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ON MAXIMAL IDEALS OF R∞L

A.A. ESTAJI∗ AND A. MAHMOUDI DARGHADAM

Abstract. Let L be a completely regular frame and RL be the
ring of real-valued continuous functions on L. We consider the set

R∞L = {φ ∈ RL :↑ φ(
−1

n
,
1

n
) is a compact frame for any n ∈ N}.

Suppose that C∞(X) is the family of all functions f ∈ C(X) for

which the set {x ∈ X : |f(x)| ≥ 1

n
} is compact, for every n ∈ N.

Kohls has shown that C∞(X) is precisely the intersection of all
the free maximal ideals of C∗(X). The aim of this paper is to
extend this result to the real continuous functions on a frame and
hence we show that R∞L is precisely the intersection of all the
free maximal ideals of R∗L. This result is used to characterize the
maximal ideals in R∞L.

1. Introduction

We denote by C(X) (C∗(X)) the ring of all (bounded) real-valued
continuous functions on a space X which is a nonempty completely
regular Hausdorff space. C∞(X), the subring of all functions C(X)
which vanish at infinity, was introduced by Kohls in [16] (also, see
[2, 1, 3, 18, 20] for more details). He shows that:

Proposition 1.1. [16, Lemma 3.2] The ring C∞(X) is the intersection
of the free maximal ideals of C∗(X).

Azarpanah and Soundararajan in [4], show that C∞(X) is an ideal
in C∗(X) but not in C(X), see also [16] and 7D in [14]. In fact, C∞(X)
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is the subring of C(X) and topological spaces X for which C∞(X) is
the ideal of C(X) are characterized in [4].

R∞L, the family of all functions f ∈ RL for which ↑ φ(−1

n
,
1

n
) is

compact for each n ∈ N, was introduced by Dube in [6].
In this paper, we are trying to show that R∞L is a subring of RL

and an ideal of R∗L (see Propositions 3.4 and 3.5) and it is not an
ideal of RL (see Example 3.6). Also, we prove that if for every a ∈ L,
↓ a is a locally compact frame implies R∗(↓ a) = R(↓ a), then R∞L
is an ideal of RL (see Proposition 3.9). In Section 4, we prove that
for every completely regular frame L, it is a compact frame if and only
if RL = R∗L = R∞L (see Proposition 4.4). In Section 5, we show
that the ring R∞L is the intersection of all the free maximal ideals
in R∗L (see Proposition 5.7). In the last section, we study maximal
ideals in the ring R∞L and we show that if L is a completely regular
frame, then every maximal ideal of R∞L is strongly fixed ideal (see
Proposition 6.6). In fact, M is a maximal ideal of R∞L if and only if
there exists p ∈ pt(L) such that

(1) M =M∗
p ∩R∞L, and

(2) p ∈↑ φ(−1

n
,
1

n
), for some φ ∈ R∞L and n ∈ N.

2. Preliminaries

Regarding the frame of reals L(R) and the f -ring RL of continuous
real-valued functions on frame L, we use the notations of [5]. The
bounded part, in the f -ring sense, of RL is denoted by R∗L and is
characterized by:

φ ∈ R∗L⇔ φ(p, q) = 1 for some p, q ∈ Q.
An element a of a frame L is said to be rather below an element b,

written a ≺ b, provided that a∗ ∨ b = ⊤. Also, a is completely below
b, written a ≺≺ b, if there are elements (cq) indexed by the rational
numbers Q ∩ [0, 1] such that c0 = a, c1 = b, and cp ≺ cq for p < q. A
frame L is said to be regular if a =

∨
{x ∈ L : x ≺ a} for each a ∈ L,

and completely regular if a =
∨
{x ∈ L : x ≺≺ a} for each a ∈ L.

An element p of L is point (or prime) whenever p < ⊤ and a∧ b ≤ p
implies that a ≤ p or b ≤ p. We denote the set of all points of L by
pt(L) or ΣL.

