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IDEALS WITH (d1, . . . , dm)-LINEAR QUOTIENTS

L. SHARIFAN*

Abstract. In this paper, we introduce the class of ideals with
(d1, . . . , dm)-linear quotients generalizing the class of ideals with
linear quotients. Under suitable conditions, we control the numeri-
cal invariants of a minimal free resolution of ideals with (d1, . . . , dm)-
linear quotients. In particular, we show that their first module of
syzygies is a componentwise linear module.

1. Introduction

Let k be a field, and R = k[x1, . . . , xn] be the polynomial ring in n
variables. In this paper, we introduce and study a class of ideals in R
which can be considered as a generalization of the class of ideals with
linear quotients (see, [8, 10]).

Let I be a graded ideal, {f1, . . . , fm} be a homogeneous system of
generators of I and (d1, . . . , dm) be an m-tuple of positive integers
supposing d1 = 1. We say that I has (d1, . . . , dm)-linear quotients with
respect to the elements f1, . . . , fm if the ideal (f1, . . . , fj−1) : fj has
dj-linear resolution for all j = 2, . . . ,m. Notice that, this property
depends on the order of the generators. If d2 = · · · = dm = d, we
simply say that I has d-linear quotients with respect to the elements
f1, . . . , fm and if d = 1, we get the usual class of ideals with linear
quotients.

Monomial ideals with linear quotients were introduced in [8] and
have strong combinatorial implication (see for example, [11]). A very
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important property of ideals with linear quotients is that they are com-
ponentwise linear (see, [10, Corollary 2.4]).

Recall that componentwise linear modules over a polynomial ring
has been introduced by Herzog and Hibi, enlarging the class of the
graded modules with a d-linear resolution (see [6]). Interesting results
concerning their graded Betti numbers has been proved by Aramova,
Conca, Herzog and Hibi (see [1, 2, 3, 6, 7]). Later, Römer (see [12])
studied more homological properties of componentwise linear modules
in the general setting of finitely generated modules over Koszul algebras
(instead of polynomial rings).

In this paper, we assume that I = (f1, . . . , fm) has (d1, . . . , dm)-
linear quotients with respect to f1, . . . , fm and deg(f1) + d1 ≤ · · · ≤
deg(fm) + dm. In Theorem 4.2, we study the case of ideals with 2-
linear quotients and we prove a property of these ideals which is close
to the componentwise linear property. In Theorem 4.7, we study the
minimal free resolution of R/I by iterated mapping cone and precisely
we compute the regularity of R/I. Finally, in Theorem 4.9, we show
that Syz1(I) is a componentwise linear module.

We organize the paper as it follows: In Section 2, we review some
basic definitions, notations and results that we need in subsequent sec-
tions. In Section 3, we give a sufficient condition for minimality of
a resolution obtained by the mapping cone (see Theorem 3.1). Next,
we give some easy and technical lemmas that we need for studying
Syz1(I). Section 4 is devoted to the main results about ideals with
(d1, . . . , dm)-linear quotients.

Furthermore, the paper includes several examples to illustrate and
delimite the results. Definitely, via these examples, we examine some
ideals with (d1, . . . , dm)-linear quotients to see if they have nice prop-
erties of ideals with linear quotients or not (see [10, 11]).

2. Preliminaries

The Castelnuovo-Mumford regularity (or briefly regularity) of a graded
finitely generated R-module M , is defined as

reg(M) = max{j − i; βi,j(M) ̸= 0}

and the projective dimension of M is defined as

pd(M) = max{i; βi,j(M) ̸= 0 for some j},

where βi,j(M) is the (i, j)th graded Betti number of M .
Let

· · · δ2→ F1
δ1→ F0

δ0→M
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be the graded minimal free resolution of M . Then, the p−th syzygy
module ofM , denoted by Syzp(M), is defined as Syzp(M) = ker(δp−1) =
Im(δp). Recall that for each j, the differential δj is given by a matrix
Mj (which depends on the chosen basis of Fjs). So Syzp(M) is gener-
ated by the columns of Mp.

