Journal of Algebraic Systems Vol. 5, No. 2, (2017), pp 163-176

A GENERALIZATION OF CORETRACTABLE MODULES

A. R. MONIRI HAMZEKOLAEE

ABSTRACT. Let R be a ring and M a right R-module. We call M, coretractable relative to $\overline{Z}(M)$ (for short, $\overline{Z}(M)$ -coretractable) provided that, for every proper submodule N of M containing $\overline{Z}(M)$, there exists a nonzero homomorphism $f: \frac{M}{N} \to M$. We investigate some conditions under which two concepts of coretractable and $\overline{Z}(M)$ -coretractable, coincide. For a commutative semiperfect ring R, we show that R is $\overline{Z}(R)$ -coretractable if and only if R is a Kasch ring. Some examples are provided to illustrate different concepts.

1. INTRODUCTION

Throughout this paper R will denote an arbitrary associative ring with identity and all modules will be unitary right R-modules. Let M be an R-module and N a submodule of M. We use $End_R(M)$, $ann_r(M)$, $ann_l(M)$ to denote the ring of endomorphisms of M, the right annihilator in R of M and the left annihilator in R of M, respectively. Let M be a module and K a submodule of M. Then K is essential in M denoted by $K \leq_e M$, if $L \cap K \neq 0$ for every nonzero submodule L of M. Dually, K is small in M ($K \ll M$), in case M = K + Limplies that L = M. We also recall that a module M is a small module in case there is a module L containing M such that $M \ll L$. It is wellknown that a module M is small if and only if M is a small submodule

MSC(2010): Primary: 16D10; Secondary: 16D40, 16D80.

Keywords: Coretractable module, $\overline{Z}(M)$ -coretractable module, Kasch ring. Received: 18 May 2017, Accepted: 11 September 2017.

of its injective hull. Of course, the concept of small submodules has a key role throughout the paper.

A submodule N of a module M is called *supplement* if there is a submodule K of M such that M = N + K and $N \cap K \ll N$. A module M is called *supplemented* if every submodule of M has a supplement. A module M is called *amply supplemented*, in case M = A + B implies A contains a supplement A' of B in M. The reader can find more details about classes of all versions of supplemented modules in [7] and [13].

Let R be a ring and M a right R-module. Recall that M is singular provided that Z(M) = M where $Z(M) = \{x \in M \mid xI = 0, I \leq_e R_R\}$. Suppose that S denotes the class of all small right R-modules. In [10] the authors defined $\overline{Z}(M)$ as the reject of S in M, i.e. $\overline{Z}(M) = \bigcap \{Kerf \mid f : M \to U, U \in S\}$. In this way, M is called (non)cosingular, in case $(\overline{Z}(M) = M) \ \overline{Z}(M) = 0$. They investigated some general properties of $\overline{Z}(M)$. For a ring R, the submodule $\overline{Z}(R_R)$ $(\overline{Z}(RR))$ is a two-sided ideal of R by [3, Corollary 8.23]. Throughout the paper, for every R-module M, we suppose that $\overline{Z}(M) \neq M$ unless otherwise stated.

Khuri in [4] introduced the concept of a retractable module. A module M is retractable in case for every nonzero submodule N of M, there is a nonzero homomorphism $f: M \to N$, i.e $Hom_R(M, N) \neq 0$. Toloee and Vedadi in [11] studied retractable rings and their relations with other known rings. In the literature, there are some works about retractable modules (see [5, 14, 16]). Amini, Ershad and Sharif in [2] defined dual notation namely coretractable modules. A module M is *coretractable* provided that, $Hom_R(\frac{M}{N}, M) \neq 0$ for every proper submodule N of M. There are also some papers whose main subject is coretactablity of modules. We refer readers to [1, 8, 15] for more information about coretractable modules.

This work is devoted to coretractable modules relative to just an important submodule namely $\overline{Z}(M)$. If in the definition of a coretractable module M, we fix the submodule $\overline{Z}(M)$ and focus just on nonzero homomorphisms from $\frac{M}{K}$ to M where K contains $\overline{Z}(M)$, we have a generalization of coretractable modules. We present some conditions to prove that when two concepts coretractable and $\overline{Z}(M)$ -coretractable are equivalent. Among them, we show that if $\overline{Z}(M)$ is δ -small in M or it is a coretractable module, then M is coretractable if and only if M is $\overline{Z}(M)$ -coretractable. We show that R_R is $\overline{Z}(R_R)$ -coretractable if and only if every simple right R-module that annihilated by $\overline{Z}(R_R)$, can be embedded in R_R . As a consequence, we prove for a commutative semiperfect ring R that, R is a coretractable R-module if and only if R is a Kasch ring.

2. $\overline{Z}(M)$ -coretractable modules

In this section we introduce a new generalization of coretractable modules namely, $\overline{Z}(M)$ -coretractable modules.