An ideal J of L is completely regular, if for each x ∈ J there exists
y ∈ J such that x ≺≺ y. The Stone-Čech compactification of L is the
frame βL consisting of completely regular ideals of L together with the
dense onto frame homomorphism jL : βL→ L given by join. We denote
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the right adjoint of jL by rL, and recall that rL(a) = {x ∈ L : x ≺≺ a},
for all a ∈ L.

Let L be a frame, a ∈ L and α ∈ RL. The sets {r ∈ Q : α(−, r) ≤
a} and {s ∈ Q : α(s,−) ≤ a}, are denoted by L(a, α) and U(a, α)
respectively. For a ̸= ⊤, it is obvious that r ≤ s, for each r ∈ L(a, α)
and s ∈ U(a, α). In fact, we have:

Proposition 2.1. [8] Let L be a frame and p be a prime element of L.
There exists a unique map p̃ : RL −→ R such that r ≤ p̃(α) ≤ s, for
each α ∈ RL, r ∈ L(p, α) and s ∈ U(p, α).

Proposition 2.2. [8] If p is a prime element of a frame L, then p̃ :
RL −→ R is an onto f -ring homomorphism.

Let α ∈ RL. We define α[p] = p̃(α) for all p ∈ ΣL, and define

Z(α) = {p ∈ ΣL : α[p] = 0}.
This set is said to be a zero-set in L (see [11]). For A ⊆ RL, we
write Z[A] to designate the family of zero-sets {Z(α) : α ∈ A}. The
family Z[RL] of all zero-sets in L will also be denoted, for simplicity,
by Z[L] (also, see [10, 12, 15] for more details on the zero-sets and their
application in RL). For undefined terms and notations, the readers are
referred to [9, 17].

3. Topics in R∞L is an ideal of RL and an ideal of R∗L

The following lemma is proved in [6]. It will be used in this paper.

Lemma 3.1. For every a, b ∈ L, if ↑ a and ↑ b are compact, then
↑ (a ∧ b) is compact.

Remark 3.2. For every a, b ∈ L, if ↑ a is compact and a ≤ b, then ↑ b
is compact.

Remark 3.3. Consider φ ∈ R∞L and 0 < ε ∈ Q. Then, there exists

n ∈ N such that
1

n
≤ ε. Since φ(

−1

n
,
1

n
) ≤ φ(−ε, ε), we can conclude

from the Remark 3.2 that ↑ φ(−ε, ε) is compact. Therefore, for every
φ ∈ RL, φ ∈ R∞L if and only if for every 0 < ε ∈ Q, ↑ φ(−ε, ε) is
compact.

For every p, q, u, v ∈ Q, we put

< p, q >:= {r ∈ Q : p < r < q}
and

< p, q >< u, v >:= {rs : p < r < q, u < s < v}.
In this paper, a subring of a commutative ring with identity does not

imply the identity must belong to the subring.
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Proposition 3.4. R∞L is a subring of RL.

Proof. Consider φ, ψ ∈ R∞L and n ∈ N. Since ↑ φ(
−1

2n
,
1

2n
) and

↑ ψ(−1

2n
,
1

2n
) are compact frames, we can conclude from the Lemma

3.1 that ↑ (φ(
−1

2n
,
1

2n
)∧ψ(−1

2n
,
1

2n
)) is a compact frame. The fact that

φ(
−1

2n
,
1

2n
) ∧ ψ(−1

2n
,
1

2n
) ≤ (φ+ ψ)(

−1

n
,
1

n
)

enables us to conclude at once that ↑ (φ + ψ)(
−1

n
,
1

n
) is a compact

frame, by Remark 3.2. Therefore, φ+ ψ ∈ R∞L.

Let m ∈ N such that
1

m
≤ 1√

n
. Since ↑ φ(−1

m
,
1

m
) and ↑ ψ(−1

m
,
1

m
)

are compact and

φ(
−1

m
,
1

m
) ∧ ψ(−1

m
,
1

m
) ≤ (φψ)(

−1

n
,
1

n
),

we can conclude from the Lemma 3.1 and the Remark 3.2 that ↑
(φψ)(

−1

n
,
1

n
) is compact. Hence, φψ ∈ R∞L. �

Proposition 3.5. R∞L is an ideal of R∗L.