Let M be a graded R-module. The initial degree of M is defined as

indeg(M) = min{d ∈ Z; Md ̸= 0}.
For d ∈ Z, we write M<d> for the submodule of M which is generated
by all homogeneous elements of M with degree d. Moreover, we write
M≤d for the module generated by all homogeneous elements inM whose
degrees are less than or equal to d.

If N is a graded submodule of M , then

(M/N)<a>
∼= (M<a> +N)/N.

For a module M minimally generated in degrees i1 < · · · < iℓ, we
define M{1} =M and for every j = 2, . . . , ℓ,

M{j} :=M{j−1}/(M{j−1})<indeg(M{j−1})> =M{j−1}/(M{j−1})<ij−1>.

Lemma 2.1. If M is a module minimally generated in degrees i1 <
· · · < iℓ,, then for each 2 ≤ r ≤ ℓ ,

(M{r})<ir>
∼= (M<i1> + · · ·+M<ir>)/M<i1> + · · ·+M<ir−1>).

Proof. Note that

(M{r})<ir> = (M{r−1}/(M{r−1})<ir−1>)<ir>

= ((M{r−1})<ir> + (M{r−1})<ir−1>)/(M{r−1})<ir−1>

and if we continue in this way, we get the desired result. �
Let d ∈ Z. We say that M has a d-linear resolution if βi,j(M) = 0

for j ̸= d+ i, and we say M is componentwise linear if for all integers
d the module M<d> has a d-linear resolution.

For more information concerning the componentwise linear modules,
see [2, 3, 6, 12]. We select here some good properties of their graded
minimal free resolutions.

Lemma 2.2. If M is a graded R-module and it has an i-linear resolu-
tion, then mM has an i+ 1−linear resolution, where m = (x1, . . . , xn)
is the homogeneous maximal ideal of R.

Lemma 2.3. (see [12, Lemma 3.2.2]) Let M be a graded R−module.
Then the following statements are equivalent:

(i): M is componentwise linear;
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(ii): M/M<indeg(M)> is componentwise linear andM<indeg(M)> has
an indeg(M)- linear resolution.

The following corollary is an immediate consequence of the above
lemma.

Corollary 2.4. Let M be a graded module minimally generated in de-
grees i1 < · · · < iℓ. Then M is a componentwise linear module if and
only if for each 1 ≤ j ≤ ℓ, (M{j})<ij> has an ij-linear resolution.

Following Römer, we define a special subcomplex of the minimal
graded free resolution of a module.

Definition 2.5. Let M be a graded R−module and (G., d.) be the

minimal graded free resolution ofM . We define the subcomplex (G̃., d̃.)
of (G., d.) to be

G̃i = R(−(i+ indeg(M)))βi,i+indeg(M) ⊆ Gi and d̃. = d.|G̃..

Lemma 2.6. (see [12, Lemma 3.2.4]) Let M be a graded R−module
such that M<indeg(M)> has a linear resolution, and let (G., d.) be the
minimal graded free resolution of M . Then:

(i): G̃. is the minimal graded free resolution of M<indeg(M)>.

(ii): G./G̃. is the minimal graded free resolution ofM/M<indeg(M)>.

Proposition 2.7. (see [13, Proposition 2.2]) Let M be a componen-
twise linear R-module minimally generated in degrees i1 < · · · < iℓ.
Then for each 1 ≤ i ≤ pd(M), we have

βi,j(M) = 0 for j ̸= i+ i1, . . . , iℓ + i.

Next, we review spme basic properties of ideals with linear quotients.
Let I be a graded ideal and {f1, . . . , fm} be a homogeneous system

of generators of I and Ij = (f1, . . . , fj) for j = 1, . . . ,m. We say that
I has linear quotients with respect to the elements f1, . . . , fm, if the
ideal Ij−1 : fj is generated by linear forms for all j = 2, . . . ,m. Notice
that this property depends on the order of the generators. Any order
of the generators for which we have linear quotients will be called an
admissible order. If I has linear quotients with respect to an admissible
order of a homogeneous system of generators, we simply say I has linear
quotients. Ideals with linear quotients have the following properties:

Proposition 2.8. (see [10, Corollary 2.4]) If the graded ideal I has
linear quotients with respect to the elements f1, . . . , fm, then I is com-
ponentwise linear provided that {f1, . . . , fm} is a minimal system of
generators.
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For a monomial ideal I, we denote by G(I) the unique minimal
system of monomial generators of I. In this case, when we say I has
linear quotients, we mean I has linear quotients with respect to an
admissible order of G(I)

Proposition 2.9. (see [11, Lemma 2.1]) If a monomial ideal I has
linear quotients, then there exists a degree increasing admissible order
of G(I).

