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INTERSECTION OF ESSENTIAL IDEALS IN THE
RING OF REAL-VALUED CONTINUOUS FUNCTIONS

ON A FRAME

A. A. ESTAJI, A. KARIMI FEIZABADI AND M. ABEDI∗

Abstract. A frame L is called coz-dense if Σcoz(α) = ∅ implies
α = 0. Let RL be the ring of real-valued continuous functions
on a coz-dense and completely regular frame L. We present a
description of the socle of the ring RL, based on minimal ideals of
RL and zero sets in pointfree topology. We show that socle of RL
is an essential ideal in RL if and only if the set of isolated points
of ΣL is dense in ΣL if and only if the intersection of any family of
essential ideals is essential in RL. Besides, the counterpart of some
results in the ring C(X) is studied for the ring RL. For example,
an ideal E of RL is an essential ideal if and only if

∩
Z[E] is a

nowhere dense subset of ΣL.

1. Introduction

A nonzero ideal in a commutative ring R is called essential if it
intersects every nonzero ideal nontrivially. This concept was first in-
troduced in [13] and plays an important role in the structure theory of
noncommutative Noetherian rings, see [11] or [21].

The intersection of all essential ideals in any commutative ring R, or
the sum of all minimal ideals of R is the socle of R denoted by Soc(R)
(see [10]). Let C(X) be the ring of real-valued continuous functions on
a completely regular Hausdorff space X. The socle of C(X) denoted
by CF (X) is a z-ideal (see [18]).
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The following propositions, which topologically characterize essential
ideals and the socle of C(X), are proved in [18] and [1], respectively.

Proposition 1.1. The socle of C(X) consists of all functions vanishing
everywhere except on a finite number of points of X.

Proposition 1.2. If E is a nonzero ideal in C(X), then the following
statements are equivalent.

(1) E is an essential ideal in C(X).
(2)

∩
Z[E] is a nowhere dense subset of X.

The following theorem can be easily deduced from the two foregoing
propositions.

Theorem 1.3. [2] The intersection of any family of essential ideals is
essential in the ring C(X) if and only if the set of isolated points of X
is dense in X.

For the characterization of CF (X) cited in Proposition 1.1 above, the
authors begin by characterizing minimal ideals of C(X). This chara-
terization is extended in [5, 6] to RL, as follows:

Soc(RL) = {α ∈ RL : coz(α) is a join of finitely many atoms}.

The approaches in [5] and [6] are completely different. In the former
case, the author T. Dube starts by characterizing minimal ideals ofRL.
In [6], minimal ideals of RL are not considered, and the description of
the socle is obtained via the fact that, for a ring R and a ∈ R, we have:

a ∈ SocR ⇔ Ann(a) is an intersection of finitely many maximal ideals.

In this note, we are trying to describe the socle of the ring RL by using
minimal ideals of RL and zero sets in the pointfree topology, as follows:

Soc(RL) = {α ∈ RL : Σcoz(α) is a finite subset of ΣL},

which is discussed in Proposition 4.3. Also, we prove that Soc(RL) is
a strongly z-ideal of RL and is direct sum of minimal ideals generated
by idempotent elements of RL (Corollary 4.4).

The counterpart of Proposition 1.2 and Theorem 1.3 for the ring
of real-valued continuous functions RL is given in Proposition 3.6 and
Theorem 4.6, respectively. Also, for a coz-dense and completely regular
frame L, it is shown that a point p in ΣL is isolated if and only if the
ideal Mp of RL is nonessential (Proposition 3.8).
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2. Preliminaries

We recall some basic notions and facts about frames and spaces. For
further information see [3, 14, 22] on frames and [9] on spaces.

A frame is a complete lattice L in which the distributive law

x ∧
∨

S =
∨

{x ∧ s : s ∈ S}

holds for all x ∈ L and S ⊆ L. We denote the top element and the
bottom element of L by ⊤ and ⊥, respectively. The frame of open
subsets of a topological spase X is denoted by OX.

A frame homomorphism (or frame map) is a map between frames
which preserves finite meets, including the top element, and arbitrary
joins, including the bottom element.

