M$ and $N_2 = I_2M$. We know that R is a valuation ring, by [20, Lemma 2.11]. So, $I_1 \subseteq I_2$ or $I_2 \subseteq I_1$, and therefore $N_1 \subseteq N_2$ or $N_2 \subseteq N_1$, as desired.

Theorem 2.12. Let R be a ring, M a multiplicative valuation Rmodule and P a submodule of M with ann(x) = 0, for some $0 \neq x \in P$. Then, P is (n - 1, n)- Φ_n -prime if and only if it is (n - 1, n)-prime; $(n \geq 2)$.

Proof. (⇒) Let $a_1, ..., a_{n-1} \in R$ and $x \in M$ with $a_1 ... a_{n-1} x \in P$. Assume $a_1 ... a_{i-1} a_{i+1} ... a_{n-1} x \notin P$, for all $i \in \{1, ..., n-1\}$ and $a_1 ... a_{n-1} \notin (P : M)$. So $(a_i) \notin (P : M)$, for all $i \in \{1, ..., n-1\}$. We know that R is a valuation ring, by [20, Lemma 2.11]. So we have $(P : M) \subseteq (a_i)$, for all $i \in \{1, ..., n-1\}$. Hence $(P : M)^{n-1}P \subseteq (a_1 ... a_{n-1}x)$. If $(P : M)^{n-1}P \neq (a_1 ... a_{n-1}x)$, then $a_1 ... a_{n-1}x \in P \setminus (P : M)^{n-1}P$. Since P is (n - 1, n)-Φ_n-prime, this implies that $a_1 ... a_{i-1} a_{i+1} ... a_{n-1}x \in P$, for some $i \in \{1, ..., n-1\}$ or $a_1 ... a_{n-1} \in P$. (P: M), which are contradictions. So we have $(a_1 \dots a_{n-1}x) = (P: M)^{n-1}P$. Then P being a factor of a principal submodule is principal, by Lemma 2.11. So there exists $y \in M$ such that P = Ry. Hence x = ry, for some $r \in R$. So we have ann(y) = 0. Thus, by Corollary 2.5, P is (n-1, n)-prime.

 (\Leftarrow) This holds for any module.

Let R be a ring, M an R-module and N a submodule of M. We know that $radN = \bigcap_{N \subseteq P \in Spec(M)} P$. If there exists no prime submodule over N, then radN = M. Moreover, N is said to be a radical submodule if radN = N.

Prüfer modules has been defined by Naoum and Al-Alwan in [21, page 407]. The next example shows that in a Prüfer Module M, the above result is not necessarily true.

Example 2.13. Let R be the ring of all algebraic integers and M = R as an R-module. Then every radical submodule of M is idempotent. So, let $N_1 \neq N_2$ be two maximal submodules of M. Hence, $N_1N_2 = N_1 \cap N_2$ and $(N_1N_2)^2 = N_1N_2$. So, N_1N_2 is $(n - 1, n)-\Phi_n$ -prime, but not a prime submodule; $(n \geq 2)$.

Let R be a ring, M an R-module and D = R(+)M. We observe that for an ideal I of R and a positive integer $n \ge 1$, we have $(I(+)M)^n = I^n(+)I^{n-1}M$.

Theorem 2.14. Let R be a ring, M a finitely generated faithful multiplication R-module and P a ϕ_n -prime submodule of M. If for $a, b \in R$ and $(x, y) \in M$ with $(a, x)(b, y) \in (P : M)^n(+)M$ and $a, b \notin (P : M)$; $ay + bx \in (P : M)^{n-1}M$, then (P : M)(+)M is a Φ_n -prime ideal of D = R(+)M; $(n \geq 2)$.

Proof. Set q = (P: M). Suppose that $(a, x)(b, y) \in q(+)M \setminus (q(+)M)^n$. So $(a, x)(b, y) \in q(+)M \setminus (q^n(+)q^{n-1}M)$ and hence $ab \in q$. If $ab \notin q^n$, then $ab \in q \setminus q^n$. Since P = qM is ϕ_n -prime, then q is ϕ_n -prime, by [11, Lemma 4.3]. So, $a \in q$ or $b \in q$. Hence, $(a, x) \in q(+)M$ or $(b, y) \in q(+)M$. Now assume that $ab \in q^n$. If $a, b \notin q$, then $ay + bx \in q^{n-1}M$, by hypothesis. So, $(a, x)(b, y) \in q^n(+)q^{n-1}M = (q(+)M)^n$, a contradiction.