Recall that a module M is *coretractable*, in case for every proper submodule N of M, there exists a nonzero homomorphism $f: \frac{M}{N} \to M$.

Definition 2.1. Let M be a module. We say M is $\overline{Z}(M)$ -coretractable in case for every proper submodule N of M containing $\overline{Z}(M)$, there is a nonzero homomorphism from $\frac{M}{N}$ to M.

Example 2.2. (1) Every coretractable module is coretractable relative to its \overline{Z} . In particular every semisimple module M is $\overline{Z}(M)$ coretractable.

(2) Let M be a noncosingular module. Then it is obvious that M is $\overline{Z}(M)$ -coretractable. In other words, there is a noncosingular module which is not coretractable. Since $Hom_{\mathbb{Z}}(\frac{\mathbb{Q}}{\mathbb{Z}},\mathbb{Q}) = 0$, then as an \mathbb{Z} -module \mathbb{Q} is not coretractable. Note that \mathbb{Q} is noncosingular.

Recall from [9] that a ring R is right GV (generalized V-ring), in case every simple singular right R-module is injective.

Proposition 2.3. Let R be a right GV-ring. If M is an indecomposable module with $0 \neq \frac{M}{\overline{Z}(M)}$ having a maximal submodule, then M is $\overline{Z}(M)$ -coretractable if and only if M is simple projective.

Proof. Let M be $\overline{Z}(M)$ -coretractable. By assumption there is a maximal submodule K of M containing $\overline{Z}(M)$. Now there is a monomorphism $g: \frac{M}{K} \to M$, since M is a $\overline{Z}(M)$ -coretractable module. It follows that Img is a simple submodule of M. Then Img is either singular or projective. If Img is projective, then K is a direct summand of M and hence K = 0 or K = M. So that K = 0. If Img is singular, it will be injective as R is right GV. Therefore, Img is a summand of M and since $g \neq 0$ we conclude that Img = M, a contradiction. The converse is obvious.

Note that for a cosingular module M, concepts coretractable and $\overline{Z}(M)$ -coretractable coincide.

Let M be a module and N a submodule of M. Following [17], N is δ -small in M (denoted by $N \ll_{\delta} M$), in case M = N + K with $\frac{M}{K}$ singular implies that M = K. Note that by definitions, every small submodule of M is δ -small in M. The sum of all δ -small submodules of M is denoted by $\delta(M)$. Also $\delta(M)$ is the reject of the class of all simple singular modules in M.

Lemma 2.4. Let M be a module. In each of the following cases M is $\overline{Z}(M)$ -coretractable if and only if M is coretractable.

- (1) $\overline{Z}(M) \ll_{\delta} M \ (\overline{Z}(M) \ll M).$
- (2) $\overline{Z}(M)$ is a coretractable module.

Proof. (1) We shall prove the δ case. The other follows immediately. Let M be $\overline{Z}(M)$ -coretractable and K a proper submodule of M. Suppose that $M \neq \overline{Z}(M) + K$. Since M is $\overline{Z}(M)$ -coretractable, there is a homomorphism $f: \frac{M}{(\overline{Z}(M) + K)} \to M$. So that $fo\pi: \frac{M}{K} \to M$ is the required homomorphism where $\pi: \frac{M}{K} \to \frac{M}{(\overline{Z}(M) + K)}$ is natural epimorphism. Otherwise, $M = \overline{Z}(M) + K$. It follows from [17, Lemma 1.2], there is a decomposition $M = Y \oplus K$ where Y is a semisimple projective submodule of $\overline{Z}(M)$. Therefore, there is a monomorphism from $\frac{M}{K}$ to M since K is a direct summand of M. Therefore, M is coretractable. The converse is clear.

(2) Let K be a proper submodule of M. Then $K + \overline{Z}(M) \neq M$ or $K + \overline{Z}(M) = M$. If first one happens, then similar to (1), we will have required nonzero homomorphism. Now suppose that $K + \overline{Z}(M) = M$. Then $h : \frac{M}{K} \to \frac{\overline{Z}(M)}{(\overline{Z}(M) \cap K)}$ is an isomorphism induced from $M = \overline{Z}(M) + K$. Since $\overline{Z}(M)$ is coretractable, there is a nonzero homomorphism $g : \frac{\overline{Z}(M)}{(\overline{Z}(M) \cap K)} \to \overline{Z}(M)$. Therefore, $jogoh : \frac{M}{K} \to M$ is a nonzero homomorphism where $j : \overline{Z}(M) \to M$ is the inclusion.

Proposition 2.5. Let M be a module such that $\frac{M}{\overline{Z}(M)}$ is coretractable. If $\frac{M}{\overline{Z}(M)}$ can be embedded in M (for example, $\frac{M}{\overline{Z}(M)}$ is semisimple and $\overline{Z}(M)$ is a direct summand of M), then M is $\overline{Z}(M)$ -coretractable.