3. Mapping cone technique

One of the fundamental tools for computing free resolutions is map-
ping cone technique. Many well-known free resolutions arise as iterated
mapping cones. For example, the Taylor resolution of monomial ideals.

The idea of the iterated mapping cone construction is the following:
Let {f1, . . . , fm} be a homogeneous system of generators for I, and
Ij = (f1, . . . , fj). Then, for j = 2, . . . ,m, there are exact sequences

0 → R/(Ij−1 : fj) → R/Ij−1 → R/Ij → 0

assuming that a free R−resolution (F., δ.) of R/Ij−1 and a free R-
resolution (G., d.) of R/(Ij−1 : fj) are known, we can obtain a resolu-
tion (M(ψ), γ.) of R/Ij as a mapping cone of a complex homomorphism
ψ : G. → F., which is a lifting of the map R/(Ij−1 : fj) → R/Ij−1.
The mapping cone M(ψ) is the complex such that

(M(ψ))i = Fi ⊕Gi−1,

with the differential maps

γi(x, y) = (ψi−1(y) + δi(x),−di−1(y)),

where x ∈ Fi and y ∈ Gi−1. This complex is exact (see [4, Page 650
and Proposition A3.19.]), so, it is a free resolution for R/Ij.

It is clear that in this way, we get a free resolution of R/I. Of
course, in general, such a resolution may be non-minimal. For exam-
ple if I = (f1, f2, f3) where f1 = x21, f2 = x32, f3 = x1x2, the result of
the iterated mapping cone is not a minimal free resolution. But, there
are some important classes of ideals for which the minimal free reso-
lution obtained by iterated mapping cone. For example, the Eliahou-
Kervaire resolution of stable monomial ideals (as noted by Evans and
Charalambous[5]). More in general, if I has linear quotients with re-
spect to a minimal homogeneous system of generators, then its minimal
free resolution can be obtained by iterated mapping cone. This is an
immediate consequence of [10, Corollary 2.7].

Here, we give a sufficient condition to check the minimality of a
resolution obtained by the mapping cone technique.
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Theorem 3.1. Let I be a graded ideal of R and f be a homogeneous
form of degree d which does not belong to I. Then, we have the following
graded short exact sequence:

0 → R/(I : f)(−d) → R/I → R/I + (f) → 0.

Assuming that the minimal free resolution of the modules R/(I : f) and
R/I are already known. Then, the minimal free resolution of R/I +
(f) is obtained by the mapping cone provided that for each 1 ≤ i ≤
pd(R/(I : f)),

{j; βi,j(R/(I : f)) ̸= 0} ∩ {j − d ; βi,j(R/I) ̸= 0} = ∅, (3.1)

and in this case

(a):

βi,j(R/I + (f)) = βi,j(R/I) + βi−1,j−d(R/(I : f)),

(b):

reg(R/(I + (f)) = max{reg(R/I), reg(R/(I : f)) + d− 1}
(c):

pd(R/(I + (f)) = max{pd(R/I), pd(R/(I : f)) + 1}.

Proof. Let (F., δ.) be the minimal free resolution of R/I, (G., d.) be
the minimal free resolution of R/(I : f) shifted by d and ψ : G. → F.
be the complex graded homomorphism which is a lifting of the map
R/(I : f)(−d) → R/I. It is enough to show that the mapping cone
complex is the minimal free resolution of R/(I + (f)).

