Journal of Algebraic Systems Vol. 6, No. 1, (2018), pp 43-57

ON MAXIMAL IDEALS OF $\mathcal{R}_{\infty}L$

A.A. ESTAJI* AND A. MAHMOUDI DARGHADAM

ABSTRACT. Let L be a completely regular frame and $\mathcal{R}L$ be the ring of real-valued continuous functions on L. We consider the set $\mathcal{R}_{\infty}L = \{\varphi \in \mathcal{R}L : \uparrow \varphi(\frac{-1}{n}, \frac{1}{n}) \text{ is a compact frame for any } n \in \mathbb{N}\}.$ Suppose that $C_{\infty}(X)$ is the family of all functions $f \in C(X)$ for which the set $\{x \in X : |f(x)| \ge \frac{1}{n}\}$ is compact, for every $n \in \mathbb{N}$. Kohls has shown that $C_{\infty}(X)$ is precisely the intersection of all the free maximal ideals of $C^*(X)$. The aim of this paper is to extend this result to the real continuous functions on a frame and hence we show that $\mathcal{R}_{\infty}L$ is precisely the intersection of all the free maximal ideals of \mathcal{R}^*L . This result is used to characterize the maximal ideals in $\mathcal{R}_{\infty}L$.

1. INTRODUCTION

We denote by C(X) $(C^*(X))$ the ring of all (bounded) real-valued continuous functions on a space X which is a nonempty completely regular Hausdorff space. $C_{\infty}(X)$, the subring of all functions C(X)which vanish at infinity, was introduced by Kohls in [16] (also, see [2, 1, 3, 18, 20] for more details). He shows that:

Proposition 1.1. [16, Lemma 3.2] The ring $C_{\infty}(X)$ is the intersection of the free maximal ideals of $C^*(X)$.

Azarpanah and Soundararajan in [4], show that $C_{\infty}(X)$ is an ideal in $C^*(X)$ but not in C(X), see also [16] and 7D in [14]. In fact, $C_{\infty}(X)$

MSC(2010): Primary: 06D22; Secondary: 06F25, 54C30

Keywords: Frame, Compact, Maximal ideal, Ring of real valued continuous functions. Received: 26 September 2017, Accepted: 12 January 2018.

^{*}Corresponding author.

is the subring of C(X) and topological spaces X for which $C_{\infty}(X)$ is the ideal of C(X) are characterized in [4].

 $\mathcal{R}_{\infty}L$, the family of all functions $f \in \mathcal{R}L$ for which $\uparrow \varphi(\frac{-1}{n}, \frac{1}{n})$ is compact for each $n \in \mathbb{N}$, was introduced by Dube in [6].

In this paper, we are trying to show that $\mathcal{R}_{\infty}L$ is a subring of $\mathcal{R}L$ and an ideal of \mathcal{R}^*L (see Propositions 3.4 and 3.5) and it is not an ideal of $\mathcal{R}L$ (see Example 3.6). Also, we prove that if for every $a \in L$, $\downarrow a$ is a locally compact frame implies $\mathcal{R}^*(\downarrow a) = \mathcal{R}(\downarrow a)$, then $\mathcal{R}_{\infty}L$ is an ideal of $\mathcal{R}L$ (see Proposition 3.9). In Section 4, we prove that for every completely regular frame L, it is a compact frame if and only if $\mathcal{R}L = \mathcal{R}^*L = \mathcal{R}_{\infty}L$ (see Proposition 4.4). In Section 5, we show that the ring $\mathcal{R}_{\infty}L$ is the intersection of all the free maximal ideals in \mathcal{R}^*L (see Proposition 5.7). In the last section, we study maximal ideals in the ring $\mathcal{R}_{\infty}L$ and we show that if L is a completely regular frame, then every maximal ideal of $\mathcal{R}_{\infty}L$ is strongly fixed ideal (see Proposition 6.6). In fact, M is a maximal ideal of $\mathcal{R}_{\infty}L$ if and only if there exists $p \in pt(L)$ such that

(1)
$$M = M_p^* \cap \mathcal{R}_\infty L$$
, and
(2) $p \in \uparrow \varphi(\frac{-1}{n}, \frac{1}{n})$, for some $\varphi \in \mathcal{R}_\infty L$ and $n \in \mathbb{N}$.

2. Preliminaries

Regarding the frame of reals $\mathcal{L}(\mathbb{R})$ and the *f*-ring $\mathcal{R}L$ of continuous real-valued functions on frame *L*, we use the notations of [5]. The bounded part, in the *f*-ring sense, of $\mathcal{R}L$ is denoted by \mathcal{R}^*L and is characterized by:

$$\varphi \in \mathcal{R}^*L \Leftrightarrow \varphi(p,q) = 1 \text{ for some } p,q \in \mathbb{Q}.$$

An element a of a frame L is said to be rather below an element b, written $a \prec b$, provided that $a^* \lor b = \top$. Also, a is completely below b, written $a \prec b$, if there are elements (c_q) indexed by the rational numbers $\mathbb{Q} \cap [0, 1]$ such that $c_0 = a$, $c_1 = b$, and $c_p \prec c_q$ for p < q. A frame L is said to be regular if $a = \bigvee \{x \in L : x \prec a\}$ for each $a \in L$, and completely regular if $a = \bigvee \{x \in L : x \prec a\}$ for each $a \in L$.

An element p of L is *point* (or *prime*) whenever $p < \top$ and $a \land b \leq p$ implies that $a \leq p$ or $b \leq p$. We denote the set of all points of L by pt(L) or ΣL .

An ideal J of L is completely regular, if for each $x \in J$ there exists $y \in J$ such that $x \prec y$. The Stone-Čech compactification of L is the frame βL consisting of completely regular ideals of L together with the dense onto frame homomorphism $j_L : \beta L \to L$ given by join. We denote

the right adjoint of j_L by r_L , and recall that $r_L(a) = \{x \in L : x \prec a\}$, for all $a \in L$.