Proof. Consider φ ∈ R∞L and n ∈ N. Since for all m ∈ N,

φ (−m,m) ∈↑ φ(
−1

n
,
1

n
)

and
⊤ =

∨
m∈N

φ(−m,m),

we conclude that there are m1,m1, . . . ,mk ∈ N such that

⊤ =
∨

16i6k

φ(−mi,mi).

If m = Max{m1,m2, . . . ,mk} then φ(−m,m) = ⊤, that is φ ∈ R∗L.
Therefore, R∞L ⊆ R∗L.

Now, suppose that φ ∈ R∞L and ψ ∈ R∗L. It suffices to show
that φψ ∈ R∞L. There exists m ∈ N such that ψ(−m,m) = ⊤, by
hypothesis. Consider n ∈ N. Since

< − 1

mn
,

1

mn
>< −m,m >⊆< − 1

n
,
1

n
>,

we have

φ(− 1

mn
,

1

mn
) = φ(− 1

mn
,

1

mn
) ∧ ψ(−m,m) ≤ (φψ)(− 1

n
,
1

n
).
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Since ↑ φ(− 1

mn
,

1

mn
) is a compact frame, we can conclude from the

Remark 3.2 that ↑ (φψ)(− 1

n
,
1

n
) is a compact frame, hence φψ ∈ R∞L.

�

The following example shows that R∞L is not an ideal of RL in
general.

Example 3.6. We consider the function α : LR → P(N) defined by

α(p, q) = { n ∈ N : p <
1

n
< q},

for every p, q ∈ Q. We claim that α is a frame map. To prove this, we
check the relations (R1)-(R4) to identities in P(N) (see [5]).

(R1). For every p, q, r, s ∈ Q, we have

α(p, q) ∧ α(r, s) = { n ∈ N : p <
1

n
< q} ∩ { n ∈ N : r <

1

n
< s}

= { n ∈ N : p ∨ r < 1

n
< q ∧ s}

= α(p ∨ r, q ∧ s)
= α((p, q) ∧ (r, s)).

(R2). For every p, q, r, s ∈ Q with p ≤ r < q ≤ s, we have

α(p, q) ∨ α(r, s) = {n ∈ N : p <
1

n
< q} ∪ {n ∈ N : r <

1

n
< s}

= {n ∈ N : p ∧ r < 1

n
< q ∨ s}

= {n ∈ N : p <
1

n
< s}

= α(p, s).

(R3). For every p, q ∈ Q, we have∨
p<r<s<q α(r, s) =

∪
p<r<s<q{n ∈ N : r <

1

n
< s}

= { n ∈ N : p <
1

n
< q}

= α(p, q).

(R4). It is clear that

N = ⊤P(N) = α(0, 2) ≤
∪

p,q∈Q

α(p, q) ≤ N,

then
∨

p,q∈Q α(p, q) = ⊤P(N). Therefore, α ∈ R(P(N)).
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Since, for any n ∈ N,

α(
−1

n
,
1

n
) = {m ∈ N : n < m} = {n+ 1, n+ 2, n+ 3, ...},

we infer that ↑ α(−1
n
, 1
n
) is a finite frame and hence it is a compact

frame. Hence, α ∈ R∞(P(N)). Since

↑ 1(
−1

n
,
1

n
) =↑ ⊥ = P(N)

is not a compact frame, we conclude that 1 ̸∈ R∞(P(N)). Since

coz(α) = α(−, 0) ∨ α(0,−) = N = ⊤P(N),

we conclude that

(1) α is unit and α ∈ R∞(P(N)).
(2) R∞(P(N)) $ R(P(N)).
(3) R∞(P(N)) is not an ideal of R(P(N)).