Let for each r, Mr (resp., Nr) be the matrix of δr (resp., dr) with
respect to the canonical basis of Fr and Fr−1 (resp., Gr and Gr−1).
Also, assume that for each r, Or be the matrix of ψr : Gr → Fr. Then,
by the mapping cone construction, the matrix of γr, with respect to
the canonical basis of Fr ⊕ Gr−1 and Fr−1 ⊕ Gr−2, is denoted by M′

r

has the following shape;

M′
r =

(
Mr Or−1

0 −Nr−1

)
.

So, the result of the mapping cone is the minimal free resolution if
and only if Im(ψ) ⊂ mF..

Let e1, . . . , eβi(R/(I:f)) be the basis of G. in the homological degree i,
and η1, . . . , ηβi(R/I) be the basis of F. in the homological degree i. Then,

by the hypothesis ψi : Gi → Fi is given by ψi(ej) =
∑βi(R/I)

t=1 aitηt,
where for each 1 ≤ t ≤ βi(R/I) if ait ̸= 0 then deg(ej) > deg(ηt) . So,
deg(ait) > 0 for each i and t when ait ̸= 0. So, the conclusion follows.
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The parts (a), (b), (c) are directly followed by the minimality of the
obtained resolution. �

Remark 3.2. If I = (f1, . . . , fm) and I + (f) is minimally generated
by {f1, . . . , fm, f}, then Im(ψ1) ⊆ mF1 and we just need to check
Equation 3.1 for 2 ≤ j ≤ pd(R/(I : f)).

Next, we give an example in which the minimal free resolution is
computed by iterated mapping cone by successive using Theorem 3.1.
We first recall the definition of lex-segment ideals.

A monomial ideal I ⊂ R is called a lex-segment ideal if for all mono-
mials u ∈ I and all monomials v ∈ R with deg(u) = deg(v) and
v >lex u, one has v ∈ I.

Example 3.3. Let

I = (x21, x1x2, . . . , x1xn, x
m
2 , x

m−1
2 x3, . . . , x

m−1
2 xi,

xm−1
2 x3i+1, x

m−1
2 x2i+1xi+2, . . . , x

m−1
2 x2i+1xn−1, x2xn) ⊆ R

where m > 1. Then the minimal free resolution of R/I is given by the
iterated mapping cone. It is easy to see that in each step, Equation 3.1
holds. Let us just check the final step. Notice that

J = (x21, x1x2, . . . , x1xn, x
m
2 , x

m−1
2 x3, . . . , x

m−1
2 xi, x

m−1
2 x3i+1,

xm−1
2 x2i+1xi+2, . . . , x

m−1
2 x2i+1xn−1)

is a Lex-segment ideal. So, J has linear quotients with respect to

x21, x1x2, . . . , x1xn, x
m
2 , x

m−1
2 x3, . . . , x

m−1
2 xi, x

m−1
2 x3i+1,

xm−1
2 x2i+1xi+2, . . . , x

m−1
2 x2i+1xn−1.

Therefore, J is a componentwise linear ideal and by Proposition 2.7,

{j − 2; βi,j(R/J) ̸= 0} ⊆ {i+m− 3, i+m− 1, i− 1}.

J : x2xn = (x1, x
m−1
2 , xm−2

2 x3, . . . , x
m−2
2 xi, x

m−2
2 x3i+1,

xm−2
2 x2i+1xi+2, . . . , x

m−2
2 x2i+1xn−1)

is again a lex-segment ideal and it has linear quotients with respect to

x1, x
m−1
2 , xm−2

2 x3, . . . , x
m−2
2 xi, x

m−2
2 x3i+1, x

m−2
2 x2i+1xi+2, . . . , x

m−2
2 x2i+1xn−1.

Thus, J : x2xn is componentwise linear and by Proposition 2.7, we
have

{j; βi,j(R/(J : x2xn)) ̸= 0} ⊆ {i+m− 2, i+m}.
So, the result follows by Theorem 3.1 and Remark 3.2.
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In the following easy and technical lemma, I is a graded ideal gen-
erated by homogeneous forms f1, . . . , fm. For each 1 ≤ j ≤ m, let
Ij = (f1, . . . , fj) and suppose that the ideal Lj = (f1, . . . , fj−1) : fj has
initial degree dj.

