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MAXIMAL PRYM VARIETY AND MAXIMAL
MORPHISM

M. FARHADI∗

Abstract. We investigated maximal Prym varieties on finite fields
by attaining their upper bounds on the number of rational points.
This concept gave us a motivation for defining a generalized defini-
tion of maximal curves i.e., maximal morphisms. By MAGMA, we
give some non-trivial examples of maximal morphisms that results
in non-trivial examples of maximal Prym varieties.

1. Introduction

The problem of counting the number of rational points of algebraic
varieties defined over finite fields absorbs the attention of many re-
searchers, because of their various applications in other branches of
science and technology, such as Information Theory, Coding Theory,
Cryptography and Physics.

A. Lesfari in [7] had shown the application of Prym varieties. The
Kirchhoff’s equation that describes the motion of a solid body can be
modeled by genus two hyperelliptic functions.

Many papers have published about this important thought of point
counting [4, 5, 9, 10, 13, 14]. Our goal is to study the number of
rational points of Prym varieties. This concept has studied recently by
M. Perret in [8].

Let π : D 7→ C be a covering of smooth algebraic irreducible pro-
jective curves defined over a field k of zero or odd character then the
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Jacobian JC of C is isogenous to a sub-abelian variety of the Jaco-
bian JD of D. If, moreover, we suppose that π has degree 2 then the
non-trivial involution σ of this covering σ induces an involution σ∗ on
JD.

Definition 1.1. The Prym variety Pr = Prπ associated to the unram-
ified double covering π : D 7→ C of a curve C of genus g ≥ 2 is defined
as Pr := Im(σ∗ − id). It is an abelian subvariety of JD of dimension
g − 1 isogenous to a direct factor of JC in JD.

Suppose henceforth that k is the finite field Fq with q elements, Pr
is an abelian variety of dimension g − 1. There is following important
question:
When does Prym variety defined over finite fields reache its upper bound
on the number of rational points?

This paper contains contributions of defining maximal morphisms
and some results about this concept that is a generalization of maxi-
mal curves. After, we have found some non-trivial examples of maximal
morphisms. This new concept is useful for obtaining examples of max-
imal Prym varieties.

The remainder of this paper is organized as follows: Section 2 de-
scribes the previous literature related to the problem. Suitable defini-
tions to formulate the new concept, maximal morphisms, are presented
in Section 3, which is followed in Section 4 by some non-trivial examples
that calculated by MAGMA. Section 5 provides some final conclusions.

2. Related works

The following result of Weil formulates the bounds for the number
of rational points of an algebraic variety defined over a finite field (see,
[14]).

Theorem 2.1 (Weil, 1948). Let A be an abelian variety of dimension
d defined over Fq. Then, there exists θ1, . . . , θd ∈ R/(2πZ) such that
for any n ≥ 1 the number of rational points of A over Fqn, is given by

(i) card A(Fqn) =
∏d

i=1

(
qn + 1− 2

√
qn cos θi

)
in particular,

(ii)
(
q + 1− 2

√
q
)d ≤ card A(Fq) ≤

(
q + 1 + 2

√
q
)d
,

(iii) If in addition, A is the Jacobian of a curve C of genus g, then
d = g and the θi are also related to the JC, then the number of
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rational points of C over Fqn, is given by

card C(Fqn) = qn + 1− 2
√
qn
( g∑

i=1

cosnθi

)
.

The second part of Theorem 2.1 for the Prym variety Prπ of a double
unramified cover π of a curve C of genus g reads(

g + 1− 2
√
q
)g−1 ≤ cardPr(Fq) ≤

(
g + 1 + 2

√
q
)g−1

. (2.1)

These upper and lower bounds in (2.1) are the “best possible”, in
the sense that both can be reached. Indeed, it is known that an elliptic
curve is a Prym variety. Now, suppose that E is so that it reaches the
upper (resp., lower) bound of Weil’s inequality, such an elliptic curve
exists if q is square [8], then E reaches the upper (resp., lower) bound of
(2.1). The existence of such an elliptic curve E, proves also the second
part of (Theorem 2.1) for the Jacobian variety JC of a curve C,(

q + 1− 2
√
q
)g ≤ card JC(Fq) ≤

(
q + 1 + 2

√
q
)g
, (2.2)

is also best possible at least for g = 1. Several sharper lower and upper
bounds for Jacobian were also given in the literature, for instance:

Theorem 2.2 (G. Lachaud, M. Martin-Dechamps [6]). Let JC be
the Jacobian variety of a genus g of a curve C defined over Fq and
card C(Fq) be the number of rational points of C. Then(√

q − 1
)2 (qg−1 − 1

)(
card C(Fq) + q − 1

)
g(q − 1)

≤ card JC(Fq). (2.3)

If C admits a map of degree n onto the projective line, then one has
also

card JC(Fq) ≤
e

q

(
2g
√
e
)n−1

qg. (2.4)

In [8], Marc Perret presented some bounds for Prym variety. Let
C be an algebraic curve and the number of Fq–rational points of C
denoted by card C(Fq).