The pseudocomplement of an element a of a frame L is the element

a⋆ =
∨

{x ∈ L : x ∧ a = ⊥}.

An element x of a frame L is said to be:

(1) dense if x⋆ = ⊥,
(2) prime (or a point) if x < ⊤ and, for a, b ∈ L, a ∧ b ≤ x implies

a ≤ x or b ≤ x, and
(3) an atom if ⊥ < x and, for any a ∈ L,⊥ ≤ a ≤ x implies a = ⊥

or a = x.

An element a of a frame L is said to be rather below an element b,
written a ≺ b, provided that a⋆ ∨ b = ⊤. On the other hand, a is
completely below b, written a ≺≺ b, if there are elements (cq) indexed
by the rational numbers Q∩ [0, 1] such that c0 = a, c1 = b, and cp ≺ cq
for p < q. A frame L is said to be regular if a =

∨
{x ∈ L | x ≺ a} for

each a ∈ L, and completely regular if a =
∨
{x ∈ L | x ≺≺ a} for each

a ∈ L.
Recall that the contravariant functor Σ from Frm to the category

Top of topological spaces which assigns to each frame L its spectrum
ΣL of prime elements with Σa = {p ∈ ΣL|a ̸≤ p} (a ∈ L) as its open
sets. Also, for a frame map h : L → M , Σh : ΣM → ΣL takes p ∈ ΣM
to h∗(p) ∈ ΣL, where h∗ : M → L is the right adjoint of h characterized
by the condition h(a) ≤ b if and only if a ≤ h∗(b) for all a ∈ L and
b ∈ M . It is well known that h∗ preserves primes and arbitrary meets.

Recall [3] that the frame L(R) of reals is obtained by taking the
ordered pairs (p, q) of rational numbers as generators and imposing the
following relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s).
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s.
(R3) (p, q) =

∨
{(r, s)| : p < r < s < q}.
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(R4) ⊤ =
∨
{(p, q) : p, q ∈ Q}.

The set RL of all frame homomorphisms from L(R) to L has been
studied as an f -ring in [3]. For every r ∈ R, define the constant frame
map r ∈ RL by r(p, q) = ⊤, whenever p < r < q, and otherwise
r(p, q) = ⊥.

The cozero map is the map coz : RL → L, defined by

coz(α) =
∨

{α(p, 0) ∨ α(0, q) : p, q ∈ Q} = α((−, 0) ∨ (0,−))

where, for r, s ∈ Q,

(r,−) =
∨

{(0, q)) : q ∈ Q, q > r}

and
(−, s) =

∨
{(p, 0)) : p ∈ Q, p < s}.

For A ⊆ RL, let Coz(A) = {coz(α) : α ∈ A} with the cozero part of
a frame L, Coz(RL), called CozL by previous authors. It is known
that L is completely regular if and only if CozL generates L. For more
details about the cozero map and its properties used in this note see
[3].

Let L be a frame, a ∈ L, and α ∈ RL. The sets {r ∈ Q : α(−, r) ≤
a} and {s ∈ Q : α(s,−) ≤ a} are denoted by L(a, α) and U(a, α),
respectively.

For a ̸= ⊤, it is obvious that r ≤ s, for each r ∈ L(a, α) and
s ∈ U(a, α). In fact, we have:

Proposition 2.1. [19] Let L be a frame. If p ∈ ΣL and α ∈ RL, then
(L(p, α), U(p, α)) is a Dedekind cut for a real number which is denoted
by p̃(α).

Proposition 2.2. [19] If p is a prime element of a frame L, then
there exists a unique map p̃ : RL −→ R such that for each α ∈ RL,
r ∈ L(p, α), and s ∈ U(p, α) we have r ≤ p̃(α) ≤ s.

By the following proposition, p̃ is an f -ring homomorphism.

Proposition 2.3. [19] If p is a prime element of a frame L, then
p̃ : RL −→ R is an onto f -ring homomorphism. Also, p̃ is a linear map
with p̃(1) = 1.