Lemma 3.4. If the minimal free resolution of R/I is computed by
iterated mapping cone and jℓ = max{i ; deg(fi)+di ≤ ℓ}, then for each
p ≥ 1,

(Syzp(I))<ℓ+p−1>
∼= (Syzp(Ijℓ))<ℓ+p−1>.

Proof. Let (F., δ.) be the minimal free resolution of R/Ijℓ , (G., d.) be
the minimal free resolution of R/(Ijℓ : fjℓ+1) shifted by deg(fjℓ+1) and
ψ : G. → F. be the graded complex homomorphism which is a lifting
of the map R/(Ijℓ : fjℓ+1)(− deg(fjℓ+1)) → R/Ijℓ . Also, assume that
Mp+1, Np and Op, similar to the proof of Theorem 3.1, are the matrices
of δp+1, dp and ψp, respectively. Then, the matrix of γp+1 has the
following shape:

M′
p+1 =

(
Mp+1 Op

0 −Np

)
.

Note that Syzp(Ijℓ+1) is generated by the columns of M′
p+1 and

Syzp(Ijℓ) is generated by the columns of Mp+1. Also, note that each
columns of (

Op

−Np

)
as elements of Syzp(Ijℓ+1) has degree at least deg(fjℓ+1)+djℓ+1+p−1 ≥
ℓ+ p. So, it is clear that

(Syzp(Ijℓ+1))≤ℓ+p−1
∼= (Syzp(Ijℓ))≤ℓ+p−1.

Therefore, (Syzp(Ijℓ+1))<ℓ+p−1>
∼= (Syzp(Ijℓ))<ℓ+p−1>. Continuing in

this way, we conclude that

(Syzp(Ijℓ))<ℓ+p−1>
∼= (Syzp(I))<ℓ+p−1>.

�

For a graded ideal I, assume that Syz1(I) is minimally generated in
the degrees i1 < · · · < iℓ and for each 1 ≤ r ≤ ℓ, let Nr,I = (Syz1(I)){r}.

Lemma 3.5. If the minimal free resolution of R/I is computed by
iterated mapping cone, then for each 1 ≤ r ≤ ℓ, we have:

(Nr,I)<ir>
∼= (Nr,Ijir

)<ir>.
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Proof. Note that by Lemma 2.1, for each r ≥ 2, we have

(Nr,I)<ir>
∼=

((N1,I)<i1> + · · ·+ (N1,I)<ir>)/((N1,I)<i1> + · · ·+ (N1,I)<ir−1>),

and (Nr,Ijir
)<ir> is isomorphic to

((N1,Ijir
)<i1>+ · · ·+(N1,Ijir

)<ir>)/((N1,Ijir
)<i1>+ · · ·+(N1,Ijir

)<ir−1>).

Now, by Lemma 3.4 it is clear that for each s ≤ r, we have

(N1,I)<is> = (Syz1(I))<is>

∼= (Syz1(Ijis ))<is>
∼= (Syz1(Ijir ))<is>

= (N1,Ijir
)<is>.

So, the result follows. �

4. Ideals with (d1, . . . , dm)-linear quotients

Definition 4.1. Let I be a graded ideal, {f1, . . . , fm} be a homo-
geneous system of generators of I and (d1, . . . , dm) be an m-tuple
of positive integers with d1 = 1. We say that I has (d1, . . . , dm)-
linear quotients with respect to the elements f1, . . . , fm if the ideal
(f1, . . . , fj−1) : fj has dj-linear resolution for all j = 2, . . . ,m. If
d2 = · · · = dm = d, then we simply say that I has d-linear quotients
with respect to the elements f1, . . . , fm.

Notice that this property depends on the order of the generators.
Any order of the generators for which we have (d1, . . . , dm)-linear quo-
tients will be called an admissible order of generators.

An admissible order of generators, say f1, . . . , fm, is called degree
increasing if deg(f1) + d1 ≤ · · · ≤ deg(fm) + dm.

In this section, we study the class of ideals with (d1, . . . , dm)-linear
quotients and the particular case of ideals with 2-linear quotients. In
the following, we assume that {f1, . . . , fm} is a homogeneous system
of generators for the graded ideal I and Ij = (f1, . . . , fj) for all j =
1, . . . ,m.