Now, we study the converse of Theorem 2.14, for n = 2.

Theorem 2.15. Let R be a ring, M a finitely generated faithful multiplication R-module and P a submodule of M. If (P:M)(+)M is an almost prime ideal of D = R(+)M and there exists a $Q \in Max(R)$ such that $(P:M) \subseteq Q$, $(P:M) \cap Q^2 = 0$ and $\bigcap_{n\geq 1} Q^n = 0$, then P is an almost prime submodule of M. Proof. Set q = (P : M). Suppose that q(+)M is almost prime. Let $ab \in q \setminus q^2$, where $a, b \in R$. Then $(a, 0)(b, 0) \in (q(+)M) \setminus (q^2(+)qM)$, and hence $(a, 0)(b, 0) \in (q(+)M) \setminus (q(+)M)^2$. So, $a \in q$ or $b \in q$. Thus q is almost prime and P = qM is an almost prime submodule of M, by [11, Lemma 4.3].

Theorem 2.16. Let R be a ring and M a finitely generated faithful multiplication R-module. Then every prime ideal of D = R(+)M is of the form (P:M)(+)M, for some prime submodule P of M.

Proof. We know from [17, Theorem 25.1 (3)] that every prime ideal of D = R(+)M is of the form q(+)M, for some prime ideal q of R. Let P be a prime submodule of M. So, (P : M) is a prime ideal of R, by [18, Proposition 1]. Thus, (P : M)(+)M is a prime ideal of D.

Now, assume that q(+)M is a prime ideal of D. Set P = qM. If P = qM = M = RM, then q = R, by [13, Theorem 3.1], a contradiction. So, $P \in Spec(M)$, by [13, Lemma 2.10], and therefore (P:M) = q, by [13, Theorem 3.1].

Unlike the case of prime ideals, an (n-1, n)-weakly prime or (n-1, n)- Φ_m -prime ideal of D = R(+)M need not have the form I(+)M. For example, 0(+)0 is (n-1, n)-weakly prime and as a result (n-1, n)- ϕ_m -prime; $(n, m \ge 2)$.

Let R be a ring and M an R-module. Two elements $x, y \in M$ are associates, denoted $x \sim y$, if Rx = Ry. A non-zero element $x \in M$ with $Rx \neq M$ is n-irreducible if $x = a_1 \dots a_{n-1}y$, where $a_1, \dots, a_{n-1} \in R$ and $y \in M$, implies $x \sim a_1 \dots a_{i-1}a_{i+1} \dots a_{n-1}y$, for some $i \in \{1, \dots, n-1\}$ or $a_1 \dots a_{n-1} \in (Rx : M)$; $(n \geq 2)$.

Theorem 2.17. Let R be a ring, M an R-module and P a proper submodule of M. Suppose that every non-zero element of P is nirreducible. Then P is (n-1,n)-weakly prime and hence (n-1,n)- Φ_m -prime; $(n,m \ge 2)$.

Proof. Let $a_1 \ldots a_{n-1} x \in P \setminus \{0\}$, where $a_1, \ldots, a_{n-1} \in R$ and $x \in M$. So, $a_1 \ldots a_{n-1} x$ is *n*-irreducible and hence

$$(a_1 \dots a_{n-1}x) = (a_1 \dots a_{i-1}a_{i+1} \dots a_{n-1}x),$$

for some $i \in \{1, ..., n-1\}$. Therefore $a_1 ... a_{i-1} a_{i+1} ... a_{n-1} x \in P$ or $a_1 ... a_{n-1} \in ((a_1 ... a_{n-1} x) : M)$. But $((a_1 ... a_{n-1} x) : M) \subseteq (P : M)$. So, P is (n-1, n)-weakly prime.

Corollary 2.18. Let (R, Q) be a quasi-local ring, M an R-module and $x \in M$. If x is n-irreducible and Qx = 0, then Rx is (n - 1, n)-weakly prime; $(n \ge 2)$.

Proof. Since x is n-irreducible and Qx = 0, every non-zero element of Rx is an associate of x and hence n-irreducible. So Rx is (n - 1, n)-weakly prime, by Theorem 2.17.

Acknowledgments

The authors would like to thank the referees for their insightful comments.