Let *L* be a frame, $a \in L$ and $\alpha \in \mathcal{R}L$. The sets $\{r \in \mathbb{Q} : \alpha(-, r) \leq a\}$ and $\{s \in \mathbb{Q} : \alpha(s, -) \leq a\}$, are denoted by $L(a, \alpha)$ and $U(a, \alpha)$ respectively. For $a \neq \top$, it is obvious that $r \leq s$, for each $r \in L(a, \alpha)$ and $s \in U(a, \alpha)$. In fact, we have:

Proposition 2.1. [8] Let L be a frame and p be a prime element of L. There exists a unique map $\tilde{p} : \mathcal{R}L \longrightarrow \mathbb{R}$ such that $r \leq \tilde{p}(\alpha) \leq s$, for each $\alpha \in \mathcal{R}L$, $r \in L(p, \alpha)$ and $s \in U(p, \alpha)$.

Proposition 2.2. [8] If p is a prime element of a frame L, then \tilde{p} : $\mathcal{R}L \longrightarrow \mathbb{R}$ is an onto f-ring homomorphism.

Let $\alpha \in \mathcal{R}L$. We define $\alpha[p] = \tilde{p}(\alpha)$ for all $p \in \Sigma L$, and define

 $Z(\alpha) = \{ p \in \Sigma L : \alpha[p] = 0 \}.$

This set is said to be a zero-set in L (see [11]). For $A \subseteq \mathcal{R}L$, we write Z[A] to designate the family of zero-sets $\{Z(\alpha) : \alpha \in A\}$. The family $Z[\mathcal{R}L]$ of all zero-sets in L will also be denoted, for simplicity, by Z[L] (also, see [10, 12, 15] for more details on the zero-sets and their application in $\mathcal{R}L$). For undefined terms and notations, the readers are referred to [9, 17].

3. Topics in $\mathcal{R}_{\infty}L$ is an ideal of $\mathcal{R}L$ and an ideal of \mathcal{R}^*L

The following lemma is proved in [6]. It will be used in this paper.

Lemma 3.1. For every $a, b \in L$, if $\uparrow a$ and $\uparrow b$ are compact, then $\uparrow (a \land b)$ is compact.

Remark 3.2. For every $a, b \in L$, if $\uparrow a$ is compact and $a \leq b$, then $\uparrow b$ is compact.

Remark 3.3. Consider $\varphi \in \mathcal{R}_{\infty}L$ and $0 < \varepsilon \in \mathbb{Q}$. Then, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} \leq \varepsilon$. Since $\varphi(\frac{-1}{n}, \frac{1}{n}) \leq \varphi(-\varepsilon, \varepsilon)$, we can conclude from the Remark 3.2 that $\uparrow \varphi(-\varepsilon, \varepsilon)$ is compact. Therefore, for every $\varphi \in \mathcal{R}L$, $\varphi \in \mathcal{R}_{\infty}L$ if and only if for every $0 < \varepsilon \in \mathbb{Q}$, $\uparrow \varphi(-\varepsilon, \varepsilon)$ is compact.

For every $p, q, u, v \in \mathbb{Q}$, we put

$$< p,q > := \{r \in \mathbb{Q} : p < r < q\}$$

and

 $< p, q > < u, v > := \{ rs : p < r < q, u < s < v \}.$

In this paper, a subring of a commutative ring with identity does not imply the identity must belong to the subring. **Proposition 3.4.** $\mathcal{R}_{\infty}L$ is a subring of $\mathcal{R}L$.

Proof. Consider $\varphi, \psi \in \mathcal{R}_{\infty}L$ and $n \in \mathbb{N}$. Since $\uparrow \varphi(\frac{-1}{2n}, \frac{1}{2n})$ and $\uparrow \psi(\frac{-1}{2n}, \frac{1}{2n})$ are compact frames, we can conclude from the Lemma 3.1 that $\uparrow (\varphi(\frac{-1}{2n}, \frac{1}{2n}) \land \psi(\frac{-1}{2n}, \frac{1}{2n}))$ is a compact frame. The fact that $\varphi(\frac{-1}{2n}, \frac{1}{2n}) \land \psi(\frac{-1}{2n}, \frac{1}{2n}) \leq (\varphi + \psi)(\frac{-1}{n}, \frac{1}{n})$

enables us to conclude at once that $\uparrow (\varphi + \psi)(\frac{-1}{n}, \frac{1}{n})$ is a compact frame, by Remark 3.2. Therefore, $\varphi + \psi \in \mathcal{R}_{\infty}L$.

Let $m \in \mathbb{N}$ such that $\frac{1}{m} \leq \frac{1}{\sqrt{n}}$. Since $\uparrow \varphi(\frac{-1}{m}, \frac{1}{m})$ and $\uparrow \psi(\frac{-1}{m}, \frac{1}{m})$ are compact and

$$\varphi(\frac{-1}{m}, \frac{1}{m}) \wedge \psi(\frac{-1}{m}, \frac{1}{m}) \le (\varphi\psi)(\frac{-1}{n}, \frac{1}{n})$$

we can conclude from the Lemma 3.1 and the Remark 3.2 that \uparrow $(\varphi\psi)(\frac{-1}{n},\frac{1}{n})$ is compact. Hence, $\varphi\psi \in \mathcal{R}_{\infty}L$.

Proposition 3.5. $\mathcal{R}_{\infty}L$ is an ideal of \mathcal{R}^*L .

Proof. Consider $\varphi \in \mathcal{R}_{\infty}L$ and $n \in \mathbb{N}$. Since for all $m \in \mathbb{N}$,

$$\varphi(-m,m) \in \uparrow \varphi(\frac{-1}{n},\frac{1}{n})$$

and

$$\top = \bigvee_{m \in \mathbb{N}} \varphi(-m, m),$$

we conclude that there are $m_1, m_1, \ldots, m_k \in \mathbb{N}$ such that

$$\top = \bigvee_{1 \leqslant i \leqslant k} \varphi(-m_i, m_i).$$

If $m = Max\{m_1, m_2, \ldots, m_k\}$ then $\varphi(-m, m) = \top$, that is $\varphi \in \mathcal{R}^*L$. Therefore, $\mathcal{R}_{\infty}L \subseteq \mathcal{R}^*L$.