Theorem 2.3. Let C be an absolutely irreducible projective smooth
algebraic curve defined over the finite field k of the odd characteristic
with q elements. Let also g be the genus of C and π : D 7→ C be an
unramified covering of degree 2. Then,

(i)(√q + 1
√
q − 1

)(card D(Fq)− card C(Fq)

(2
√
q)

− 2δ
)
(q − 1)g−1 ≤ cardPr(Fq)
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with

δ =

{
1 if card D(Fq)−card C(Fq)

2
√
q

∈ Z;
0 otherwise.

(ii)

cardPr(Fq) ≤
(
q + 1

card D(Fq)− card C(Fq)

g − 1

)g−1

.

Remark 2.4. Let X be a curve with genus g defined over Fq. There is
a formal series over X relative to Fq called Zêta Function:

ZX,q(t) := exp
( ∞∑

i=1

card X(Fqi)

i
ti
)
. (2.5)

There exists a polynomial of degree 2g with integer coefficients, such
that

ZX,q(t) =
P (t)

(1− t)(1− qt)
. (2.6)

Remark 2.5. [12]

(i) Let

P (t) =

2g∑
i=0

ait
i, (2.7)

then a0 = 1, a2g = qg and a2g−i = qg−iai for i = 0, . . . , g.
(ii) Let

h(t) = hX,q(t) := t2gP (t−1). (2.8)

Then, the 2g roots (counted with multiplicity) α1, . . . , α2g of h(t) can
be arranged such that αjαg+j = q for j = 1, . . . , g. Note that, a1 =

−
∑2g

j=1 αj.

Now, let JX be the Jacobian of X. According to Theorem 2.1, we
know that h(t) is exactly the characteristic polynomial of Fr JX on the
Tate module, where Fr is the Frobenius endomorphism (relative to Fq).

Now, let C and D be two curves and π : D 7→ C a unramified double
covering. We know that the Prym variety Prπ is a direct factor of JC
in JD.

Theorem 2.6 (Y. Aubry, M. Perret [1]). Let π : D 7→ C be a finite
morphism between two reduced algebraic smooth absolutely irreducible
projective curves D and C defined over a finite field k. Then, the
numerator of the zeta function of C divides that of D in Z[t].
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Proof. For any prime ℓ different to the characteristic of Fq, we consider
the Qℓ–vector space Tℓ(JC) ⊗Zℓ

Qℓ of dimension 2gC , where Tℓ(JX) is
the Tate module of Jacobian JC of C. The numerator hC,q(t) of the zeta
function of C is the reciprocal characteristic polynomial of Frobenius
endomorphism on Tℓ(JC)⊗Zℓ

Qℓ. The function

π∗ : JC −→ JD,

which is induced by π on Jacobian, is of the finite kernel, and sends
every point of ℓn–torsion of JC on points of ℓn–torsion of JD. So, we
have a morphism injective of Qℓ–vector spaces

π∗ ⊗ 1 : Tℓ(JC)⊗Zℓ
Qℓ −→ Tℓ(JD)⊗Zℓ

Qℓ.

The Frobenius morphism in Tℓ(JD) ⊗Zℓ
Qℓ is a stable subspace of the

Frobenius morphism in Tℓ(JC) ⊗Zℓ
Qℓ. Therefore, the characteristic

polynomial of Tℓ(JC) divides the characteristic polynomial of Tℓ(JD)
in Q[t], and hence in Z[t], since hC , hD ∈ Z[t]. Thus, we conclude that
hC(t) divides hD(t). �

3. Relative maximal morphisms

In this section, we give the definition of maximal morphism, which
generalizes the concept of famous maximal curve.

A. Weil [14], had shown that the number of Fq-rational points of the
curve C of genus g satisfies

q + 1− 2g
√
q ≤ card C(Fq) ≤ 1 + q + 2g

√
q.

J. P. Serre [9, 10], improved Weil’s upper bound. If q is not square,
then

card C(Fq) ≤ q + 1 + g[2
√
g].