Proof. Let K be a proper submodule of M containing $\overline{Z}(M)$. Then $\frac{K}{\overline{Z}(M)}$ is a proper submodule of $\frac{M}{\overline{Z}(M)}$. Since $\frac{M}{\overline{Z}(M)}$ is coretractable, there is a nonzero homomorphism $g: \frac{M}{K} \to \frac{M}{\overline{Z}(M)}$. Because, $\frac{M}{\overline{Z}(M)}$ can be embedded in M, we conclude that there will be a nonzero homomorphism from $\frac{M}{K}$ to M.

Let M be a module and $K \leq M$. We say M is $\overline{Z}(K)$ -coretractable if for every proper submodule T of M containing $\overline{Z}(K)$, there is a nonzero homomorphism $g: \frac{M}{T} \to M$.

Proposition 2.6. Let $M = M_1 \oplus \ldots \oplus M_n$. If each M_i is $\overline{Z}(M_i)$ -coretractable, then M is $\overline{Z}(M)$ -coretractable.

Proof. The proof is exactly similar to proof of [2, Proposition 2.6]. Note that $\overline{Z}(M_1 \oplus \ldots \oplus M_n) = \overline{Z}(M_1) \oplus \ldots \oplus \overline{Z}(M_n)$.

Lemma 2.7. (1) Let $M = \bigoplus_{i=1}^{n} M_i$ be a $\overline{Z}(M_i)$ -coretractable module for at least one $i \in \{1, \ldots, n\}$. Then M is $\overline{Z}(M)$ -coretractable.

(2) Let M be $\overline{Z}(M)$ -coretractable. If $\overline{Z}(M)$ contains no nonzero image of any endomorphism of M, then $\frac{M}{\overline{Z}(M)}$ is coretractable.

(3) Let M be $\overline{Z}(M)$ -coretractable. If $\frac{M}{\overline{Z}(M)}$ has a maximal submodule, then $Soc(M) \neq 0$. In particular, if M is a finitely generated $\overline{Z}(M)$ -coretractable module, then $Soc(M) \neq 0$.

Proof. (1) This is straightforward.

(2) Let $\frac{T}{\overline{Z}(M)}$ be a proper submodule of $\frac{M}{\overline{Z}(M)}$. Then $\overline{Z}(M) \subseteq T \subset M$. Since M is $\overline{Z}(M)$ -coretractable, there exists a nonzero homomorphism $g : \frac{M}{T} \to M$. Now define $h : \frac{\frac{M}{\overline{Z}(M)}}{\frac{T}{\overline{Z}(M)}} \to \frac{M}{\overline{Z}(M)}$ by

 $h(x + \overline{Z}(M) + \frac{T}{\overline{Z}(M)}) = g(x + T)$ for every $x \in M$. If $Imh = \overline{Z}(M)$, then $Img \subseteq \overline{Z}(M)$, a contradiction. So that, $\frac{M}{\overline{Z}(M)}$ is coretractable.

(3) Let $\frac{K}{\overline{Z}(M)}$ be a maximal submodule of $\frac{M}{\overline{Z}(M)}$. Then K is a maximal submodule of M also containing $\overline{Z}(M)$. So there is a $h : \frac{M}{K} \to M$. It follows that Imh is a simple submodule of M.

Let M be a module and $N \leq M$. Then N is called *fully invariant*, if for every $f \in End_R(M)$, $f(N) \subseteq N$. There are some well-known fully invariant submodules of a module M such as Rad(M), Soc(M), $\overline{Z}(M)$.

Proposition 2.8. (1) Let M be a module, $K, L \leq M$ with $\overline{Z}(L) = L$ and K is a fully invariant supplement of L in M. If M is $\overline{Z}(L)$ coretractable, then K is coretractable.

(2) Let M be a module such that $\overline{Z}(M)$ has a fully invariant supplement K in M. If $\overline{Z}^2(M) = \overline{Z}(M)$ and M is $\overline{Z}(M)$ -coretractable, then K is coretractable.

Proof. (1) Let *N* be a proper submodule of *K*. Consider the submodule $N + \overline{Z}(L)$ of *M*. If $N + \overline{Z}(L) = M$, then by modularity $N + (K \cap \overline{Z}(L)) = K$ which implies that N = K, a contradiction (note that $K \cap \overline{Z}(L) \subseteq K \cap L \ll K$). It follows that $N + \overline{Z}(L)$ is a proper submodule of *M*. Being *M*, $\overline{Z}(L)$ -coretractable, implies that there is nonzero homomorphism $g: \frac{M}{(N + \overline{Z}(L))} \to M$. Now $(go\pi)(K) \subseteq K$ as *K* is fully invariant where $\pi: M \to \frac{M}{N + \overline{Z}(L)}$ is natural epimorphism. Define the homomorphism $h: \frac{K}{N} \to K$ by $h(x+N) = g(x+N+\overline{Z}(L))$. Since *g* is nonzero, there is a $x \in M \setminus (N + \overline{Z}(L))$ such that $g(x + N + \overline{Z}(L)) \neq 0$. Set x = k + l where $k \in K$ and $l \in L$. To contrary, suppose that $k \in N$. Now $x \notin N + L$ implies that $l \notin L$, which is a contradiction. Therefore, $h(k+N) = g(k+l+N+\overline{Z}(L)) = g(x+N+\overline{Z}(L)) \neq 0$. Hence *K* is coretractable.