Theorem 4.2. If I has 2-linear quotients with respect to the elements
f1, . . . , fm and deg(f1) ≤ · · · ≤ deg(fm), then for each i ≥ deg(f1), we
have

reg(I<i>) =

{
i+ 1 if i ∈ {deg(fi); 1 ≤ i ≤ m} and m > 1;
i otherwise.

Proof. We prove the assertion by induction on m. For m = 1, it is
obvious that the result is true. Assume that the result is true for
m ≥ 1, I is a graded ideal which has 2-linear quotients with respect
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to f1, . . . , fm+1 and deg(f1) ≤ · · · ≤ deg(fm+1). Let J = (f1, . . . , fm)
and j = deg(fm+1). Then, I = J + (fm+1). For each i < j, since
I<i> = J<i>, by induction hypothesis the result is true.

Note that I<j> = J<j> +(fm+1). By hypothesis, J : fm+1 is an ideal
with 2-linear resolution. So, it is generated by elements of degree 2.
We will show that

J<j> : fm+1 = J : fm+1.

To see it, we prove that each homogeneous generator of degree 2 of
J : fm+1 belongs to J<j> : fm+1. Let g be such a generator. So,
gfm+1 ∈ J<ℓ> where ℓ = deg(g) + deg(fm+1) > j. Since J is generated
by elements of degrees at most j, J<ℓ> = mℓ−jJ<j>. So, gfm+1 ∈ J<j>

and the conclusion follows.
Now, consider the following short exact sequence

0 → R/(J : fm+1)(−j) → R/J<j> → R/I<j> → 0.

By hypothesis, reg(R/(J : fm+1)(−j)) = j + 1 and

reg(R/J<j>) = reg(J<j>)− 1 =

{
j, deg(fm) = j and m > 1;
j − 1, otherwise.

By applying the reg formula (see [9, Corollary 18.7]) to the above short
exact sequence, we have

reg(I<j>) = reg(R/I<j>) + 1 = j + 1.

So, the assertion follows for i = j.
If i = j + 1, consider the following short exact sequence

0 → I<j+1> → I<j> → I<j>/I<j+1> → 0.

Since I<j+1> = mI<j>,

I<j>/I<j+1> =
⊕

k(−j).

So, reg(I<j>/I<j+1>) = j. Again, by applying the reg formula we have
reg(I<j+1>) = j + 1.

Assume that i > j+1. Since I is generated by elements of degrees at
most j, I<i> = mi−j+1I<j+1> and by Lemma 2.2, we have reg(I<i>) =
i. �

Next, we present some examples of ideals which satisfies Theorem
4.2.

Example 4.3. Let

I = (x21x2, x2x
2
3, x1x3x4, x

2
2x

2
4) ⊂ k[x1, x2, x3, x4].

Then I has 2-linear quotients with respect to x21x2, x2x
2
3, x1x3x4, x

2
2x

2
4

and satisfies Theorem 4.2.
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Example 4.4. Let

I = (x1x2x5, x2x3x6, x1x3x7, x1x4x6, x2x4x7, x3x4x5) ⊂ k[x1, . . . , x7].

Then I has 2-linear quotients with respect to

x1x2x5, x2x3x6, x1x3x7, x1x4x6, x2x4x7, x3x4x5

and satisfies Theorem 4.2.

In the next two examples, we have ideals with 2-linear quotients but
the given admissible order of the generators is not degree increasing.

Example 4.5. Let

I = (x1x2x5x6, x1x2x3, x3x4, x2x5x7) ⊂ k[x1, . . . , x7].

Then I has 2-linear quotients with respect to

x1x2x5x6, x1x2x3, x3x4, x2x5x7.

But this ordering of generators is not degree increasing. If we reorder
the generators as x3x4, x1x2x3, x2x5x7, x1x2x5x6 then we have a degree
increasing admissible order for (1, 1, 2, 1)-linear quotients property.

Example 4.6. Let

I = (x1x2x3x7, x1x2x5x6, x4x5x6) ⊂ k[x1, . . . , x7].