Now, suppose that $\varphi \in \mathcal{R}_{\infty}L$ and $\psi \in \mathcal{R}^*L$. It suffices to show that $\varphi \psi \in \mathcal{R}_{\infty}L$. There exists $m \in \mathbb{N}$ such that $\psi(-m,m) = \top$, by hypothesis. Consider $n \in \mathbb{N}$. Since

$$<-\frac{1}{mn},\frac{1}{mn}><-m,m>\subseteq<-\frac{1}{n},\frac{1}{n}>$$

we have

$$\varphi(-\frac{1}{mn},\frac{1}{mn}) = \varphi(-\frac{1}{mn},\frac{1}{mn}) \wedge \psi(-m,m) \le (\varphi\psi)(-\frac{1}{n},\frac{1}{n}).$$

Since $\uparrow \varphi(-\frac{1}{mn}, \frac{1}{mn})$ is a compact frame, we can conclude from the Remark 3.2 that $\uparrow (\varphi \psi)(-\frac{1}{n}, \frac{1}{n})$ is a compact frame, hence $\varphi \psi \in \mathcal{R}_{\infty}L$.

The following example shows that $\mathcal{R}_{\infty}L$ is not an ideal of $\mathcal{R}L$ in general.

Example 3.6. We consider the function $\alpha : \mathcal{L}\mathbb{R} \to \mathcal{P}(\mathbb{N})$ defined by

$$\alpha(p,q) = \{ n \in \mathbb{N} : p < \frac{1}{n} < q \},$$

for every $p, q \in \mathbb{Q}$. We claim that α is a frame map. To prove this, we check the relations (R1)-(R4) to identities in $\mathcal{P}(\mathbb{N})$ (see [5]).

(R1). For every $p, q, r, s \in \mathbb{Q}$, we have

$$\begin{aligned} \alpha(p,q) \wedge \alpha(r,s) &= \left\{ \begin{array}{l} n \in \mathbb{N} : p < \frac{1}{n} < q \right\} \cap \left\{ \begin{array}{l} n \in \mathbb{N} : r < \frac{1}{n} < s \right\} \\ &= \left\{ \begin{array}{l} n \in \mathbb{N} : p \lor r < \frac{1}{n} < q \land s \right\} \\ &= \alpha(p \lor r, q \land s) \\ &= \alpha((p,q) \land (r,s)). \end{aligned} \end{aligned}$$

(R2). For every $p, q, r, s \in \mathbb{Q}$ with $p \leq r < q \leq s$, we have

$$\begin{aligned} \alpha(p,q) \lor \alpha(r,s) &= \{n \in \mathbb{N} : p < \frac{1}{n} < q\} \cup \{n \in \mathbb{N} : r < \frac{1}{n} < s\} \\ &= \{n \in \mathbb{N} : p \land r < \frac{1}{n} < q \lor s\} \\ &= \{n \in \mathbb{N} : p < \frac{1}{n} < s\} \\ &= \alpha(p,s). \end{aligned}$$

(R3). For every $p, q \in \mathbb{Q}$, we have

$$\bigvee_{p < r < s < q} \alpha(r, s) = \bigcup_{p < r < s < q} \{n \in \mathbb{N} : r < \frac{1}{n} < s\}$$
$$= \{n \in \mathbb{N} : p < \frac{1}{n} < q\}$$
$$= \alpha(p, q).$$

(R4). It is clear that

$$\mathbb{N} = \top_{\mathcal{P}(\mathbb{N})} = \alpha(0, 2) \le \bigcup_{p, q \in \mathbb{Q}} \alpha(p, q) \le \mathbb{N},$$

then $\bigvee_{p,q\in\mathbb{Q}} \alpha(p,q) = \top_{\mathcal{P}(\mathbb{N})}$. Therefore, $\alpha \in \mathcal{R}(\mathcal{P}(\mathbb{N}))$.

Since, for any $n \in \mathbb{N}$,

$$\alpha(\frac{-1}{n}, \frac{1}{n}) = \{m \in \mathbb{N} : n < m\} = \{n + 1, n + 2, n + 3, \dots\},\$$

we infer that $\uparrow \alpha(\frac{-1}{n}, \frac{1}{n})$ is a finite frame and hence it is a compact frame. Hence, $\alpha \in \mathcal{R}_{\infty}(\mathcal{P}(\mathbb{N}))$. Since

$$\uparrow \mathbf{1}(\frac{-1}{n},\frac{1}{n}) = \uparrow \bot = \mathcal{P}(\mathbb{N})$$

is not a compact frame, we conclude that $1 \notin \mathcal{R}_{\infty}(\mathcal{P}(\mathbb{N}))$. Since

$$coz(\alpha) = \alpha(-,0) \lor \alpha(0,-) = \mathbb{N} = \top_{\mathcal{P}(\mathbb{N})},$$

we conclude that

(1) α is unit and $\alpha \in \mathcal{R}_{\infty}(\mathcal{P}(\mathbb{N}))$.

(2) $\mathcal{R}_{\infty}(\mathcal{P}(\mathbb{N})) \subsetneqq \mathcal{R}(\mathcal{P}(\mathbb{N})).$ (3) $\mathcal{R}_{\infty}(\mathcal{P}(\mathbb{N}))$ is not an ideal of $\mathcal{R}(\mathcal{P}(\mathbb{N})).$

Let L be a frame. We say that a is way below b (or relatively compact with respect to b) and write $a \ll b$ if for any $S \subseteq L$ with $b \leq \bigvee S$, there exists a finite set $F \subseteq S$ such that $a \leq \bigvee F$.

A frame L is called *continuous* (or *locally compact*) whenever, for each $a \in L$, $a = \bigvee_{x \ll a} x$.

Lemma 3.7. For every completely regular frame L and $\varphi \in \mathcal{R}_{\infty}L$, $\downarrow coz(\varphi)$ is a locally compact frame.