(2) This case is a direct consequence of (1).

Let M be an R-module. A submodule K is said to be *dense* in M if, for any $y \in M$ and $0 \neq x \in M$, there exists $r \in R$ such that $xr \neq 0$ and $yr \in K$. Obviously, any dense submodule of M is essential. It follows from [6, Proposition 8.6] that, K is dense in M if and only if $Hom_R(\frac{P}{K}, M) = 0$ for every submodule $K \subseteq P \subseteq M$.

Remark 2.9. Let M be a module such that $\overline{Z}(M) \neq M$. If $\overline{Z}(M)$ is dense in M, then M is not $\overline{Z}(M)$ -coretractable. In fact for a $\overline{Z}(M)$ -coretractable module M with $\overline{Z}(M) \neq M$, we have $\overline{Z}(M)$ is not dense in M. This follows from the fact that if M is $\overline{Z}(M)$ -coretractable such that $\overline{Z}(M) \neq M$, then there is a nonzero homomorphism from $\frac{M}{\overline{Z}(M)}$ to M.

Proposition 2.10. Let M be a module such that $\overline{Z}(M) \neq M$. If M is quasi-injective or every proper submodule of M is contained in a maximal submodule, then M is $\overline{Z}(M)$ -coretractable if and only if every proper submodule of M containing $\overline{Z}(M)$ is not dense in M.

Proof. (1) Let M be a quasi-injective module such that every proper submodule of M containing $\overline{Z}(M)$ is not dense in M. Suppose that Kis a proper submodule of M containing $\overline{Z}(M)$. Since K is not dense in M, there is a $f: \frac{P}{K} \to M$ where P is a submodule of M containing K. It follows that $fo\pi: P \to M$ is a nonzero homomorphism such that $\pi: P \to \frac{P}{K}$ is natural epimorphism. Consider inclusion homomorphism $j: P \to M$. Since M is quasi-injective, there exists $h: M \to M$ such that $hoj = fo\pi$. By defining $\overline{h}: \frac{M}{K} \to M$ with $\overline{h}(m+K) = h(m)$ we conclude that M is $\overline{Z}(M)$ -coretractable. Note that \overline{h} is nonzero. Conversely, if M is $\overline{Z}(M)$ -coretractable and $\overline{Z}(M) \subseteq K < M$, then there is a homomorphism $g: \frac{M}{K} \to M$ which shows that K is not dense in M.

(2) Suppose that every proper submodule of M contained in a maximal submodule of M. Let $\overline{Z}(M) \subseteq K \subset M$. Then there is a maximal submodule L of M such that $K \leq L$. Since L is not dense in M, there is a nonzero homomorphism $h: \frac{M}{L} \to M$. Since $f: \frac{M}{K} \to \frac{M}{L}$ with f(x+K) = x+L is a nonzero homomorphism, then hof is nonzero. It follows that M is $\overline{Z}(M)$ -coretractable. The converse is the same as the converse of (1).

Theorem 2.11. Let R be a ring. Then the following are equivalent:

(1) R_R is $Z(R_R)$ -coretractable;

(2) Every finitely generated free right R-module F is

Z(F)-coretractable;

(3) For every right ideal I containing $\overline{Z}(R_R)$, $ann_l(I) \neq 0$;

(4) Every simple right R-module annihilated by $\overline{Z}(R_R)$ can be embedded in R_R .

Proof. (1) \Leftrightarrow (2) Follows from Proposition 2.6.

(1) \Rightarrow (3) Let *I* be a right ideal containing $\overline{Z}(R_R)$. Since R_R is $\overline{Z}(R_R)$ -coretractable, there is a nonzero homomorphism $f: \frac{R}{I} \to R$. Consider the endomorphism $g = fo\pi : R \to R$ where π is the natural epimorphism from *R* to $\frac{R}{I}$. Then there is an element $a \in R$ such that g(x) = ax. Let $y \in I$. Then g(y) = ay = 0 as $I \subseteq Kerg$.

 $(3) \Rightarrow (1)$ Let I be a right ideal containing $\overline{Z}(R_R)$. Since $ann_l(I) \neq 0$, there exists an element of R such as a which aI = 0 and $a \neq 0$. Define $f: \frac{R}{I} \to R$ by f(x+I) = ax. It is easy to check that f is an R-homomorphism and in particular $f \neq 0$.