Let L be a frame. We say that a is way below b (or relatively compact
with respect to b) and write a≪ b if for any S ⊆ L with b ≤

∨
S, there

exists a finite set F ⊆ S such that a ≤
∨
F .

A frame L is called continuous (or locally compact) whenever, for
each a ∈ L, a =

∨
x≪a

x.

Lemma 3.7. For every completely regular frame L and φ ∈ R∞L,
↓ coz(φ) is a locally compact frame.

Proof. Consider a ∈↓ coz(φ). Let x ≺ a ∧ φ
(
(−,− 1

n
)

∨( 1
n
,−)

)
and S ⊆ L with a ∧ φ

(
(−,− 1

n
) ∨ ( 1

n
,−)

)
≤
∨
S. Then

φ(− 1

n
,
1

n
) ≤

(
φ
(
(−,− 1

n
) ∨ ( 1

n
,−)

))∗
≤ a∗ ∨

(
φ
(
(−,− 1

n
) ∨ ( 1

n
,−)

))∗
=

(
a ∧ φ

(
(−,− 1

n
) ∨ ( 1

n
,−)

))∗
≤ x∗.

Using φ ∈ R∞L, we conclude from Remark 3.2 that ↑ x∗ is a compact
frame.

Since

⊤ = x∗ ∨
(
a ∧ φ

(
(−,− 1

n
) ∨ (

1

n
,−)

))
≤ x∗ ∨

∨
S,

we infer that there are s1, . . . sk ∈ S such that ⊤ =
∨k

i=1(x
∗ ∨ si),

which implies that x ≤
∨k

i=1 si. Hence, if x ≺ a∧φ
(
(−,− 1

n
)∨ ( 1

n
,−)

)
,
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then x ≪ a ∧ φ
(
(−,− 1

n
) ∨ ( 1

n
,−)

)
, for every x ∈ L. Therefore, the

complete regularity of L insures that

a = a ∧ coz(φ)
=

∨
n∈N

(
a ∧ φ

(
(−,− 1

n
) ∨ ( 1

n
,−)

))
=

∨
n∈N

∨
{x ∈ L : x ≺ a ∧ φ

(
(−,− 1

n
) ∨ ( 1

n
,−)

)
}

≤
∨

n∈N
∨
{x ∈ L : x≪ a ∧ φ

(
(−,− 1

n
) ∨ ( 1

n
,−)

)
}

≤
∨

x∈L,
x≪a

x

≤ a,

and this completes the proof. �
Lemma 3.8. Let α ∈ RL and ρ3 : L(R) → L(R) by ρ3(p, q) = (p3, q3).
Then the following statements hold:

(1) ρ3 ∈ R(L(R)).
(2) ρ33 = idL(R).
(3) (α ◦ ρ3)3 = α.
(4) coz(α ◦ ρ3) = coz(α).
(5) If α ∈ R∞L, then α ◦ ρ3 ∈ R∞L.

Proof. By [13], to complete the proof it suffices to show that if α ∈
R∞L, then α ◦ ρ3 ∈ R∞L. Consider α ∈ R∞L. Since for every n ∈ N,
↑ α ◦ ρ3(− 1

n
, 1
n
) =↑ α(− 1

n3 ,
1
n3 ) is a compact frame, we conclude that

α ◦ ρ3 ∈ R∞L. �
Proposition 3.9. Let L be a completely regular frame and for every
a ∈ L, if ↓ a is a locally compact frame, then R∗(↓ a) = R(↓ a). Then
R∞L is an ideal of RL.

Proof. Consider α ∈ RL and β ∈ R∞L. We put β
1
3 = β ◦ ρ3. By

Lemma 3.8, we have αβ
1
3 ∈ RL, which implies that α : LR →↓ coz(β)

given by α(u) = αβ
1
3 (u) ∧ coz(β) is an element of R(↓ coz(β)). Since,

by Lemma 3.7, ↓ coz(β) is a locally compact frame, we conclude that
there exists n ∈ N such that

αβ
1
3

(
(−,−n) ∨ (n,−)

)
∧ coz(β) = α

(
(−,−n) ∨ (n,−)

)
= ⊥.