Proof. Consider
$$a \in \downarrow coz(\varphi)$$
. Let $x \prec a \land \varphi\left((-, -\frac{1}{n}) \lor (\frac{1}{n}, -)\right)$
and $S \subseteq L$ with $a \land \varphi\left((-, -\frac{1}{n}) \lor (\frac{1}{n}, -)\right) \leq \bigvee S$. Then
 $\varphi\left(-\frac{1}{n}, \frac{1}{n}\right) \leq \left(\varphi\left((-, -\frac{1}{n}) \lor (\frac{1}{n}, -)\right)\right)^*$
 $\leq a^* \lor \left(\varphi\left((-, -\frac{1}{n}) \lor (\frac{1}{n}, -)\right)\right)^*$
 $= \left(a \land \varphi\left((-, -\frac{1}{n}) \lor (\frac{1}{n}, -)\right)\right)^*$
 $\leq x^*.$

Using $\varphi \in \mathcal{R}_{\infty}L$, we conclude from Remark 3.2 that $\uparrow x^*$ is a compact frame.

Since

$$\top = x^* \lor \left(a \land \varphi \left(\left(-, -\frac{1}{n} \right) \lor \left(\frac{1}{n}, - \right) \right) \right) \le x^* \lor \bigvee S,$$

we infer that there are $s_1, \ldots s_k \in S$ such that $\top = \bigvee_{i=1}^k (x^* \vee s_i)$, which implies that $x \leq \bigvee_{i=1}^{k} s_i$. Hence, if $x \prec a \land \varphi \left(\left(-, -\frac{1}{n} \right) \lor \left(\frac{1}{n}, -) \right) \right)$, then $x \ll a \land \varphi((-, -\frac{1}{n}) \lor (\frac{1}{n}, -))$, for every $x \in L$. Therefore, the complete regularity of L insures that

$$a = a \wedge coz(\varphi)$$

= $\bigvee_{n \in \mathbb{N}} \left(a \wedge \varphi \left(\left(-, -\frac{1}{n} \right) \vee \left(\frac{1}{n}, - \right) \right) \right)$
= $\bigvee_{n \in \mathbb{N}} \bigvee \{ x \in L : x \prec a \wedge \varphi \left(\left(-, -\frac{1}{n} \right) \vee \left(\frac{1}{n}, - \right) \right) \}$
 $\leq \bigvee_{n \in \mathbb{N}} \bigvee \{ x \in L : x \ll a \wedge \varphi \left(\left(-, -\frac{1}{n} \right) \vee \left(\frac{1}{n}, - \right) \right) \}$
 $\leq \bigvee_{\substack{x \in L, x \\ x \ll a}}$
 $\leq a,$

and this completes the proof.

Lemma 3.8. Let $\alpha \in \mathcal{R}L$ and $\rho_3 : \mathcal{L}(\mathbb{R}) \to \mathcal{L}(\mathbb{R})$ by $\rho_3(p,q) = (p^3,q^3)$. Then the following statements hold:

(1) $\rho_3 \in \mathcal{R}(\mathcal{L}(\mathbb{R})).$ (2) $\rho_3^3 = id_{\mathcal{L}(\mathbb{R})}.$ (3) $(\alpha \circ \rho_3)^3 = \alpha.$ (4) $coz(\alpha \circ \rho_3) = coz(\alpha).$ (5) If $\alpha \in \mathcal{R}_{\infty}L$, then $\alpha \circ \rho_3 \in \mathcal{R}_{\infty}L$.

Proof. By [13], to complete the proof it suffices to show that if $\alpha \in \mathcal{R}_{\infty}L$, then $\alpha \circ \rho_3 \in \mathcal{R}_{\infty}L$. Consider $\alpha \in \mathcal{R}_{\infty}L$. Since for every $n \in \mathbb{N}$, $\uparrow \alpha \circ \rho_3(-\frac{1}{n}, \frac{1}{n}) = \uparrow \alpha(-\frac{1}{n^3}, \frac{1}{n^3})$ is a compact frame, we conclude that $\alpha \circ \rho_3 \in \mathcal{R}_{\infty}L$.

Proposition 3.9. Let *L* be a completely regular frame and for every $a \in L$, if $\downarrow a$ is a locally compact frame, then $\mathcal{R}^*(\downarrow a) = \mathcal{R}(\downarrow a)$. Then $\mathcal{R}_{\infty}L$ is an ideal of $\mathcal{R}L$.

Proof. Consider $\alpha \in \mathcal{R}L$ and $\beta \in \mathcal{R}_{\infty}L$. We put $\beta^{\frac{1}{3}} = \beta \circ \rho_3$. By Lemma 3.8, we have $\alpha\beta^{\frac{1}{3}} \in \mathcal{R}L$, which implies that $\overline{\alpha} : \mathcal{L}\mathbb{R} \to \downarrow coz(\beta)$ given by $\overline{\alpha}(u) = \alpha\beta^{\frac{1}{3}}(u) \wedge coz(\beta)$ is an element of $\mathcal{R}(\downarrow coz(\beta))$. Since, by Lemma 3.7, $\downarrow coz(\beta)$ is a locally compact frame, we conclude that there exists $n \in \mathbb{N}$ such that

$$\alpha\beta^{\frac{1}{3}}((-,-n)\vee(n,-))\wedge coz(\beta)=\overline{\alpha}((-,-n)\vee(n,-))=\bot.$$

By

$$\alpha\beta^{\frac{1}{3}}((-,-n)\vee(n,-))\leq coz(\alpha\beta^{\frac{1}{3}})\leq coz(\beta),$$

we infer that

$$\alpha\beta^{\frac{1}{3}}\big((-,-n)\vee(n,-)\big)=\bot,$$

which follows that $\alpha\beta^{\frac{1}{3}} \in \mathcal{R}^*L$. Since, by Lemma 3.8, $\beta^{\frac{1}{3}} \in \mathcal{R}_{\infty}L$, we conclude from Proposition 3.5 and Lemma 3.8 that $\alpha\beta = \alpha\beta^{\frac{1}{3}}(\beta^{\frac{1}{3}})^2 \in \mathcal{R}_{\infty}L$ and this completes the proof.

4. When is $\mathcal{R}_{\infty}L$ equal to $\mathcal{R}L$?

In this section, we characterize frames L for which $\mathcal{R}_{\infty}L = \mathcal{R}L$. Let I be an ideal in $\mathcal{R}L$ or \mathcal{R}^*L . If $\bigvee \{ coz(\varphi) : \varphi \in I \} < \top$, we call I a fixed ideal; if $\bigvee \{ coz(\varphi) : \varphi \in I \} = \top$, then I is a free ideal.