A curve is called Weil (Serre) maximal if it gets the Weil (Serre) up-
per bound of Fq-rational points. Many works have published about
maximal curves and related concepts [4, 5, 9, 10, 13, 14].

Corollary 3.1. If π : D 7→ C is a surjective morphism between irre-
ducible smooth projective algebraic curves on a finite field Fq, then∣∣card D(Fq)− card C(Fq)

∣∣ ≤ 2
(
gD − gC

)√
q.

Proof. According to Theorem 2.6, all eigenvalues of Frobenius endo-
morphism on Tℓ(JD) with multiplicity, contains that of Frobenius en-
domorphism on Tℓ(JC). We then apply Theorem 2.1 (iii), and the result
follows. �
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Proposition 3.2. If π : D 7→ C is a surjective morphism between
irreducible smooth projective algebraic curves on a finite field, then∣∣card D(Fq)− card C(Fq)

∣∣ ≤ (gD − gC
)[
2
√
q
]
.

Proof. Let A ⊂ C be the set of algebraic integers, i.e., a complex
number α is in A if and only if α satisfies in equation αm+bm−1α

m−1+
· · · + b1α + b0 = 0 for coefficients bi ∈ Z. It is an elementary fact of
algebraic number theory that

A is subring of C, and A ∩Q = Z. (3.1)

We consider the L-polynomial LD(t) =
∏2gD

i=1 (1 − αit) and LC(t) =∏2gC
i=1(1−βit). Complex numbers α1, . . . , α2gD are the algebraic integers

with |αi| = q1/2 (Theorems V.2.1 and V.1.15 of [12]). They can be ar-
ranged so that (α1, . . . , α2gC , α2gC+1, . . . , α2gD) = (β1, . . . , β2gC , β2gC+1,
. . . , β2gD) and αiαgD+i = q. Therefore,

αi = αg+i = q/αi for 1 ≤ i ≤ gD.

(We denote by α the complex conjugate of α.) Let

γi := αi + αi +
[
2q1/2

]
+ 1

and

δi := −(αi + αi) +
[
2q1/2

]
+ 1.

According to (3.1), γi and δi are algebraic integers and since |αi| = q1/2,
they satisfy

γi > 0, δi > 0. (3.2)

Let
∏2gD

i=1 (t − αi) = L⊥
D(t) ∈ Z(t),

∏2gC
i=1(t − βi) = L⊥

C(t) ∈ Z(t) and

L⊥
D(t) = L⊥

C(t)
∏2gD−2gC

i=1 (t− αi). Any extension

σ : Q(α1, . . . , α2gD−2gC ) → C,

permute α1, . . . , α2gD−2gC , since
∏2gD−2gC

i=1 (t−αi) ∈ Z(t). On the other
hand, if σ(αi) = αj then,

σ(αi) = σ(q/αi) = q/σ(αi) = σ(αi) = αj.

Therefore, σ acts as a permutation over the sets {γ1, . . . , γgD−gC} and
{δ1, . . . , δgD−gC}. Define

γ :=

gD−gC∏
i=1

γi and δ :=

gD−gC∏
i=1

δi.
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Then, γ and ∆ are algebraic integers invariants in all extensions of
Q(α1, . . . , α2gD−2gC ) in C. Therefore, γ, δ ∈ Q

∩
A = Z. With (3.2),

γ > 0 and δ > 0, and hence

gD−gC∏
i=1

γi ≥ 1 and

gD−gC∏
i=1

δi ≥ 1.

The well-known inequality between arithmetic and geometry gives

1

(gD − gC)

gD−gC∑
i=1

γi ≥
( gD−gC∏

i=1

γi

)1/(gD−gC)

≥ 1.

Therefore,

gD − gC ≤
( gD−gC∑

i=1

(
αi + αi

))
+ (gD − gC)

[
2q1/2

]
+ gD − gC

=

2gD−2gC∑
i=1

αi + (gD − gC)
[
2q1/2

]
+ gD − gC .

By observing that
∑2gD−2gC

i=1 αi = N , we get

N ≤ (gD − gC)
[
2q1/2

]
.

In the same way, inequality

1

(gD − gC)

gD−gC∑
i=1

δi ≥
( gD−gC∏

i=1

δi

)1/(gD−gC)

≥ 1,

gives

N ≥ −(gD − gC)
[
2q1/2

]
.

�

Remark 3.3. Since Pr has dimension g − 1, we already saw in the
Theorem 2.1 that(

q + 1− 2
√
q
)g−1 ≤ cardPr(Fq) ≤

(
q + 1 + 2

√
q
)g−1

.