Recall [8] that for α ∈ RL, Z(α) = {p ∈ ΣL : α[p] = 0}, where
α[p] = p̃(α). Z(α) is called the zero set of α. For A ⊆ RL, we write
Z[A] to designate the family of zero-sets {Z(α) : α ∈ A}. On the other
hand, the family Z[RL] of all zero-sets in L will also be denoted, for
simplicity, by Z[L]. Also for a subfamily F of Z(L), we write

Z←[F ] = {α : Z(α) ∈ F}.
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The following lemma and proposition proved in [8] play important
roles in the description of zero sets.

Lemma 2.4. Let p be a prime element of frame L. For α ∈ RL,
α[p] = 0 if and only if coz(α) ≤ p. Hence Z(α) = ΣL− Σcoz(α).

Proposition 2.5. For every α, β ∈ RL, we have

(1) For every n ∈ N, Z(α) = Z(|α|) = Z(αn).
(2) Z(α) ∩ Z(β) = Z(|α|+ |β|) = Z(α2 + β2).
(3) Z(α) ∪ Z(β) = Z(αβ).
(4) If α is a unit of RL, then Z(α) = ∅.
(5) Z(L) is closed under the countable intersection.

In [12], using the technique of sublocales, the authors present zero
sublocales. A sublocale S of a frame L is a zero sublocale if it is of the
form

(f ∗(0,−))∗ ∧ (f ∗(−, 0))∗

for some localic map f : L → L(R) as the right Galois adjoint of a
frame homomorphism h = f ∗ : L(R) → L. The zero sets used in this
paper are different from the zero sublocales.

3. On essential ideals

We shall now commence our discussion on coz-dense frames; so we
start by formalizing the definition stated in the abstract.

Definition 3.1. A frame L is coz-dense if for any c ∈ CozL, Σc = ∅
implies c = ⊥.

It is clear from the definition that if L has no primes, that is, if
ΣL = ∅, then L cannot be coz-dense. At the other extreme, every
spatial frame is coz-dense. The following result gives a clearer picture
of when a completely regular frame with at least one prime is coz-dense.

Lemma 3.2. The following are equivalent for a completely regular
frame L that has primes.

(1) L is coz-dense.
(2) For a ∈ L, Σa = ∅ implies a = ⊥.
(3) The frame homomorphism L → OΣL given by a 7→ Σa is dense.
(4) The bottom element of L is the only element which is below

every prime of L.

Proof. (1) ⇒ (2). For any c ∈ CozL with c ≤ a, Σc = ∅ which implies
c = ⊥ by coz-density. Therefore a = ⊥ since, by complete regularity, a
is the join of cozero elements below it. The other implications required
to prove all the equivalences are immediate. □
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Remark 3.3. We have stated above that spatial frames are coz-dense.
In spite of a great deal of effort expended, we have not been able to
determine if (by way of some sort of converse) every coz-dense com-
pletely regular frame is spatial. We however have the following result
regarding Boolean frames.

Proposition 3.4. Every coz-dense Boolean frame with primes is spa-
tial.

Proof. Let L be a coz-dense frame with primes, and let a ∈ L be
complemented. If a = ⊥ or a = ⊤, the result is immediate. So suppose
⊥ < a < ⊤. For brevity, put T = ΣL − Σa, so that T is the set of
primes above a. Write t =

∧
T . We aim to show that a = t. Clearly,

a ≤ t. Since a is complemented, it is co-linear, which is to say

a ∨
∧

α
bα =

∧
α
(a ∨ bα)

for all {bα} ⊆ L. Since Σa ̸= ∅, for any p ∈ Σa, a ̸≤ p, which im-
plies a ∨ p = ⊤ since primes are maximal elements in regular frames.
Consequently,

t = t ∧ (a ∨ p) = (t ∧ a) ∨ (t ∧ p) = a ∨ (t ∧ p).

Taking meets over all p ∈ Σa we have

t =
∧
{a ∨ (t ∧ p) : p ∈ ΣL}

= a ∨
(∧

{t ∧ p : p ∈ ΣL}
)

= a ∨
(
t ∧

∧
Σa

)
= a ∨

(∧
T ∧

∧
Σa

)
= a ∨

∧
ΣL

= a ∨ ⊥
= a.