Lemma 4.1. If I is a free ideal in $\mathcal{R}L$ and $a \in Coz(L)$ is a compact element of Coz(L), then there exists $\varphi \in I$ such that $a = coz(\varphi)$.

Proof. Evidently

$$a = a \wedge \top = \bigvee \{ a \wedge coz(\varphi) : \varphi \in I \},$$

it follows that there are $\varphi_1, \ldots, \varphi_n \in I$ such that

$$a = a \wedge \bigvee_{i=1}^{n} coz(\varphi_i) = a \wedge coz(\varphi_1^2 + \dots + \varphi_n^2).$$

Since Coz(I) is an ideal of Coz(L) and

$$a \le coz(\varphi_1^2 + \dots + \varphi_n^2) \in Coz(I)$$

we include that there exists $\varphi \in I$ such that $a = coz(\varphi)$.

Corollary 4.2. The set

 $\{a \in Coz(L) : a \text{ is a compact element of } Coz(L)\}$

is a subset of

$$\bigcap \{ Coz(I) : I \text{ is a free ideal in } \mathcal{R}L \}.$$

Proof. By Lemma 4.1, it is clear.

The following proposition is proved by Dube in [6, Lemma 4.7], but here, in the proof of this proposition, a different approach is used.

Proposition 4.3. For every completely regular frame L, the following statements are equivalent:

- (1) L is a compact frame;
- (2) Every proper ideal I in $\mathcal{R}L$ is fixed;
- (3) Every maximal ideal I in $\mathcal{R}L$ is fixed.

Proof. (1) \Rightarrow (2). Let *I* be a proper free ideal in $\mathcal{R}L$, then by Lemma 4.1, there exists $\varphi \in I$ such that $\top = coz(\varphi)$. It then follows that *I* contents a unit element. Hence, $I = \mathcal{R}L$ and this is a contradiction.

 $(2) \Rightarrow (3)$. It is clear.

(3)
$$\Rightarrow$$
 (1). Let $\{a_{\lambda}\}_{\lambda \in \Lambda} \subseteq L$ such that $\top = \bigvee_{\lambda \in \Lambda} a_{\lambda}$. It is clear that

 $I = \{ \varphi \in \mathcal{R}L : \exists \Lambda' \subseteq \Lambda (|\Lambda'| < \infty, \, coz(\varphi) \le \bigvee_{\lambda \in \Lambda'} a_{\lambda}) \}$

is an ideal of $\mathcal{R}L$. If $I \neq \mathcal{R}L$, then there exists a maximal ideal M such that $I \subseteq M$. Since L is completely regular frame, we infer that

$$\top = \bigvee_{\lambda \in \Lambda} a_{\lambda} = \bigvee Coz(I) \le \bigvee Coz(M),$$

i.e., $\top = \bigvee Coz(M)$, which is a contradiction. Now, we can assume that $I = \mathcal{R}L$. Then there exists $\Lambda' \subseteq \Lambda$ such that $|\Lambda'| < \infty$ and

$$\top = coz(\mathbf{1}) = \bigvee_{\lambda \in \Lambda'} a_{\lambda},$$

this completes the proof of the proposition.

Proposition 4.4. For every completely regular frame L, then L is a compact frame if and only if $\mathcal{R}L = \mathcal{R}^*L = \mathcal{R}_{\infty}L$.

Proof. Necessity.

Consider $\varphi \in \mathcal{R}L$, $n \in \mathbb{N}$ and $a = \varphi(-\frac{1}{n}, \frac{1}{n})$. Since $L = \uparrow \bot$ is a compact frame and $\bot \leq a$, we can conclude from the Remark 3.2 that $\uparrow a$ is a compact frame, i.e., $\varphi \in \mathcal{R}_{\infty}L$.

Sufficiency. Since $\mathbf{1} \in \mathcal{R}_{\infty}L$, we infer that

$$L = \uparrow \bot = \uparrow \mathbf{1}(-1, 1)$$

is a compact frame.

5. Intersection of free maximal ideals

In [16, Lemma 3.2], the intersection of the free maximal ideals in $C^*(X)$ was characterized as the set of all functions that vanish at infinity (that is all functions $f \in C(X)$ such that $\{x : |f(x)| \ge \frac{1}{n}\}$ is compact for all $n \in \mathbb{N}$). In this section, we show that this is also true for $\mathcal{R}^*(L)$.

Proposition 5.1. If I is a proper free ideal in $\mathcal{R}L$, then

$$\varphi(-\frac{1}{n},\frac{1}{n}) \notin Coz(I),$$

for every $\varphi \in \mathcal{R}_{\infty}L$ and $n \in \mathbb{N}$.

Proof. Consider $\varphi \in \mathcal{R}L$ and $n \in \mathbb{N}$. Then

$$\top = \bigvee I = \bigvee \{ coz(\alpha) \lor \varphi(-\frac{1}{n}, \frac{1}{n}) : \alpha \in I \}$$

and since $\uparrow \varphi(-\frac{1}{n}, \frac{1}{n})$ is compact, we conclude that there are $\alpha_1, \ldots, \alpha_k \in I$ such that

$$\top = \left(\bigvee_{i=1}^{k} coz(\alpha_i)\right) \lor \varphi(-\frac{1}{n}, \frac{1}{n}) = coz\left(\sum_{i=1}^{k} \alpha_i^2\right) \lor \varphi(-\frac{1}{n}, \frac{1}{n})$$

ESTAJI AND MAHMOUDI DARGHADAM

and $\sum_{i=1}^{k} \alpha_i^2 \in I$. If $\varphi(-\frac{1}{n}, \frac{1}{n}) \in Coz(I)$, then $\top \in Coz(I)$, i.e., $I = \mathcal{R}L$, which is a contradiction. Hence, $\varphi(-\frac{1}{n}, \frac{1}{n}) \notin Coz(I)$.

It is well known that $\mathfrak{t}_L : \mathcal{R}(\beta L) \to \mathcal{R}^*L$ given by $\mathfrak{t}_L(\alpha) = j_L \alpha$ is the ring isomorphism. Also, we will denote $\varphi^\beta = \mathfrak{t}_L^{-1}(\varphi)$, for every $\varphi \in \mathcal{R}^*L$ (see [7]).