Then I has 2-linear quotients with respect to

x1x2x3x7, x1x2x5x6, x4x5x6.

This ordering of generators is not degree increasing and there is no de-
gree increasing admissible order of generators for having some (1, d1, d2)-
linear quotients property.

The above example shows that if a monomial ideal I has (d1, . . . , dm)-
linear quotients, then in general we can not conclude that G(I) has a
degree increasing admissible order. This is an important difference with
the case of monomial ideals with linear quotients.

Theorem 4.7. If I has (d1, . . . , dm)-linear quotients with respect to
f1, . . . , fm and deg(f1) + d1 ≤ · · · ≤ deg(fm) + dm, then the minimal
free resolution of R/I is given by the iterated mapping cone.

Moreover,

• ∀i ≥ 2 and ∀j /∈ {deg(fℓ)+dℓ+i−2; 1 ≤ ℓ ≤ m}, βi,j(R/I) = 0.
• reg(R/I) = deg(fm) + dm − 2.
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Proof. Let t ≥ 1 and assume that the minimal free resolution of R/It is
already known by the iterated mapping cone (for the case t = 1 we just
consider the obvious minimal free resolution of R/I1). We can easily
see that It is minimally generated by f1, . . . , ft and for each i ≥ 2 and
j /∈ {deg(fℓ) + dℓ + i − 2; 1 ≤ ℓ ≤ t}, βi,j(R/It) = 0. Since, by the
assumption, deg(f1) + d1 ≤ · · · ≤ deg(fm) + dm, for each i ≥ 1,

max{j; βi,j(R/It) ̸= 0} ≤ deg(ft) + dt + i− 2.

On the other hand, since Lt+1 = (f1, . . . , ft) : ft+1 has dt+1-linear
resolution, for each 1 ≤ i ≤ pd(R/Lt+1), we have

min{j; βi,j(R/Lt+1) ̸= 0} = dt+1 + i− 1.

It is clear that dt+1 + i − 1 > deg(ft) + dt + i − 2 − deg(ft+1). So,
Equation (3.1) holds and by Theorem 3.1, the mapping cone arising
from the short exact sequence

0 → R/Lt+1(− deg(ft+1)) → R/It → R/It+1 → 0,

is the minimal free resolution of R/It+1 and the conclusion follows. �

Example 4.8. Let I = (x1x2, x2x3, x4x5, x1x3x4) ⊂ k[x1, x2, x3, x4].
Then I has (1, 1, 2, 1)-linear quotients and I satisfies in Theorem 4.7.

In the following, we show that if I has (d1, . . . , dm)-linear quotients
with respect to f1, . . . , fm and deg(f1)+d1 ≤ · · · ≤ deg(fm)+dm, then
Syz1(I) is a componentwise linear module.

Theorem 4.9. If I has (d1, . . . , dm)-linear quotients with respect to
f1, . . . , fm and deg(f1) + d1 ≤ · · · ≤ deg(fm) + dm, then Syz1(I) is a
componentwise linear module.

Proof. Suppose that Syz1(I) is minimally generated in degrees i1 <
· · · < iℓ. For each 1 ≤ t ≤ ℓ, let

jit = max{i; deg(fi) + di ≤ it}, Ijit = (f1, . . . , fjit )

and

Nr,I = (Syz1(I)){r}, Nr,Ijit
= (Syz1(Ijit ){r}.

By induction on r, we show that for each 1 ≤ r ≤ ℓ the module Nr,I

(resp. Nr,Ijit
for each t ≥ r) has the following properties:

(1) βi,j(Nr,I) = 0 ∀j ̸= ir + i, · · · , iℓ + i (resp. βi,j(Nr, Ijit ) =
0 ∀j ̸= ir + i, · · · , it + i).

(2) (Nr,I)<ir> has ir-linear resolution (resp. (Nr,Ijit
)<ir> has ir-

linear resolution).