Therefore a is a meet of primes above it. □

Proposition 3.5. Let L be a coz-dense and completely regular frame.
For every a ∈ L, the following statements are equivalent.

(1) Σa is dense in ΣL.
(2) a is dense in L.

Proof. (1) ⇒ (2). Let b ∈ L and a ∧ b = ⊥. Then Σa ∩ Σb = Σa∧b =
Σ⊥ = ∅, it follows that Σb = ∅. So, by Lemma 3.2, b = ⊥. Therefore
a⋆ = ⊥, and hence a is dense in L.

(2) ⇒ (1). Let b ∈ L and Σa ∩ Σb = ∅. Then, by Lemma 3.2,
a ∧ b = ⊥. Since a is dense in L, we conclude that b = ⊥, it follows
that Σb = ∅. Therefore, Σa is dense in ΣL. □
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An ideal I in RL is called a strongly z-ideal if Z(α) ∈ Z[I] implies
α ∈ I, that is I = Z←[Z[I]]. Also, an ideal I in RL is a z-ideal if for
any α ∈ RL and β ∈ I, coz(α) = coz(β) implies α ∈ I. Note that in
the ring RL, every strongly z-ideal is a z-ideal. But the reverse is not
true, see [8] for more details.

Let L be a completely regular frame. (a) An ideal E ofRL is essential
if and only if

∨
Coz(E) is dense in L (see Lemma 4.3 in [5]). (b) Notice

that every nonzero ideal I of RL contains a nonzero z-ideal. To see
this, consider any α ∈ I with α ̸= 0. Then the set

J = {β ∈ RL : coz(β) ≺≺ coz(α)}

is a nonzero z-ideal contained in I. To see that J ⊆ I, recall from [4,
Lemma 4.4] that if coz(β) ≺≺ coz(α), then β is a multiple of α. J is
of course nonzero by complete regularity. Therefore, for every ideal E
of RL, we have that E is essential if and only if I ∩ E ̸= 0, for every
nonzero z-ideal I of RL.

In any semiprime ring, it is well known that

E is an essential ideal if and only if Ann(E) = 0.

Notice that RL is a semiprime ring for any frame L. By a semiprime
ring we mean one with no nonzero nilpotent elements.

According to these descriptions, for every completely regular frame
L and an ideal E in RL, we have that E is an essential ideal if and
only if Ann(E) = 0 if and only if I ∩E ̸= 0, for every non-zero z-ideal
I of RL.

Drawing on “strongly z-ideals are z-ideals”. For every completely
regular frame L and an ideal E in RL, we can immediately present
that E is an essential ideal if and only if

for every non-zero strongly z-ideal I of RL, I ∩ E ̸= 0.

A subset S of a topological space X is said to be nowhere dense if

intX(clX S) = ∅.

As we already noted, the following proposition is the counterpart of
Proposition 1.2, which is uesd for the proof of Propositions 3.8, 3.10
and Theorem 4.6.

Proposition 3.6. Let L be a coz-dense and completely regular frame
and E be an ideal of RL. Then the following statements are equivalent.

(1) E is an essential ideal.
(2)

∩
Z[E] is a nowhere dense subset in ΣL.
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Proof. It is obvious that

clΣL(ΣL−
∩

Z[E]) = clΣL

∪
α∈E

(ΣL− Z(α))

= clΣL

∪
α∈E

Σcoz(α) = clΣL Σ∨
Coz(E).

Hence,

clΣL(ΣL−
∩

Z[E]) = ΣL ⇔ clΣL Σ∨
Coz(E) = ΣL.

Therefore, by Proposition 3.5,
∨
Coz(E) is a dense element in L if and

only if
∩

Z[E] is a nowhere dense subset in ΣL. Now, by Lemma 4.3
in [5], the proof is complete. □

Let I be any ideal in RL. If
∩

Z[I] is nonempty, we call I a strongly
fixed ideal; if

∩
Z[I] = ∅, then I is a strongly free ideal, see [7] for more

details. By the foregoing proposition, strongly free ideals are essential
ideals. Also for every nonisolated point p ∈ ΣL, the ideal Mp = ker p̃
is essential.