For each $\top_{\beta L} \neq I \in \beta L$, the ideal M^I of $\mathcal{R}L$ defined by

$$M^{I} = \{ \varphi \in \mathcal{R}L : r_{L}(coz(\varphi)) \subseteq I \}$$

and $M^{*I} = M^I \cap \mathcal{R}^* L$. Also,

$$M^{*I} = \{ \varphi \in \mathcal{R}^*L : coz(\varphi^\beta) \subseteq I \}.$$

We need the following propositions which are proved in [7].

Proposition 5.2. [7, Proposition 3.8] Maximal ideals of \mathcal{R}^*L are precisely the ideals M^{*I} , for $I \in pt(\beta L)$. They are distinct for distinct I.

Proposition 5.3. [7, Proposition 3.9] For every $I \in pt(\beta L)$, M^{*I} is fixed maximal ideal in \mathcal{R}^*L if and only if $\bigvee I < \top$.

The following lemma plays an important role in this note.

Lemma 5.4. [10, Lemma 4.2] For every $p \in pt(L)$ and $\varphi \in \mathcal{R}L$, $\varphi[p] = 0$ if and only if $coz(\varphi) \leq p$.

Remark 5.5. For every frame L, we put

$$L^{\star} = \{ I \in pt(\beta L) : \bigvee I = \top \}.$$

Also, for every $A \subseteq pt(L)$ and $\varphi \in \mathcal{R}L$, $\varphi[A] = \{\varphi[p] : p \in A\}.$

Proposition 5.6. For every $\varphi \in \mathcal{R}^*L$, the following statements are equivalent:

- (1) $\varphi \in \bigcap_{I \in L^*} M^{*I};$
- (2) $\varphi^{\beta}[L^{\star}] = \{0\};$
- (3) For every $0 < \varepsilon \in \mathbb{Q}$ and $I \in L^*$, $|\varphi^{\beta}[I]| < \varepsilon$;
- (4) For every $n \in \mathbb{N}$,

$$\{I \in pt(\beta L) | |\varphi^{\beta}[I]| \ge \frac{1}{n}\} = \{I \in pt(\beta L) - L^{\star} | |\varphi^{\beta}[I]| \ge \frac{1}{n}\}.$$

Proof. (1) \Leftrightarrow (2). By Lemma 5.4, we have

$$\begin{split} \varphi \in \bigcap_{I \in L^*} M^{*I} & \Leftrightarrow & \forall I \in L^*(coz(\varphi^\beta) \subseteq I) \\ & \Leftrightarrow & \forall I \in L^*(\varphi^\beta[I] = 0) \\ & \Leftrightarrow & \varphi^\beta[L^*] = \{0\}. \end{split}$$

The rest is straightforward.

Theorem 5.7. The ring $\mathcal{R}_{\infty}L$ is the intersection of all the free maximal ideals in \mathcal{R}^*L .

Proof. Let $\varphi \in \mathcal{R}_{\infty}L$ and $I \in L^{\star}$ such that $\varphi \notin M^{*I}$. Then

$$\bigvee_{n \in \mathbb{N}} \varphi^{\beta}((-, -\frac{1}{n}) \lor (\frac{1}{n}, -)) = coz(\varphi^{\beta}) \not\subseteq I.$$

So, there exists $n_0 \in \mathbb{N}$ such that

$$\varphi^{\beta}((-,-\frac{1}{n_{0}})\vee(\frac{1}{n_{0}},-))\not\subseteq I,$$

which implies that

$$\varphi^{\beta}((-,-\frac{1}{n_0})\vee(\frac{1}{n_0},-))\vee I=\top_{_{\beta L}}$$

and there exists $a \in I$ and

$$x\in \varphi^\beta((-,-\frac{1}{n_0})\vee(\frac{1}{n_0},-))$$

such that $x \lor a = \top$. Since

$$x \le \bigvee \varphi^{\beta}((-, -\frac{1}{n_0}) \lor (\frac{1}{n_0}, -)) = \varphi((-, -\frac{1}{n_0}) \lor (\frac{1}{n_0}, -)),$$

we conclude that

$$\varphi((-,-\frac{1}{n_0}) \lor (\frac{1}{n_0},-)) \lor a = \top,$$

which implies

$$\varphi(-\frac{1}{n_0}, \frac{1}{n_0}) \le (\varphi((-, -\frac{1}{n_0}) \lor (\frac{1}{n_0}, -)))^* \le a.$$

It is clear that

$$A = \{\, x \lor a : x \in I \,\} \subseteq {\uparrow} \varphi(-\frac{1}{n_0}, \frac{1}{n_0})$$

and $\bigvee A = \top$. Since $\uparrow \varphi(-\frac{1}{n_0}, \frac{1}{n_0})$ is compact frame, we conclude that there exist $x_1, \ldots, x_m \in I$ such that

$$\top = \bigvee_{i=1}^{m} (x_i \lor a) \in I,$$

which is a contradiction.

Conversely, let $\varphi \in \bigcap_{I \in L^{\star}} M^{*I}$, $n \in \mathbb{N}$ and $\{a_{\lambda}\}_{\lambda \in \Lambda} \subseteq \uparrow \varphi(-\frac{1}{n}, \frac{1}{n})$ such that $\bigvee_{\lambda \in \Lambda} a_{\lambda} = \top$. Suppose that for every $\Lambda' \subseteq \Lambda$, if Λ' is finite set, then $\bigvee_{\lambda \in \Lambda'} a_{\lambda} \neq \top$. Hence, there exists $I \in L^*$ such that $\{a_{\lambda}\}_{\lambda \in \Lambda} \subseteq I$. By the statement (4) of Proposition 5.6, we have $\varphi^{\beta}[I] = 0$, so that $coz(\varphi^{\beta}) \subseteq I$, by Lemma 5.4. Since

$$\varphi(-\frac{1}{n},\frac{1}{n}) \le a_{\lambda} \in I,$$

we conclude that

$$\bigvee \varphi^{\beta}(-\frac{1}{n},\frac{1}{n}) = \varphi(-\frac{1}{n},\frac{1}{n}) \in I,$$

which follows that

$$\varphi^{\beta}(-\frac{1}{n},\frac{1}{n})\subseteq I.$$

Therefore,

$$L = \varphi^{\beta}(-\frac{1}{n}, \frac{1}{n}) \lor coz(\varphi^{\beta}) \subseteq I,$$

i.e., $L = I \in L^{\star}$, which is a contradiction.