By

αβ
1
3

(
(−,−n) ∨ (n,−)

)
≤ coz(αβ

1
3 ) ≤ coz(β),

we infer that
αβ

1
3

(
(−,−n) ∨ (n,−)

)
= ⊥,

which follows that αβ
1
3 ∈ R∗L. Since, by Lemma 3.8, β

1
3 ∈ R∞L, we

conclude from Proposition 3.5 and Lemma 3.8 that αβ = αβ
1
3 (β

1
3 )2 ∈

R∞L and this completes the proof. �
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4. When is R∞L equal to RL?

In this section, we characterize frames L for which R∞L = RL. Let
I be an ideal in RL or R∗L. If

∨
{coz(φ) : φ ∈ I} < ⊤, we call I a

fixed ideal; if
∨
{coz(φ) : φ ∈ I} = ⊤, then I is a free ideal.

Lemma 4.1. If I is a free ideal in RL and a ∈ Coz(L) is a compact
element of Coz(L), then there exists φ ∈ I such that a = coz(φ).

Proof. Evidently

a = a ∧ ⊤ =
∨

{a ∧ coz(φ) : φ ∈ I},

it follows that there are φ1, . . . , φn ∈ I such that

a = a ∧
n∨

i=1

coz(φi) = a ∧ coz(φ2
1 + · · ·+ φ2

n).

Since Coz(I) is an ideal of Coz(L) and

a ≤ coz(φ2
1 + · · ·+ φ2

n) ∈ Coz(I)

we include that there exists φ ∈ I such that a = coz(φ). �
Corollary 4.2. The set

{a ∈ Coz(L) : a is a compact element of Coz(L)}
is a subset of ∩

{Coz(I) : I is a free ideal in RL }.

Proof. By Lemma 4.1, it is clear. �
The following proposition is proved by Dube in [6, Lemma 4.7], but

here, in the proof of this proposition, a different approach is used.

Proposition 4.3. For every completely regular frame L, the following
statements are equivalent:

(1) L is a compact frame;
(2) Every proper ideal I in RL is fixed;
(3) Every maximal ideal I in RL is fixed.

Proof. (1) ⇒ (2). Let I be a proper free ideal in RL, then by Lemma
4.1, there exists φ ∈ I such that ⊤ = coz(φ). It then follows that I
contents a unit element. Hence, I = RL and this is a contradiction.

(2) ⇒ (3). It is clear.
(3) ⇒ (1). Let {aλ}λ∈Λ ⊆ L such that ⊤ =

∨
λ∈Λ aλ. It is clear that

I = {φ ∈ RL : ∃Λ′ ⊆ Λ
(
|Λ′| <∞, coz(φ) ≤

∨
λ∈Λ′

aλ
)
}
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is an ideal of RL. If I ̸= RL, then there exists a maximal ideal M
such that I ⊆M . Since L is completely regular frame, we infer that

⊤ =
∨
λ∈Λ

aλ =
∨

Coz(I) ≤
∨

Coz(M),

i.e., ⊤ =
∨
Coz(M), which is a contradiction. Now, we can assume

that I = RL. Then there exists Λ′ ⊆ Λ such that |Λ′| <∞ and

⊤ = coz(1) =
∨
λ∈Λ′

aλ,

this completes the proof of the proposition. �
Proposition 4.4. For every completely regular frame L, then L is a
compact frame if and only if RL = R∗L = R∞L.

Proof. Necessity.

Consider φ ∈ RL, n ∈ N and a = φ(− 1

n
,
1

n
). Since L =↑ ⊥ is a

compact frame and ⊥ ≤ a, we can conclude from the Remark 3.2 that
↑ a is a compact frame, i.e., φ ∈ R∞L.