IDEALS WITH (d1, . . . , dm)-LINEAR QUOTIENTS 41

If r = 1, then N1,I = Syz1(I) (resp., N1,Ijit
= Syz1(Ijit ) for each

t ≥ 1). Since by Theorem 4.7, the minimal free resolution of R/I
(resp., R/Ijit ) is given by the iterated mapping cone, it is clear that
βi,j(N1,I) = 0 for each j ̸= i1 + i, · · · , iℓ + i (resp., βi,j(N1,Ijit

) = 0 for

each j ̸= i1 + i, · · · , it + i). So (1) follows for r = 1.
By Lemma 3.5, (N1,I)<i1>

∼= (N1,Iji1
)<i1>

∼= (N1,Ijit
)<i1> for each

t ≥ 1. Moreover, the ideal Iji1 is generated by f1, . . . , fji1 . By Theorem
4.7, the minimal free resolution of R/Iji1 is computed by the iterated
mapping cone and we have i1 = deg(f1) + d1 = · · · = deg(fji1 ) + dji1 .
So, again by Theorem 4.7, Syz1(Iji1 ) is generated in degree i1 and has
i1-linear resolution. So (2) follows for r = 1.

Now, assume that (1), (2) is true for Nr−1,I (resp., Nr−1,Ijit
for each

t ≥ r − 1) where 1 ≤ r − 1 < ℓ. We prove that Nr,I (resp., Nr,Ijit
for

each t ≥ r) satisfies (1), (2).
By definition,

Nr,I = Nr−1,I/(Nr−1,I)<ir−1> (resp. Nr,Ijit
= Nr−1,Ijit

/(Nr−1,Ijit
)<ir−1>).

By the induction hypothesis, (Nr−1,I)<ir−1> (resp., (Nr−1,Ijit
)<ir−1> )

has ir−1-linear resolution and βi,j(Nr−1,I) = 0 ∀j ̸= ir−1 + i, · · · , iℓ + i
(resp., βi,j(Nr−1,Ijit

) = 0 ∀j ̸= ir−1 + i, · · · , it + i).

Since (Nr−1,I)<ir−1> (resp., (Nr−1,Ijit
)<ir−1> ) has ir−1-linear resolu-

tion, by Lemma 2.6, it is clear that βi,j(Nr,I) = 0 ∀j ̸= ir+ i, . . . , iℓ+ i
(resp., βi,j(Nr,Ijit

) = 0 ∀j ̸= ir + i, . . . , it + i). So (1) follows.

Now, by Lemma 3.5,

(Nr,I)<ir>
∼= (Nr,Ijir

)<ir>

∼= ((Nr−1,Ijir
)/(Nr−1,Ijir

)<ir−1>)<ir>

∼= (Nr,Ijit
)<ir>,

where by the induction hypothesis, (Nr−1,Ijir
)<ir−1> has ir−1-linear res-

olution and βi,j(Nr−1,Iir
) = 0, for each j ̸= i + ir−1, i + ir. So, by

Lemma 2.6, (Nr−1,Ijir
)/(Nr−1,Ijir

)<ir−1> is generated in degree ir and

has ir-linear resolution. This means that

(Nr,I)<ir>
∼= (Nr,Ijit

)<ir>
∼= Nr−1,Ijir

/(Nr−1,Ijir
)<ir−1>

has ir-linear resolutio. So (2) follows for r.
Now, since (2) holds for each 1 ≤ r ≤ ℓ, by Corollary 2.4, Syz1(I) is

a componentwise linear module.
�
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-خطی (d١, . . . , dm) کسرهای با ایده آل های

شریفان لیلا
سبزوار ایران، سبزواری، حکیم دانشگاه کامپیوتر علوم و ریاضی دانشکده

کلاس از توسیعی عنوان به را ,d١)-خطی . . . , dm) کسرهای با ایده آل های کلاس مقاله، این در
مینیمال آزاد تحلیل عددی پایاهای مناسبی شرایط تحت می کنیم. معرفی خطی کسرهای با ایده آل های
مدول اولین که می دهیم نشان ویژه به می کنیم. کنترل را ,d١)-خطی . . . , dm) کسرهای با ایده آل های

است. خطی مولفه به مولفه مدول یک آن ها جی زی سی

عدد خطی، مولفه به مولفه مدول ، ,d١)-خطی . . . , dm) کسرهای نگارنده، مخروط کلیدی: کلمات
نظم.
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