(1) \Rightarrow (4) Let $M \cong \frac{R}{K}$ be a simple right *R*-module such that $M\overline{Z}(R_R) = 0$. It follows that $\overline{Z}(R_R) \subseteq K$. Since *R* is $\overline{Z}(R_R)$ -coretractable, there is a nonzero homomorphism $f: \frac{R}{K} \to R$.

(4) \Rightarrow (1) Let T be a proper right ideal of R containing $\overline{Z}(R_R)$. Now there exists a right maximal ideal K of R such that $\overline{Z}(R_R) \subseteq T \subseteq K$. Consider the simple right R-module $M = \frac{R}{K}$. Since $M\overline{Z}(R_R) = 0$, there is a nonzero homomorphism $g: \frac{R}{K} \to R$ by assumption. Being Ta submodule of K, there exists $f: \frac{R}{T} \to \frac{R}{K}$ defined by f(x+T) = x+K. Hence gof is the desired homomorphism.

Remark 2.12. Let R be a ring with $ann_l(\overline{Z}(R_R)) = 0$. Then R_R is not $\overline{Z}(R_R)$ -coretractable. By [12, Proposition 2.1], $J(R) \subseteq ann_l(\overline{Z}(R_R))$. So J(R) = 0.

Corollary 2.13. Let R be a semiperfect ring with $\overline{Z}(R_R) \neq R$. Then the following statements are equivalent:

- (1) R is $\overline{Z}(R_R)$ -coretractable;
- (2) Every simple cosingular right R-module can be embedded in R_R .

Proof. (1) \Rightarrow (2) It follows from (1) \Rightarrow (4) of Theorem 2.11 and the fact that over a semiperfect ring, a simple module is annihilated by $\overline{Z}(R_R)$ if and only if it is cosingular ([10, Theorem 3.5]).

 $(2) \Rightarrow (1)$ This is a consequence of $(4) \Rightarrow (1)$ of Theorem 2.11 and the fact the over a semiperfect ring, a simple module is annihilated by $\overline{Z}(R_R)$ if and only if it is cosingular.

Recall from [6], a ring R is right (left) Kasch in case every simple right (left) R-module can be embedded in R_R ($_RR$). In [2, Theorem 2.14], the authors proved that R is right Kasch if and only if R_R is coretractable. The following maybe an analogue for commutative semiperfect rings. We should note that a ring R is semilocal in case $\frac{R}{J(R)}$ is a semisimple ring.

Corollary 2.14. Let R be a commutative semiperfect ring with $\overline{Z}(R) \neq R$. Then the following statements are equivalent:

- (1) R is $\overline{Z}(R)$ -coretractable;
- (2) Every simple cosingular R-module can be embedded in R;
- (3) R is a Kasch ring.

Proof. (1) \Leftrightarrow (2) See Corollary 2.13.

 $(1) \Rightarrow (3)$ From [12, Corollary 2.7(3)], we have $Soc(R) = \overline{Z}(R)$ since R is a commutative semilocal ring. Now let K be a proper essential ideal of R. Then $Hom_R(\frac{R}{K}, R) \neq 0$ because $\overline{Z}(R) \subseteq K$. Therefore, R is a coretractable R-module. Hence R is a Kasch ring (see [2, Theorem 2.14]).

 $(3) \Rightarrow (1)$ In this case R is a coretractable R-module and hence $\overline{Z}(R)$ -coretractable.

Example 2.15. (1) Let $R = \begin{bmatrix} K & K \\ 0 & K \end{bmatrix}$ where K is a field. Then $J(R) = \begin{bmatrix} 0 & K \\ 0 & 0 \end{bmatrix}$. It is easy to check that R is a semilocal ring as $\frac{R}{J(R)} \cong K \times K$ which is a semisimple ring. Now by [3, Exercise 10, Page 113] and [12, Corollary 2.7], $\overline{Z}(R_R) = Soc(_RR) = \begin{bmatrix} K & K \\ 0 & 0 \end{bmatrix}$. However, $\overline{Z}(_RR) = Soc(R_R) = \begin{bmatrix} 0 & K \\ 0 & K \end{bmatrix}$. Set $m_1 = \overline{Z}(R_R)$ and $m_2 = \overline{Z}(_RR)$. Then both m_1 and m_2 are left maximal and right maximal ideals of R. A quick calculation shows that $ann_l(m_1) = m_2$, $ann_l(m_2) = 0$, $ann_r(m_1) = 0$ and $ann_r(m_2) = m_1$. Now by Theorem 2.11, R_R is $\overline{Z}(R_R)$ -coretractable while R_R is not $\overline{Z}(_RR)$ -coretractable. Also left version of Theorem 2.11, implies that $_RR$ is $\overline{Z}(_RR)$ -coretractable but it is not $\overline{Z}(R_R)$ -coretractable. Since the simple right R-module $\frac{R}{m_2}$ can not be embedded in R_R and the simple left R-module $\frac{R}{m_1}$ can not be embedded in R_R the ring R is neither right Kasch nor left Kasch.