Let f : ΣL → R be a continuous function. For every p, q ∈ Q, define

f̂(p, q) =
∨
{a ∈ L : f(Σa) ⊆ ⟨p, q⟩}, where ⟨p, q⟩ = {x ∈ R : p < x <

q}. By Lemma 4.5 in [20], f̂ : ℜ → L is a frame map.

Remark 3.7. Let p ∈ ΣL be an isolated point. We define

fp(x) =

{
0 if x = p

1 if x ∈ ΣL− {p}.
It is clear that fp : ΣL → R is a continuous map, in fact fp = 1− χp.
Therefore, if L is a coz-dense frame, then

f̂pRL = Mp = {f ∈ RL : f [p] = 0} = ker p̃

is the maximal ideal in RL and f̂p
2
= f̂p (see Lemma 4.14 in [20]).

Clearly every maximal ideal in any commutative ring with unity is
either essential or else is generated by an idempotent in this case we
call it isolated (see [16, 17] for more details).

Proposition 3.8. Let L be a coz-dense and completely regular frame.
Then, a point p ∈ ΣL is isolated if and only if the ideal Mp in RL is
nonessential.

Proof. ⇒) Let p ∈ ΣL be an isolated point. Then, by Remark 3.7, we

have f̂pRL = Mp. So
∩
Z[Mp] = Z(f̂p) = Z(fp) = {p} (see Propo-

sition 4.12 in [20]). Hence, intΣL(clΣL

∩
Z[Mp]) = {p}. Therefore, by

Proposition 3.6, the ideal Mp in RL is nonessential.
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⇐) Let the ideal Mp in RL be non-essential. Then there exists
f ∈ RL such that Mp = fRL and f 2 = f . So, we can conclude that

Z(f) = {p} and Z(f − 1) = ΣL− {p}.
Therefore, the proof is complete. □

A frame L is called coz-disjoint if CozL∩ ↓ p ̸= CozL∩ ↓ q, for every
two distinct prime elements p, q ∈ L. Notice that every completely
regular frame is a coz-disjoint frame (for more details see [20]).

Proposition 3.9. [20] Let L be a coz-disjoint frame. If P is a prime
ideal of RL, then |

∩
Z[P ]| ≤ 1.

Proposition 3.10. Let L be a coz-dense and completely regular frame.
If P is a prime and nonessential ideal in RL, then there exists an
isolated point p in ΣL and an idempotent element f ∈ RL such that

P = Mp and Z(f) = {p}.
Also, P is a minimal prime ideal in RL.

Proof. Let P be a nonessential ideal of RL. By Propositions 3.9 and
3.6, there exists an isolated point p in ΣL such that

∩
Z[P ] = {p}.

By Remark 3.7, P ⊆ Mp = f̂pRL is the maximal ideal of RL and

f̂p
2
= f̂p. On the other hand f̂p(1 − f̂p) = 0 ∈ P implies that f̂p ∈ P

or 1 − f̂p ∈ P . If 1 − f̂p ∈ P , then 1 ∈ Mp, which is a contradiction.
Therefore P = Mp. Now, we show that Mp is a minimal prime ideal of

RL. Let Q be a prime ideal such that Q ⊆ P , then f̂p(1− f̂p) = 0 ∈ Q

implies that f̂p ∈ Q, i.e., Q = P . □

4. Socle of RL

In this section, the socle ofRL is characterized by the ideal consisting
of all functions vanishing everywhere except on a finite number of points
of L. For the proof of the next lemma, we will use the fact that in a
regular frame prime elements are maximal.

Lemma 4.1. Let L be a regular frame.

(1) ΣL is a Hausdorff space.
(2) If α ∈ RL and Σcoz(α) = {p1, p2, . . . , pn}, then each pk, k =

1, 2, ..., n, is an isolated point of ΣL.