On the other hand, we know card JC(Fq) =
∏

ω∈SpecF(C)(1 − ω) and

|ω| = 2
√
q for all ω ∈ SpecF(C). So,

− 2(g − 1)
√
q ≤ card D(Fq)− card C(Fq) ≤ 2(g − 1)

√
q.

Hence, our bounds in theorem are dependent to cardD(Fq)−card C(Fq)
and are always “better” than Weil’s one (in the sense that, for instance,
our upper bound is smaller than Weil’s one).
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Hence, if card D(Fq) − card C(Fq) reaches the upper bound, then
Pr(Fq) will have the maximal number of rational points if Prym variety
is in the Jacobian form.

Definition 3.4. A Prym variety Prπ is maximal if it attains the upper
bound of the number of rational points, where π is a double unramified
covering between two curves.

Remark 3.5. We know Prπ is an abelian subvariety of JD. Historically,
Prym varieties were considered interesting exclusivity, because they
give examples of principally polarized abelian varieties that are not
Jacobian varieties. However, if dim(Prπ) ≤ 2, then Prπ generally is a
Jacobian variety (see, [3]).

Definition 3.6. Let π : D 7→ C is a double unramified covering and
C, D are two smooth, irreducible curves. We say π is a Weil maximal
morphism on Fq if card D(Fq) − card C(Fq) = 2(g − 1)

√
q. Similarly,

we can define Serre maximal morphism (optimal maximal morphism).

Definition 3.7. Let π : D 7→ C be a unbranched double covering
between two smooth, projective, irreducible curves. We say that π is a
Serre-maximal morphism over Fq, if

card D(Fq)− card C(Fq) = (g − 1)
[
2
√
q
]
.

Proposition 3.8. Let Prπ ∼= Jac(E). If π is a Weil maximal mor-
phism, then Prπ is also Weil maximal.

Proof. We know that Prπ is a direct factor of JC in JD and the number
of eigenvalues of FrPrπ is exactly 2(g − 1). Hence, Prπ is maximal if
and only if each proper value ωi verifies ωi = −√

q. This property is
equivalent to the maximality of π. �
Theorem 3.9. Suppose that Prπ ∼= Jac(F ) for a curve F . Then, the
following assertions are equivalent:

(i) π is Weil-maximal;
(ii) Prπ is Weil-maximal;
(iii) F is Weil-maximal.

Proof. (i)⇔(ii): We know that Prπ is a direct factor of JC in JD and
the number of eigenvalues of FrPrπ with multiplicity is exactly 2(g−1).
Therefore, Prπ is maximal if and only if each proper value ωi verifies
ωi = −√

q. This property is equivalent to the maximality of π.
(ii)⇔(iii): In fact, we must prove also Jac(F ) is maximal if and only
if F is maximal. Thanks to Theorem (i), (iii) we have θi = π for all
i. �
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Theorem 3.10. Suppose that Prπ ∼= Jac(F ) for a curve F . Then, the
following assertions are equivalent:

(i) π is Serre-maximal;
(ii) F is Serre-maximal.

Proof. (i)⇒(ii): π is Serre maximal if
∣∣TrFrPrπ

∣∣ = (g − 1)
[
2
√
q
]
. But

Prπ ∼= Jac(F ), so
∣∣TrFrJacF ∣∣ = (g − 1)

[
2
√
q
]
. With [9, Theorem 1], we

have equality if and only if the characteristic polynomial of FrPrπ is

equal to
(
X2 ±mX + q

)g−1
, where m =

[
2
√
q
]
. Then every eigenvalue

of Tate matrix FrJacF is equal to [
√
q].

(ii)⇒(i): If F is Serre maximal, then
∣∣TrFrJacF ∣∣ = (g − 1)

[
2
√
q
]
. But

we know that Prπ ∼= Jac(F ) and
∣∣TrFrPrπ

∣∣ = (g − 1)
[
2
√
q
]
, then π is

Serre maximale. �
Proposition 3.11. If D is a Weil maximal curve, then C is Weil
maximal and every double covering π : D 7→ C is Weil maximal.

Proof. With the maximality of D, we know that all eigenvalues of
Tℓ(JD) are equal to −√

q. Then, using Theorem 3.9, we get the desired
result. �
Remark 3.12. The Proposition 3.11 will be correct if we replace Weil
maximal morphism with Serre maximal morphism or optimal mor-
phism.