Sufficiency. Since 1 ∈ R∞L, we infer that

L =↑ ⊥ =↑ 1(−1, 1)

is a compact frame. �

5. Intersection of free maximal ideals

In [16, Lemma 3.2], the intersection of the free maximal ideals in
C∗(X) was characterized as the set of all functions that vanish at in-
finity (that is all functions f ∈ C(X) such that {x : |f(x)| ≥ 1

n
} is

compact for all n ∈ N). In this section, we show that this is also true
for R∗(L).

Proposition 5.1. If I is a proper free ideal in RL, then

φ(− 1

n
,
1

n
) ̸∈ Coz(I),

for every φ ∈ R∞L and n ∈ N.
Proof. Consider φ ∈ RL and n ∈ N. Then

⊤ =
∨

I =
∨

{coz(α) ∨ φ(− 1

n
,
1

n
) : α ∈ I}

and since ↑ φ(− 1
n
, 1
n
) is compact, we conclude that there are α1, . . . , αk ∈

I such that

⊤ =
( k∨
i=1

coz(αi)
)
∨ φ(− 1

n
,
1

n
) = coz

( k∑
i=1

α2
i

)
∨ φ(− 1

n
,
1

n
)
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and
∑k

i=1 α
2
i ∈ I. If φ(− 1

n
, 1
n
) ∈ Coz(I), then ⊤ ∈ Coz(I), i.e., I =

RL, which is a contradiction. Hence, φ(− 1
n
, 1
n
) ̸∈ Coz(I). �

It is well known that tL : R(βL) → R∗L given by tL(α) = jLα is the
ring isomorphism. Also, we will denote φβ = t−1

L (φ), for every φ ∈ R∗L
(see [7]).

For each ⊤
βL

̸= I ∈ βL, the ideal M I of RL defined by

M I = {φ ∈ RL : rL(coz(φ)) ⊆ I}
and M∗I =M I ∩R∗L. Also,

M∗I = {φ ∈ R∗L : coz(φβ) ⊆ I}.
We need the following propositions which are proved in [7].

Proposition 5.2. [7, Proposition 3.8] Maximal ideals of R∗L are pre-
cisely the ideals M∗I , for I ∈ pt(βL). They are distinct for distinct
I.

Proposition 5.3. [7, Proposition 3.9] For every I ∈ pt(βL), M∗I is
fixed maximal ideal in R∗L if and only if

∨
I < ⊤.

The following lemma plays an important role in this note.

Lemma 5.4. [10, Lemma 4.2] For every p ∈ pt(L) and φ ∈ RL,
φ[p] = 0 if and only if coz(φ) ≤ p.

Remark 5.5. For every frame L, we put

L⋆ = {I ∈ pt(βL) :
∨

I = ⊤}.

Also, for every A ⊆ pt(L) and φ ∈ RL, φ[A] = {φ[p] : p ∈ A}.

Proposition 5.6. For every φ ∈ R∗L, the following statements are
equivalent:

(1) φ ∈
∩

I∈L⋆ M∗I ;
(2) φβ[L⋆] = {0};
(3) For every 0 < ε ∈ Q and I ∈ L⋆, |φβ[I]| < ε;
(4) For every n ∈ N,

{I ∈ pt(βL)| |φβ[I]| ≥ 1

n
} = {I ∈ pt(βL)− L⋆| |φβ[I]| ≥ 1

n
}.

Proof. (1) ⇔ (2). By Lemma 5.4, we have

φ ∈
∩

I∈L⋆ M∗I ⇔ ∀I ∈ L⋆(coz(φβ) ⊆ I)

⇔ ∀I ∈ L⋆(φβ[I] = 0)

⇔ φβ[L⋆] = {0}.
The rest is straightforward. �
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Theorem 5.7. The ring R∞L is the intersection of all the free maxi-
mal ideals in R∗L.

Proof. Let φ ∈ R∞L and I ∈ L⋆ such that φ ̸∈M∗I . Then∨
n∈N

φβ((−,− 1

n
) ∨ (

1

n
,−)) = coz(φβ) ̸⊆ I.