(2) Let K be a division ring and

$$R = \left\{ A = \begin{bmatrix} a & 0 & b & c \\ 0 & a & 0 & d \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & e \end{bmatrix} \mid a, b, c, d, e \in K \right\}$$

Then, $J(R) = \{A \in R \mid a = 0 = e\}$, $Soc(R_R) = ann_l(J(R)) = \{A \in R \mid a = 0\}$, $Soc(_RR) = ann_r(J(R)) = J(R)$. Since $\frac{R}{J(R)} \cong K \times K$, R is a semilocal ring. Now from [12, Corollary 2.7], we have $\overline{Z}(_RR) = Soc(R_R) = \{A \in R \mid a = 0\}$ and $\overline{Z}(R_R) = Soc(_RR) = J(R)$. From [6, Example 8.29], $\overline{Z}(_RR)$ is a left maximal and right maximal ideal of R. Since $ann_r(\overline{Z}(_RR)) = \{A \in R \mid a = e = 0\} = J(R) \neq 0$, it follows from [6, Corollary 8.28], $\frac{R}{\overline{Z}(_RR)}$ can be embedded in $_RR$ (see also Theorem 2.11). Therefore, $_RR$ is $\overline{Z}(_RR)$ -coretractable. Now an easy computation shows that $ann_l(\overline{Z}(_RR)) = \{A \in R \mid a = c = d = e = 0\} \neq 0$. So $\frac{R}{\overline{Z}(_RR)}$ can be embedded in R_R by [6, Corollary 8.28]. As $\overline{Z}(_RR)$ is a maximal right ideal of R, then R_R is $\overline{Z}(_RR)$ -coretractable. Also from [6, Example 8.29], R is a right Kasch ring while it is not a left Kasch ring. (3) Let K be a field and $R = K \times K \times K \times \dots$. It is well-known that

(3) Let *K* be a field and $R = K \times K \times K \times ...$ It is well-known that *R* is a Von Nuemann regular *V*-ring. By [10, Corollary 2.6], every *R*-module is noncosingular. So every *R*-module *M* is $\overline{Z}(M)$ -coretractable. In particular *R* as a ring is $\overline{Z}(R)$ -coretractable. Now consider the ideal $I = K \oplus K \oplus ...$ of *R*. Then ann(I) = 0 and of course ann(m) = 0 for every maximal ideal *m* of *R* containing *I*. Hence the simple *R*-module $\frac{R}{m}$ can not be embedded in *R* (see [6, Corollary 8.28]). Therefore, *R* is not a Kasch ring.

Proposition 2.16. Let R be a ring such that every free right R-module F is $\overline{Z}(F)$ -coretractable. Then for every nonzero cosingular right R-module M, $Hom_R(M, R) \neq 0$.

Proof. Let M be a cosingular right R-module. Then there is a free right R-module F and a submodule K of F such that $M \cong \frac{F}{K}$. Since M is cosingular, $\overline{Z}(F) \subseteq K$. Now there is a nonzero homomorphism $f: \frac{F}{K} \to F$ (note that F is $\overline{Z}(F)$ -coretractable). The homomorphism

 $\pi of: M \to R$ is the required one where $\pi: F \to R$ is natural epimorphism.

Proposition 2.17. Let R be a ring having a radical right R-module M with $\overline{Z}(M) \neq M$. If for every right ideal I of R, $Rad(I) \neq I$, then there is a free right R-module F which is not $\overline{Z}(F)$ -coretractable.

Proof. Let Rad(M) = M and $\overline{Z}(M) \neq M$. There exists a free right *R*-module *F* and a submodule *K* of *F* such that $\frac{M}{\overline{Z}(M)} \cong \frac{F}{K}$. Being *M* radical implies that $\frac{M}{\overline{Z}(M)}$ is radical. So, $Hom_R(\frac{M}{\overline{Z}(M)}, R) = 0$. It follows that $Hom_R(\frac{F}{K}, F) = 0$. Now being $\frac{F}{K}$ cosingular implies that $\overline{Z}(F) \subseteq K$ (note that $\frac{M}{\overline{Z}(M)}$ is cosingular). Therefore, *F* is not $\overline{Z}(F)$ -coretractable.

Corollary 2.18. Let R be a semiperfect ring which is not right perfect. If R has a radical module, then there is a free right R-module F which is not $\overline{Z}(F)$ -coretractable.

Proposition 2.19. Let M be an amply supplemented module such that every proper submodule of $0 \neq \frac{M}{\overline{Z}(M)}$ is contained in a maximal submodule. If for every $x \in M$, the module xR is $\overline{Z}(xR)$ -coretractable, then M is $\overline{Z}(M)$ -coretractable.