6. Maximal ideals of $\mathcal{R}_{\infty}L$

We turn our attention now to the fixed maximal ideals in the rings $\mathcal{R}_{\infty}L$.

Lemma 6.1. Let $\varphi \in \mathcal{R}L$, $p \in pt(L)$ and $n \in \mathbb{N}$, then $\varphi(\frac{-1}{n}, \frac{1}{n}) \leq p$ if and only if $|\varphi[p]| \geq \frac{1}{n}$.

Proof. Necessity.

Let $\varphi(\frac{-1}{n}, \frac{1}{n}) \le p$ and $|\varphi[p]| < \frac{1}{n}$. If $t = \varphi[p]$, then, by Proposition 2.1,

$$\bigvee \{\varphi(-,r) \lor \varphi(s,-) : r, s \in \mathbb{Q}, r < t < s\} \le p,$$

it follows that

$$\top = \varphi(\frac{-1}{n}, \frac{1}{n}) \vee \bigvee \{\varphi(-, r)\} \vee \varphi(s, -) : r, s \in \mathbb{Q}, r < t < s\} \le p,$$

which is a contradiction.

Sufficiency. Let $|\varphi[p]| \ge \frac{1}{n}$. Then, by Proposition 2.1,

$$\varphi(\frac{-1}{n}, \frac{1}{n}) \le \bigvee \{\varphi(-, r) \lor \varphi(s, -) | r, s \in \mathbb{Q}, r < \varphi[p] < s\} \le p$$

This completes the proof of the lemma.

Proposition 6.2. For every $A \subseteq pt(L)$, then $\varphi[A] = 0$ for every $\varphi \in \mathcal{R}_{\infty}L$, if and only if for every $\varphi \in \mathcal{R}_{\infty}L$ and $n \in \mathbb{N}$, if $p \in A$, then $p \notin \uparrow \varphi(\frac{-1}{n}, \frac{1}{n})$.

Proof. Necessity. Let $\varphi \in \mathcal{R}_{\infty}L$, $p \in A$ and $n \in \mathbb{N}$. Suppose that $p \in \uparrow \varphi(\frac{-1}{n}, \frac{1}{n})$. Then, by Lemma 6.1, $|\varphi[p]| \geq \frac{1}{n}$. Hence, $\varphi[p] \neq 0$, which is a contradiction.

Sufficiency. Let $\varphi \in \mathcal{R}_{\infty}L$ and $p \in A$. By Lemma 6.1, $|\varphi[p]| < \frac{1}{n}$, for every $n \in \mathbb{N}$. Hence $\varphi[p] = 0$.

For each $a \in L$ with $a < \top$, define the subset M_a of $\mathcal{R}L$ by $M_a = \{a \in \mathcal{R}L : aaz(a) \leq a\}$

$$M_a - \{ \varphi \in \mathcal{K}L : \operatorname{Coz}(\varphi) \leq a \}$$

and $M_a^* = M_a \cap \mathcal{R}^* L$. Clearly, M_a is an ideal, and, in fact, $M_a = M^{r_L(a)}$. **Corollary 6.3.** If $p \in pt(L)$ then, $\mathcal{R}_{\infty}L \subseteq M_p^*$ if and only if for every $\varphi \in \mathcal{R}_{\infty}L$ and $n \in \mathbb{N}$, $p \notin \uparrow \varphi(\frac{-1}{n}, \frac{1}{n})$.

Proof. By Proposition 6.2, it is clear.

For a proof of the following proposition, see [19, Corollary 3.6].

Proposition 6.4. Let A be a commutative algebra over the rational numbers with unity. Let I be an ideal of A. Then an ideal D of I is a maximal ideal of I if and only if $D = M \cap I$ for some maximal ideal M in A, with $I \not\subseteq M$.

An ideal I in a subalgebra A of $\mathcal{R}L$ is called strongly fixed ideal if $\bigcap_{\varphi \in I} Z(\varphi) \neq \emptyset$, otherwise, I is said to be strongly free ideal.

For a proof of the following proposition, see [7, Proposition 3.3] or [10, Proposition 4.8, Corollary 4.9].

Proposition 6.5. The fixed maximal ideals of $\mathcal{R}L$ (\mathcal{R}^*L) are precisely the ideals M_p (M_p^*) for $p \in Pt(L)$. They are distinct for distinct points.

Proposition 6.6. If L is a completely regular frame, then every maximal ideal of $\mathcal{R}_{\infty}L$ is strongly fixed ideal. In fact, M is a maximal ideal of $\mathcal{R}_{\infty}L$ if and only if there exists $p \in pt(L)$ such that

- (1) $M = M_n^* \cap \mathcal{R}_\infty L$, and
- (2) $p \in \uparrow \varphi(\frac{-1}{n}, \frac{1}{n})$, for some $\varphi \in \mathcal{R}_{\infty}L$ and $n \in \mathbb{N}$.

Proof. Let M be a maximal ideal of $\mathcal{R}_{\infty}L$, then by Propositions 5.2 and 6.4, there exists $I \in pt(\beta L)$ such that $M = M^{*I} \cap \mathcal{R}_{\infty}L$, with $\mathcal{R}_{\infty}L \not\subseteq M^{*I}$. By Theorem 5.7, M^{*I} is a fixed maximal ideal of \mathcal{R}^*L . Then, there exists $p \in pt(L)$ such that $M^{*I} = M_p^*$, by Proposition 6.5. Therefore, we have

- (1) $M = M_n^* \cap \mathcal{R}_\infty L$, and
- (2) $p \in \uparrow \varphi(\frac{-1}{n}, \frac{1}{n})$, for some $\varphi \in \mathcal{R}_{\infty}L$ and $n \in \mathbb{N}$, by Corollary 6.3.