Remark 3.13. If C orD is a maximal curve, then any unramified double
covering π : D 7→ C is maximal morphism. Hence, this case gives the
trivial examples of maximal morphisms.

4. Some non-trivial examples

Are there some non-trivial maximal morphisms or equivalently max-
imal Prym varieties in Jacobian form?

In this section, we try to give some non-trivial explicit examples by
the result of [3], and by MAGMA [2] (a software package designed to
solve the computationally hard problem in algebra, ...).

In fact, with [3] in characteristic zero, we have some cases that Prym
varieties are isomorph with Jacobian varieties. In fact, [3] gives exam-
ples of isomorphisms of Prym varieties that are Jacobian varieties.

Let C be the double covering of P1. Then, C has an affine model

C : y2 = f(x),

where f ∈ k[x] is a square-free polynomial of degree 2gC+2. According
to Kummer’s theory, for any factorization f = F1F2, with F1, F2 ∈ k[x]
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of an even degree, we have a curve D which is given by the affine model:

{
y21 = F1(x)

y22 = F2(x),
(4.1)

and a unramified morphism of degree 2

π : D 7→ C

(x, y1, y2) 7→ (x, y1y2) = (x, y).

Consider two curves

F1 : y
2
1 = F1(x)

and

F2 : y
2
2 = F2(x),

with the obvious projections π1 : D → F1 and π2 : D → F2.

Proposition 4.1. [3] Let C, D, F1, F2, π, π1, π2 be as defined above.
Then,

π∗
1 × π∗

2 : Jac(F1)× Jac(F2) → Prym(D/C),

is an isomorphism of abelian varieties.

Remark 4.2. By letting degF1(x) = 2 in Proposition 4.1, we have
F1 : y

2
1 = F1(x) is of genus 0. Then, F1

∼= P1, and therefore

Jac(F1)× Jac(F2) ∼= Jac(F2) ∼= Prym(D/C).

Remark 4.3. Consider the affine forms of curves C, D and F . Suppose
that C : y2 = Q(x)R(x), where deg(Q) = 2, deg(R) = 6 and D : y21 =
Q(x) and y22 = R(x), F : y2 = R(x). Consider π : D 7→ C is double
unramified covering then Prπ ∼= Jac(F ), so for obtaining nontrivial
examples of maximal morphisms we have to find some examples such
that D, C are not maximal curves. However, F is a maximal curve
with MAGMA, we can attain some examples of nontrivial morphisms.
Now, we give an example that we calculated with MAGMA.
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Consider the field F81 and let R(x) = x6 + x5 + x4 + x3 +2x2 +2x+
α50 and Q(x) = x2 + x + α, where α is a primitive element of F81.
The following table, prepared with MAGMA, give us some nontrivial
examples of maximal morphism (and hence maximal Prym variety).

q 81
C y2 = x8 + 2x7 + α77x6 + α77x5 + αx4 + α28x3 + α12x2 + α53x+ α51

D y21 = x2 + x+ α, y22 = x6 + x5 + x4 + x3 + 2x2 + 2x+ α50

F y2 = x6 + x5 + x4 + x3 + 2x2 + 2x+ α50

q 81
C y2 = x8 + 2x7 + α70x6 + α70x5 + α10x4 + α20x3 + α70x2 + α10x+ α60

D y21 = x2 + x+ α, y22 = x6 + x5 + x4 + x3 + 2x2 + 2x+ α50

F y2 = x6 + x5 + x4 + x3 + 2x2 + 2x+ α50

5. Conclusion

Finding non-trivial examples of maximal Prym variety, grants us
the motivation for defining a new concept which we call maximal mor-
phism, that is a generalization of maximal curves.
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ماکسیمال مرفیسم های و ماکسیمال پرایم چندگوناهای

فرهادی مجید
دامغان ایران، دامغان، دانشگاه ریاضی دانشکده

متناهی میدان های روی گویا نقاط تعداد بالای کران که منظر این از را ماکسیمال پرایم چندگوناهای ما
ماکسیمال خم های مفهوم تعمیم ماکسیمال مرفیسم های تعریف انگیزه مفهوم، این کردیم. بررسی بگیرد، را
نابدیهی مثال های که کرده ایم ارائه ماکسیمال مرفیسم های از نابدیهی مثال هایی ماگما، کمک با می دهد. را

می دهد. نتیجه را ماکسیمال پرایم چندگوناهای از

ماکسیمال. مرفیسم ماکسیمال، خم پرایم، چندگونای کلیدی: کلمات

١