References

- A. G. Ağargün, D. D. Anderson and S. Valdes-Leon, Unique factorization rings with zero divisors, *Comm. Algebra*, 27 (1999), 1967–1974.
- R. Ameri, On the prime submodules of multiplication modules, *IJMMS*, 27 (2003), 1715–1724.
- D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39 (2011), 1646–1672.
- D. D. Anderson and M. Bataineh, Generalization of prime ideals, Comm. Algebra, 36 (2008), 686–696.
- D. F. Anderson and S. T. Chapman, How far is an element from being prime?, J. Algebra Appl., 9 (2010), 779–789.
- A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., 75 (2007), 417–429.
- A. Badawi and A. Yousefian-Darani, On Weakly 2-absorbing ideals of commutative rings, *Houston J. Math.*, **39** (2013), 441–452.
- S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, *Comm. Algebra*, 33 (2005), 43–49.
- 9. A. Barnard, Multiplication Modules, J. Algebra, 71(1) (1981), 174-178.
- M. Ebrahimpour and R. Nekooei, On Generalizations of Prime Ideals, Comm. Algebra, 40 (2012), 1268–1279.
- M. Ebrahimpour and R. Nekooei, On Generalizations of Prime Submodules, Bull. Iran. Math. Soc., 39(5) (2013), 919–939.
- M. Ebrahimpour, On Generalizations of Prime ideals (II), Comm. Algebra, 42 (2014), 3861–3875.
- Z. A. El-Bast and P. F. Smith, Multiplication Modules, Comm. Algebra, 16(4) (1988), 755–779.
- S. Galovich, Unique factorization rings with zero divisors, Math. Mag., 51 (1978), 276–283.
- A. Gathmann, Commutative Algebra, Class Notes TU, Kaiserslautern, 2013/14.
- N. S. Gopalakrishnan, *Commutative Algebra*, Oxonian Press Pvt. Ltd., New Delhi, 1984.
- J. Hukaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York, Basil, USA, 1988.

- C. P. Lu, Prime Submodules of Modules, Comment. Math. Univ. Sancti. Pauli., 33(1) (1984), 61–69.
- R. L. McCasland, M. E. Moore and P. F. Smith, Modules with Bounded Spectra, tra, Comm. Algebra, 26(10) (1998), 3403–3417.
- J. Moghaderi and R. Nekooei, Discrete Valuation and Dedekind Module, Int. Electron. J. Algebra, 8 (2010), 18–29.
- 21. A. G. Naoum and F. H. Al-Alwan, Dedekind modules, Comm. Algebra, 24(2) (1996), 397–412.
- 22. R. Nekooei, Weakly prime submodules, FJMS, 39(2) (2010), 185–192.
- I. B. S. Passi, Algebra: Some recent advances, Boston, Basel, Berlin: Birklauser, 1999.
- 24. N. Zamani, ϕ -prime submodules, Glasg. Math. J., (2009), 1–7.

M. Ebrahimpour

Department of Mathematics, Faculty of Sciences, Vali-e-Asr University of Rafsanjan , P.O.Box 518, Rafsanjan, Iran

Email: m.ebrahimpour@vru.ac.ir

F. Mirzaee

Department of Mathematics, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.

Email: mirzaee0269@yahoo.com

Journal of Algebraic Systems

ON (n-1, n)- Φ_m -PRIME AND (n-1, n)-WEAKLY PRIME SUBMODULES

M. EBRAHIMPOUR AND F. MIRZAEE

R فرض کنید ۲ $N = m, n \ge m, n \ge R$ دو عدد صحیح و مثبت، و R حلقه ای جابجایی و یکدار و M یک R-مدول یکانی باشد. زیرمدول سره P از M یک زیرمدول (n - n, n) - leb اول ((n - n, n)) - leb مدول یکانی باشد. زیرمدول سره P از M یک $a_1 \dots a_{n-1} x \in P \setminus (P : M)^{m-1}$ که $x \in M$ یک $a_1 \dots a_{n-1} x \in P \setminus (P : M)^{m-1}$ که در آن ($a_1 \dots a_{n-1} x \in P \setminus (P : M) = a_{n-1} x \in P$) بتوان نتیجه گرفت $P \to a_{n-1} x \in P$ مطالعه این زیرمدول ها $a_1 \dots a_{n-1} x \in P$ مطالعه این زیرمدول ها $a_1 \dots a_{n-1} x \in P$ می رواز $a_1 \dots a_{n-1} x \in P$

کلمات کلیدی: زیر مدول
های اول ضعیف، زیر مدول
های
$$(n-1,n)$$
-اول ضعیف، زیرمدول
های $\Phi_m - (n-1,n)$