Conversely, by Corollary 6.3 and Propositions 6.4 and 6.5, it is clear that M is a maximal ideal of $\mathcal{R}_{\infty}L$.

Acknowledgments

The authors thank the anonymous referees for their valuable comments and suggestions for improving the paper.

References

- [1] S. K. Acharyya, K. C. Chattopadhyay and D. P. Ghosh, On a class of subalgebras of C(X) and the intersection of their free maximal ideals, *Proc. Amer.* Math. Soc. **125**(2) (1997), 611–615.
- [2] S. K. Acharyya and D. De, An interesting class of ideals in subalgebras of C(X)containing $C^*(X)$, Comment. Math. Univ. Carolin. 48(2) (2007), 273–280.
- [3] S. Afrooz and M. Namdari, $C_{\infty}(X)$ and related ideals, Real Anal. Exchange **36**(1) (2010/2011), 45–54.
- [4] F. Azarpanah and R. Soundararajan, When the family of functions vanishing at infinity is an ideal of $C_{\infty}(X)$, Rocky Mountain J. Math. **31**(4) (2001), 1133-1140.
- [5] B. Banaschewski, The real numbers in pointfree topology, Textos de Mathe*matica* (Series B) **12** (1997), 1–96.
- [6] T. Dube, On the ideal of functions with compact support in pointfree function rings, Acta Math. Hungar. 129(3) (2010), 205-226.
- [7] T. Dube, Extending and contracting maximal ideals in the function rings of pointfree topology, Bull. Math. Soc. Sci. Math. Roumanie 55(4) (2012), 365-374.
- [8] M. M. Ebrahimi and A. Karimi Feizabadi, Prime representation of real Riesz maps, Algebra Universalis 54 (2005), 291–299.
- M. M. Ebrahimi and M. Mahmoudi, Frame, Technical Report, Shahid Beheshti University, 1996.
- A. A. Estaji, A. Karimi Feizabadi and M. Abedi, Strongly fixed ideals in C(L) [10]and compact frames, Arch. Math. (Brno) 51 (2015), 1-12.
- [11] A. A. Estaji, A. Karimi Feizabadi and M. Abedi, Zero set in pointfree topology and strongly z-ideals, Bull. Iranian Math. Soc. 41, No.5 (2015), 1071-1084.
- [12] A. A. Estaji, A. Karimi Feizabadi and M. Abedi, Intersection of essential ideals in the ring of real-valued continuous functions on a frame, Journal of Algebraic Systems 5, No.2 (2017), 149-161.
- [13] A. A. Estaji, A. Karimi Feizabadi and M. Robat Sarpoushi, z_c -ideals and prime ideals in the ring $\mathcal{R}_c L$, *Filomat*, in press.
- [14] L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, 1976.

- [15] A. Karimi Feizabadi, A. A. Estaji and M. Abedi, On minimal ideals in the ring of real-valued continuous functions on a frame, *Arch. Math. (Brno)* Accepted.
- [16] C. W. Kohls, Ideals in rings of continuous functions, Fund. Math. 45 (1957), 28–50.
- [17] J. Picado and A. Pultr, *Frames and locales: Topology without points*, Frontiers in Mathematics, Springer Basel, 2012.
- [18] A. Rezaei Aliabad, F. Azarpanah and M. Namdari, Rings of continuous functions vanishing at infinity, *Comment. Math. Univ. Carolin.* 45(3) (2004), 519– 533.
- [19] D. Rudd, On isomorphisms between ideals in rings of continuous functions, Trans. Amer. Math. Soc. 159 (1971), 335–353.
- [20] A. Taherifar, Some generalizations and unifications of $C_K(X)$, $C_{\psi}(X)$ and $C_{\infty}(X)$, Quaest. Math. **38** (2015), 793–804.

Ali Akbar Estaji

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

Email: aaestaji@hsu.ac.ir and aaestaji@gmail.com

Ahmad Mahmoudi Darghadam

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

Email: m.darghadam@yahoo.com

Journal of Algebraic Systems

On maximal ideals of $\mathcal{R}_{\infty}L$ Ali Akbar Estaji and Ahmad Mahmoudi Darghadam $\mathcal{R}_{\infty}L$ ایدهآلهای ماکسیمال $\mathcal{R}_{\infty}L$ ایدهآلهای ماکسیمال مراف علی اکبر استاجی و احمد محمودی درقدم دانشکده ریاضی و علوم کامپیوتر دانشگاه حکیم سبزواری، ایران، سبزوار دانشکده ریاضی و علوم کامپیوتر دانشگاه حکیم سبزواری، ایران، سبزوار فرض کنید L قاب کاملاً منظم و $\mathcal{R}L$ حلقه توابع پیوسته حقیقی مقدار روی قاب L باشد. قرار می دهیم فرض کنید L قاب کاملاً منظم و $\mathcal{R}L$ حلقه توابع پیوسته حقیقی مقدار روی قاب L باشد. قرار می دهیم فرض کنید L قاب کاملاً منظم و $\mathcal{R} = \{\varphi \in \mathcal{R}L : \frac{1}{n}, \frac{1}{n}, \frac{1}{n}, n \in \mathbb{N}$ فرض کنید (\mathcal{L}) هر $\mathcal{R} = \{\varphi \in \mathcal{R}L : f(x) = 1$ فرض کنید (\mathcal{L}) مراز ال الماص فرض کنید (\mathcal{L}) الماص عناصر (\mathcal{L}) مناص داد که (\mathcal{L}) مرابر با اشتراک تمام ایدهآلهای ماکسیمال آزاد (\mathcal{L}) است. در این مقاله میخواهیم این نتیجه را به حلقه توابع پیوسته حقیقی مقدار روی قاب گسترش دهیم و نشان می دهیم $\mathcal{L}_{\infty}\mathcal{R}$ دقیقاً برابر با اشتراک تمام ایدهآلهای ماکسیمال آزاد روی قاب گسترش دهیم و نشان می دهیم ایدهآلهای ماکسیمال میام ایدهآلهای ماکسیمال آزاد \mathcal{R}^*L

كلمات كليدي: قاب، فشرده، ايدهآل ماكسيمال، حلقه توابع پيوسته حقيقي مقدار.