Proof. (1). Suppose that p, q ∈ ΣL and p ̸= q. By regularity, p =∨
x≺p x. Since p ̸≤ q, there exists x ∈ L such that x ≺ p and x ̸≤ q. So

x⋆ ̸≤ p and x ̸≤ q. Therefore p ∈ Σx⋆ and q ∈ Σx. On the other hand,
we have Σx⋆ ∩ Σx = Σ0 = ∅. Hence, the proof is complete.

(2). By (1), it is obvious. □
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That the spectrum of a regular frame is Hausdorff was proved by
Isbell in [15, 2.3]

Proposition 4.2. [20] Suppose that L is a coz-disjoint and coz-dense
frame. Let I be a non-zero ideal of RL. The following statements are
equivalent.

(1) I is a minimal ideal.
(2) |Z[I]| = 2.
(3) There exists p ∈ ΣL such that Z[I] = {ΣL,ΣL− {p}}.

Proposition 4.3. Let L be a coz-dense and completely regular frame.
Then

Soc(RL) = {α ∈ RL : Σcoz(α) is a finite subset of ΣL}.

Proof. We note that if Soc(RL) = (0) then by considering the empty
set as a finite set, the result is trivially true. Hence, suppose Soc(RL) =∑

⊕Ik, where Ik runs over the set of minimal ideals of RL. Now, for
each 0 ̸= α ∈ Soc(RL), we have α = α1 + α2 + · · · + αn, where each
0 ̸= αi belongs to some minimal ideal in RL. Then, by Proposition
4.2, each αi is zero everywhere except at an isolated point pi of ΣL.
Thus Z(α) = ΣL− {p1, p2, . . . , pn}.

Conversely, let Σcoz(β) be a finite set, then we have to show that
β ∈ Soc(RL). If Σcoz(β) = {p1, p2, . . . , pn}, then, by Lemma 4.1, each
pk, k = 1, 2, ..., n, is an isolated point of ΣL. Now for each pk, there
exists a minimal ideal Ik such that Z(α) = ΣL− {pk}, for all nonzero
α ∈ Ik. But each Ik is of the form Ik = ekRL, where ek is an idempotent
in RL. Then, clearly,

β = e1β + e2β + · · ·+ enβ ∈ I1 + I2 + · · ·+ In ⊆ Soc(RL).

□
Let α ∈ RL. Define α : ΣL → R given by α(p) = p̃(α). By Remark

4.15 in [20], α is a continuous function.

Corollary 4.4. Let L be a coz-dense and completely regular frame and

A = ΣL \
∩

α∈Soc(RL)

Z(α).

Then the following statements hold.

(1) Soc(RL) is a strongly z-ideal of RL.
(2) For every α ∈ Soc(RL), Σcoz(α) is a closed subset in ΣL.
(3) If α ∈ Soc(RL), then p is an isolated point in ΣL, for every

p ∈ Σcoz(α).
(4) If p ∈ A, Ip = χ̂pRL is a minimal ideal of RL.
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(5) Soc(RL) =
∑

p∈A⊕Ip.

Proof. By using Proposition 4.3, (1), (2) and (3) are obvious.
(4). Let J ⊆ Ip, and J ̸= 0. if β ∈ J and β ̸= 0, then we have β ∈ Ip.

Hence Z(β) ⊇ Z(χ̂p) = ΣL− {p}, and so Z(β) = ΣL− {p}. Thus by
Lemma 4.14 in [20] β = χ̂pβ. Let k = β(p) ̸= 0. Then, by Proposition

4.16 in [20], χ̂p = χp = 1
k
(β) = 1

k
β, and hence, by Proposition 4.16 in

[20], χ̂p =
1
k
β ∈ J . Therefore J = Ip, and Ip is minimal.

(5). By using (4) and Proposition 4.3, it is obvious. □
In the ring C(X), we can state:

CF (X) is an essential ideal if and only if
the set of isolated points of X is dense in

space X.

Now about the socle of the ring RL, we have:

Proposition 4.5. Let L be a coz-dense and completely regular frame.
Then the following statements are equivalent:

(1) Soc(RL) is an essential ideal in RL.
(2) The set of isolated points of ΣL is dense in ΣL.