Proof. Let M be amply supplemented. Suppose that K is a submodule of M containing $\overline{Z}(M)$. By assumption, K is contained in a maximal submodule L of M. For every $x \in M \setminus L$, we know $\frac{M}{L} \cong \frac{xR}{xR \cap L}$ as xR + L = M. Note that $\frac{M}{L}$ is cosingular. Otherwise, $\frac{M}{L} = \overline{Z}(\frac{M}{L}) =$ $\overline{Z}^2(\frac{M}{L}) = \frac{\overline{Z}^2(M) + L}{L} = 0$, which is a contradiction (see [10, Theorem 3.5]). Now $\overline{Z}(xR) \subseteq xR \cap L$. Because xR is $\overline{Z}(xR)$ -coretractable, $Hom_R(\frac{xR}{xR \cap L}, xR) \neq 0$. Hence there is a nonzero homomorphism $f: \frac{M}{L} \to M$. Therefore, $Hom_R(\frac{M}{K}, M) \neq 0$ as $K \subseteq L$.

The following result follows from Proposition 2.19 and the fact that over a (semiperfect) right perfect ring, every (finitely generated) right R-module is amply supplemented.

Corollary 2.20. Let R be a (semiperfect) right perfect ring such that every cyclic R-module xR is $\overline{Z}(xR)$ -coretractable. Then every (finitely generated) right R-module M is $\overline{Z}(M)$ -coretractable.

Corollary 2.21. Let R be a commutative (semiperfect) perfect ring such that every cyclic R-module xR is $\overline{Z}(xR)$ -coretractable. Then every (finitely generated) projective R-module is coretractable. In particular, R is a Kasch ring.

Proof. From Corollary 2.20, every (finitely generated) projective Rmodule M is $\overline{Z}(M)$ -coretractable. It follows from [12, Corollary 2.7(3)], $Soc(M) = \overline{Z}(M)$ for every (finitely generated) projective R-module. It is clear that for every proper essential submodule N of M and hence for every proper submodule N of M, there is a nonzero homomorphism M

 $f: \frac{M}{N} \to M$ (note that if $N \leq_e M$, then $Soc(M) \subseteq N$). This completes the proof.

Definition 2.22. Let \mathcal{SC} be the class of all simple cosingular (small) right *R*-modules. Then we set $\overline{wZ}(R_R) = Rej_R(\mathcal{SC})$. By [3, Corollary 8.23], $\overline{wZ}(R_R)$ is a two-sided ideal of *R*.

Example 2.23. (1) Since every simple cosingular right \mathbb{Z} -module has the form $\frac{\mathbb{Z}}{p\mathbb{Z}}$ where p is a prime number, then $\overline{wZ}(\mathbb{Z}) = 0$.

(2) Let \overline{R} be a local ring which is not a V-ring. Then the only simple cosingular right R-module is $\frac{R}{J(R)}$. So $\overline{wZ}(R_R) = J(R)$.

(3) Let R be a local ring with at least three proper ideals. Then by [12, Corollary 2.7(1)], $\overline{Z}(R_R) = Soc(RR)$. By (2), we have $\overline{wZ}(R_R) = J(R)$. Note that $\overline{Z}(R_R) \subseteq \overline{wZ}(R_R)$. For instance $\overline{Z}(\mathbb{Z}_8) = \{0, 4\}$ while $\overline{wZ}(\mathbb{Z}_8) = \{0, 2, 4, 6\}$.

Some basic properties of $\overline{wZ}(R_R)$ are listed below. The proof is straightforward and omitted.

Lemma 2.24. Let R be a ring. Then; (1) $\overline{Z}(R_R) \subseteq \overline{wZ}(R_R)$ and $J(R) \subseteq \overline{wZ}(R_R)$. (2) $\frac{R}{\overline{wZ}(R_R)}$ is a cosingular right R-module.

(3) $\overline{wZ}(R_R) = R$ if and only if R is a right V-ring.

(4) $w\overline{Z}(R_R)$ is the largest right ideal of R that annihilates all simple cosingular right R-modules.

(5) If R is semilocal, then $\frac{R}{\overline{wZ}(R_R)}$ is semisimple cosingular.

Proposition 2.25. Let R be a ring with J(R) = 0. If R_R is $\overline{Z}(R_R)$ -coretractable, then $Soc(R_R) + \overline{wZ}(R_R) = R$. In particular, if $\overline{wZ}(R_R)$ is semisimple, then R is semisimple.