So, there exists n0 ∈ N such that

φβ((−,− 1

n0

) ∨ (
1

n0

,−)) ̸⊆ I,

which implies that

φβ((−,− 1

n0

) ∨ (
1

n0

,−)) ∨ I = ⊤
βL

and there exists a ∈ I and

x ∈ φβ((−,− 1

n0

) ∨ (
1

n0

,−))

such that x ∨ a = ⊤. Since

x ≤
∨

φβ((−,− 1

n0

) ∨ (
1

n0

,−)) = φ((−,− 1

n0

) ∨ (
1

n0

,−)),

we conclude that

φ((−,− 1

n0

) ∨ (
1

n0

,−)) ∨ a = ⊤,

which implies

φ(− 1

n0

,
1

n0

) ≤ (φ((−,− 1

n0

) ∨ (
1

n0

,−)))∗ ≤ a.

It is clear that

A = {x ∨ a : x ∈ I } ⊆ ↑φ(− 1

n0

,
1

n0

)

and
∨
A = ⊤. Since ↑φ(− 1

n0
, 1
n0
) is compact frame, we conclude that

there exist x1, . . . , xm ∈ I such that

⊤ =
m∨
i=1

(xi ∨ a) ∈ I,

which is a contradiction.
Conversely, let φ ∈

∩
I∈L⋆ M∗I , n ∈ N and

{ aλ }λ∈Λ ⊆ ↑φ(− 1

n
,
1

n
)
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such that
∨

λ∈Λ aλ = ⊤. Suppose that for every Λ′ ⊆ Λ, if Λ′ is finite set,
then

∨
λ∈Λ′ aλ ̸= ⊤. Hence, there exists I ∈ L⋆ such that { aλ }λ∈Λ ⊆ I.

By the statement (4) of Proposition 5.6, we have φβ[I] = 0, so that
coz(φβ) ⊆ I, by Lemma 5.4. Since

φ(− 1

n
,
1

n
) ≤ aλ ∈ I,

we conclude that ∨
φβ(− 1

n
,
1

n
) = φ(− 1

n
,
1

n
) ∈ I,

which follows that

φβ(− 1

n
,
1

n
) ⊆ I.

Therefore,

L = φβ(− 1

n
,
1

n
) ∨ coz(φβ) ⊆ I,

i.e., L = I ∈ L⋆, which is a contradiction. �

6. Maximal ideals of R∞L

We turn our attention now to the fixed maximal ideals in the rings
R∞L.

Lemma 6.1. Let φ ∈ RL, p ∈ pt(L) and n ∈ N, then φ(
−1

n
,
1

n
) ≤ p

if and only if |φ[p]| ≥ 1

n
.

Proof. Necessity.

Let φ(
−1

n
,
1

n
) ≤ p and |φ[p]| < 1

n
. If t = φ[p], then, by Proposition

2.1, ∨
{φ(−, r) ∨ φ(s,−) : r, s ∈ Q, r < t < s} ≤ p,

it follows that

⊤ = φ(
−1

n
,
1

n
) ∨
∨

{φ(−, r)} ∨ φ(s,−) : r, s ∈ Q, r < t < s} ≤ p,

which is a contradiction.

Sufficiency. Let |φ[p]| ≥ 1

n
. Then, by Proposition 2.1,

φ(
−1

n
,
1

n
) ≤

∨
{φ(−, r) ∨ φ(s,−)|r, s ∈ Q, r < φ[p] < s} ≤ p.

This completes the proof of the lemma. �
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Proposition 6.2. For every A ⊆ pt(L), then φ[A] = 0 for every
φ ∈ R∞L, if and only if for every φ ∈ R∞L and n ∈ N, if p ∈ A, then

p ̸∈↑ φ(−1

n
,
1

n
).

Proof. Necessity. Let φ ∈ R∞L, p ∈ A and n ∈ N. Suppose that

p ∈↑ φ(−1

n
,
1

n
). Then, by Lemma 6.1, |φ[p]| ≥ 1

n
. Hence, φ[p] ̸= 0,

which is a contradiction.