Proof. We show the set of isolated points of ΣL by H. First we prove
that

∩
Z[Soc(RL)] = ΣL−H. For every α ∈ Soc(RL), by Proposition

4.3, Σcoz(α) ⊆ H, that is to say,
∪

α∈Soc(RL)Σcoz(α) ⊆ H, and hence

ΣL−H ⊆
∩

Z[Soc(RL]. (1)

Now, suppose that p ∈
∩
Z[Soc(RL] is an isolated point of ΣL. If

β(x) =

{
1 if x = p

0 if x ̸= p,

then β ∈ C(ΣL). So, by Lemma 4.5 in [20], β̂ ∈ RL. On the other

hand, by Propositions 4.12 in [20] and 4.3, we have β̂ ∈ Soc(RL).

Consequently, p ∈ Z(β̂) which is a contradiction. So p is a nonisolated
point, i.e., p ∈ ΣL−H, in other words,

ΣL−H ⊇
∩

Z[Soc(RL]. (2)

According to the equations 1 and 2, we have ΣL−H =
∩

Z[Soc(RL],
and hence

intΣL

∩
Z[Soc(RL] = ∅ ⇔ intΣL(ΣL−H) = ∅

⇔ ΣL− clΣL H = ∅
⇔ clΣL H = ΣL.
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Therefore, by Proposition 3.6, statements (1) and (2) are equivalent.
□

It is obvious that the intersection of any finite family of essential
ideals is essential in the commutative rings. But this is not true in
general for countable intersection even (for example see [2]).

The next theorem is a result similar to Theorem 1.3 for the ring RL,
which can easily be deduced by Propositions 3.6 and 4.5.

Theorem 4.6. Let L be a coz-dense and completely regular frame.
Then the intersection of any family of essential ideals is essential in
the ring RL if and only if the set of isolated points of ΣL is dense in
ΣL.

Question 4.7. We end with a question whether every coz-dense and
completely regular frame is spatial. In spite of a great deal of effort
expended, we have not been able to answer this question.
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ON A FRAME
A. ESTAJI, A. KARIMI FEIZABADI AND M. ABEDI

قاب یک روی حقیقی-مقدار پیوسته توابع حلقه در اساسی ایده آل های اشتراک
عابدی٣ مصطفی و ٢ فیض آبادی کریمی ابوالقاسم استاجی١، اکبر علی

سبزوار ایران، سبزواری، حکیم دانشکاه کامپیوتر علوم و ریاضی دانشکده ١

گرگان ایران، گرگان، واحد اسلامی آزاد دانشگاه ٢

اسفراین ایران، اسفراین، مهندسی و فنی عالی آموزش مجتمع ٣

فرض .α = 0 که بگیریم نتیجه آن گاه ،Σcoz(α) = ∅ اگر می نامیم چگال همصفر را L قاب یک
توصیفی است. منظم کاملا و چگال همصفر قاب یک روی حقیقی-مقدار پیوسته توابع حلقه RL می کنیم
نقطه بدون توپولوژی در صفر مجموعه های و RL از مینیمال ایده آل های اساس بر RL حلقه ساکل از
مجموعه اگر تنها و اگر است RL در اساسی ایده آل یک RL حلقه ساکل که می دهیم نشان می کنیم. ارائه
،RL در اساسی ایده آل از خانواده هر اشتراک اگر تنها و اگر است چگال ΣL در ΣL منزوی نقاط
است. شده مطالعه RL حلقه برای C(X) حلقه در نتایج برخی همتای این، بر علاوه است. اساسی
هیچ زیرمجموعه یک

∩
Z[E] اگر تنها و اگر است اساسی ایده آلی RL از E ایده آل یک مثال، برای

است. ΣL از چگال جا

توابع حلقه نقطه، بدون توپولوژی در صفر مجموعه های ساکل، اساسی، ایده آل قاب، کلیدی: کلمات
قاب. یک روی حقیقی-مقدار پیوسته

۶