Proof. In contrary, suppose that $I = Soc(R_R) + \overline{wZ}(R_R) \neq R$. Since I contains $\overline{wZ}(R_R)$ and R_R is $\overline{Z}(R_R)$ -coretractable, we have $K = ann_l(I) \neq 0$. It follows that (IK)(IK) = 0. Now J(R) = 0, implies that IK = 0. Since R_R is $\overline{Z}(R_R)$ -coretractable, every simple cosingular right R-module can be embedded in R_R . It follows that MK = 0 for every simple cosingular right R-module. Hence $K \subseteq \overline{wZ}(R_R)$. Since $\overline{wZ}(R_R)K = 0$, we conclude that $K^2 = 0$. Therefore $K \subseteq J(R) = 0$, which is a contradiction. For the last part, suppose that $\overline{wZ}(R_R)$ is semisimple. So, $I = Soc(R_R) = R$. This completes the proof.

Corollary 2.26. Let R be a ring with J(R) = 0 and $Soc(R_R) \subseteq \overline{wZ}(R_R)$. If R_R is $\overline{Z}(R_R)$ -coretractable, then R is a right V-ring.

Proof. From the proof of last proposition, we get $I = \overline{wZ}(R_R) = R$. Then, every simple right *R*-module is injective. It then follows that *R* is a right *V*-ring.

References

- A. N. Abyzov and A. A. Tuganbaev, Retractable and coretractable modules, J. Math. Sci., 213 (2016), 132–142.
- B. Amini, M. Ershad and H. Sharif, Coretractable modules, J. Aust. Math. Soc., 86 (2009), 289–304.
- F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Springer-Verlog, New York, 1992.
- S. M. Khuri, Endomorphism rings and lattice isomorphisms, J. Algebra, 59 (1979), 401–408.
- S. M. Khuri, Nonsingular retractable modules and their endomorphism rings, Bull. Aust. Math. Soc., 43 (1991), 63–71.
- 6. T. Y. Lam, Lectures on Modules and Rings, Springer-Verlog, New York, 1999.
- S. H. Mohamed and B. J. Müller, *Continuous and Discrete Modules*, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, London, 1990.
- N. Orhan, D. Keskin and R. Tribak, A variation of coretractable modules, Accepted in Bull. Malays. Math. Sci. Soc., DOI: 10.1007/s40840-016-0390-7.
- V. S. Ramamurthy and K. M. Rangaswamy, Generalized V-rings, Math. Scand., 31 (1972), 69–77.
- Y. Talebi and N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Algebra, 30 (2002), 1449–1460.
- Y. Toloee and M. R. Vedadi, On rings whose modules have nonzero homomorphisms to nonzero submodules, *Publ. Mat.*, 57 (2013), 107–122.

- R. Tribak and D. Keskin, On Z_M-semiperfect modules, East-West J. Math., 8 (2006), 193–203.
- 13. R. Wisbauer, *Foundations of Module and Ring Theory*, Gordon and Breach Science Publishers, Philadelphia, 1991.
- J. M. Zelmanowitz, Correspondences of closed submodules, Proc. Amer. Math. Soc., 124 (1996), 2955–2960.
- J. Žemlička, Completely coretractable rings, Bull. Iran. Math. Soc., 39 (2013), 523–528.
- Z. P. Zhou, A lattice isomorphism theorem for nonsingular retractable modules, Canad. Math. Bull., 37 (1999), 140–144.
- Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq., 7 (2000), 305–318.

Ali Reza Moniri Hamzekolaee

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P.O.Box 47416-95447, Babolsar, Iran.

Email: a.monirih@umz.ac.ir

Journal of Algebraic Systems

A GENERALIIZATION OF CORETRACTABLE MODULES

A. R. MONIRI HAMZEKOLAEE

یک تعمیم از مدول های مسطح

علیرضا منیری حمزه کلایی گروه ریاضی، دانشکده علوم ریاضی، دانشگاه مازندران، بابلسر

 $\overline{Z}(M)$ فرض کنید R یک حلقه و M یک R-مدول راست باشد. مدول M را مسطح نسبت به $\overline{Z}(M)$ فرض کنید R یک حلقه و M را یک R-مدول راست باشد. مدول M را مسطح نسبت به $\overline{Z}(M)$ است، یک $\overline{Z}(M)$ میگوییم هرگاه برای هر زیرمدول محض مانند N از M که شامل $\overline{Z}(M)$ است، یک همریختی غیرصفر مانند M مانند M موجود باشد. ما در این مقاله شرایطی را بررسی می کنیم که دو مفهوم مسطح و $\overline{Z}(M)$ -مسطح با هم معادل باشند. برای یک حلقهٔ جابجایی نیمهکامل مانند R نشان مفهوم مسطح و $\overline{Z}(M)$ مسطح است اگر وتنها اگر R یک حلقهٔ کش باشد. در نهایت چند مثال می دهیم که $\overline{Z}(M)$ موجود باشد. می در این مقاله شرایطی را بررسی می کنیم که دو مفهوم مسطح و $\overline{Z}(M)$

كلمات كليدى: مدول مسطح، مدول $\overline{Z}(M)$ مسطح، حلقهٔ كَش.