Sufficiency. Let φ ∈ R∞L and p ∈ A. By Lemma 6.1, |φ[p]| < 1

n
,

for every n ∈ N. Hence φ[p] = 0. �
For each a ∈ L with a < ⊤, define the subset Ma of RL by

Ma = {φ ∈ RL : coz(φ) ≤ a}
andM∗

a =Ma∩R∗L. Clearly,Ma is an ideal, and, in fact,Ma =M rL(a).

Corollary 6.3. If p ∈ pt(L) then, R∞L ⊆M∗
p if and only if for every

φ ∈ R∞L and n ∈ N, p ̸∈↑ φ(−1

n
,
1

n
).

Proof. By Proposition 6.2, it is clear. �
For a proof of the following proposition, see [19, Corollary 3.6].

Proposition 6.4. Let A be a commutative algebra over the rational
numbers with unity. Let I be an ideal of A. Then an ideal D of I is a
maximal ideal of I if and only if D = M ∩ I for some maximal ideal
M in A, with I ̸⊆M .

An ideal I in a subalgebra A of RL is called strongly fixed ideal if∩
φ∈I Z(φ) ̸= ∅, otherwise, I is said to be strongly free ideal.

For a proof of the following proposition, see [7, Proposition 3.3] or
[10, Proposition 4.8, Corollary 4.9].

Proposition 6.5. The fixed maximal ideals of RL (R∗L) are precisely
the idealsMp (M

∗
p ) for p ∈ Pt(L). They are distinct for distinct points.

Proposition 6.6. If L is a completely regular frame, then every maxi-
mal ideal of R∞L is strongly fixed ideal. In fact, M is a maximal ideal
of R∞L if and only if there exists p ∈ pt(L) such that

(1) M =M∗
p ∩R∞L, and

(2) p ∈↑ φ(−1

n
,
1

n
), for some φ ∈ R∞L and n ∈ N.

Proof. Let M be a maximal ideal of R∞L, then by Propositions 5.2
and 6.4, there exists I ∈ pt(βL) such that M = M∗I ∩ R∞L, with
R∞L ̸⊆ M∗I . By Theorem 5.7, M∗I is a fixed maximal ideal of R∗L.
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Then, there exists p ∈ pt(L) such that M∗I =M∗
p , by Proposition 6.5.

Therefore, we have

(1) M =M∗
p ∩R∞L, and

(2) p ∈↑ φ(−1

n
,
1

n
), for some φ ∈ R∞L and n ∈ N, by Corollary

6.3.

Conversely, by Corollary 6.3 and Propositions 6.4 and 6.5, it is clear
that M is a maximal ideal of R∞L. �
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R∞L ماکسیمال ایده آل های

درقدم محمودی احمد و استاجی اکبر علی
سبزوار ایران، سبزواری، حکیم دانشگاه کامپیوتر علوم و ریاضی دانشکده

می دهیم قرار باشد. L قاب روی مقدار حقیقی پیوسته توابع حلقه RL و منظم کاملا قاب L کنید فرض

R∞L = {φ ∈ RL : باشد فشرده ↑ φ(−١
n
, ١
n
) ،n ∈ N هر برای }.

،n ∈ N هر برای که باشند قسمی به f ∈ C(X) عناصر تمام گردایه ی C∞(X) کنید فرض
ایده آل های تمام اشتراک با برابر C∞(X) که داد نشان کلز است. فشرده {x ∈ X : |f(x)| ≥ ١

n
}

مقدار حقیقی پیوسته توابع حلقه به را نتیجه این می خواهیم مقاله این در است. C∗(X) آزاد ماکسیمال
آزاد ماکسیمال ایده آل های تمام اشتراک با برابر دقیقاً R∞L می دهیم نشان و دهیم گسترش قاب روی

می کنیم. شناسایی را R∞L ماکسیمال ایده آل های نتیجه، این از استفاده با است. R∗L

مقدار. حقیقی پیوسته توابع حلقه ماکسیمال، ایده آل فشرده، قاب، کلیدی: کلمات

۴


