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ON THE CAPACITY OF EILENBERG-MACLANE AND
MOORE SPACES

M. MOHARERI, B. MASHAYEKHY AND H. MIREBRAHIMI∗

Abstract. K. Borsuk in 1979, at the Topological Conference in
Moscow, introduced concept of the capacity of a compactum and
asked some questions concerning properties of the capacity of com-
pacta. In this paper, we give partial positive answers to three of
these questions in some cases. In fact, by describing spaces ho-
motopy dominated by Moore and Eilenberg-MacLane spaces, the
capacities of a Moore space M(A, n) and an Eilenberg-MacLane
space K(G, n) could be obtained. Also, we compute the capacity
of wedge sum of finitely many Moore spaces of different degrees
and the capacity of product of finitely many Eilenberg-MacLane
spaces of different homotopy types. In particular, we compute the
capacity of wedge sum of finitely many spheres of the same or
different dimensions.

1. Introduction and Motivation

K. Borsuk in [3] introduced concept of the capacity of a compactum
(compact metric space) as follows: the capacity C(A) of a compactum
A is the cardinality of the set of all shapes of compacta X for which
Sh(X) 6 Sh(A). Similarly, we can define the capacity of a topological
space A as the cardinality of the set of all shapes of spaces X for which
Sh(X) 6 Sh(A).
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In the case of polyhedra, the notions shape and shape domination in
the above definition could be replaced by the notions homotopy type
and homotopy domination, respectively. Indeed, by some known re-
sults in shape theory we conclude that for any polyhedron P , there is
a 1-1 functorial correspondence between the shapes of compacta shape
dominated by P and the homotopy types of CW-complexes (not neces-
sarily finite) homotopy dominated by P (in both pointed and unpointed
cases) [13].

It is obvious that the capacity of a topological space is a homotopy
invariant, i.e., if topological spaces X and Y have the same homotopy
type, then C(X) = C(Y ). Accordingly, it will be interesting to know
about topological spaces which have finite capacities. Of course, S.
Mather in [18] proved that every polyhedron dominates only a count-
able number of different homotopy types (hence shapes).

In addition, Borsuk in [3] asked: “Is it true that the capacity of
every finite polyhedron is finite?”. D. Kolodziejczyk in [16] gave a
negative answer to this question. However, Kolodziejczyk in [12, 13,
14, 15] investigated some conditions under which a polyhedron has
finite capacity. For instance, polyhedra with finite fundamental groups
and polyhedra P with abelian fundamental groups π1(P ) and finitely
generated homology groups Hi(P̃ ), for i ≥ 2, have finite capacities.

In this paper, we concentrate on some questions concerning proper-
ties of the capacity of compacta which have been stated in [3] and we
give partial positive answers to three of these questions in some cases.
The first question is:

1. Is C(X × Y ) determined by C(X) and C(Y )?

In Section 4, we give a partial positive answer to this question as fol-
lows: If X and Y are Eilenberg-MacLane CW-complexes K(G, n) and
K(H,m), respectively, such that n 6= m and G and H are Hopfian
groups, then C(X × Y ) = C(X)× C(Y ) (see Corollary 4.11).

The second question is:

2. Is C(X ∪ Y ) determined by C(X), C(Y ) and C(X ∩ Y )?

In [16], by presenting two finite CW-complexes X and Y of dimensions
2 with C(X), C(Y ), C(X ∩Y ) <∞ but C(X ∪Y ) =∞, Kolodziejczyk
gave a negative answer to the above question. In Section 3, we show
that if X = M(A, n) and Y = M(B,m) are two Moore spaces with
abelian Hopfian groups A,B and n 6= m, n,m ≥ 2, then C(X ∨ Y ) =
C(X)×C(Y ) (see Corollary 3.10). Recall that a Moore space is a sim-
ply connected CW -complex X with a single non-vanishing homology
group for some n ≥ 2, that is H̃i(X,Z) = 0 for i 6= n.

The next question is as follows:
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3. Is the capacity C(A) determined by the homology properties of A?

In Section 3, we show that the answer to the above question is positive
for Moore spaces. In fact, we prove that there is a one-to-one corre-
spondence between the set of all homotopy types of spaces homotopy
dominated by M(A, n) and the set of all isomorphism classes of direct
summands of A, for n ≥ 2 (see Proposition 3.5).

Borsuk in [3] asked another question concerning the capacity of finite
polyhdera as follows:

Is it true that the capacity of every finite polyhedron is finite?

Kolodziejczyk in [16] presented an example of a finite polyhedron of
dimension 2 homotopy dominates infinitely many polyhedra of differ-
ent homotopy types which is a negative answer to the above question.
Moreover, it has been proved that for every non-abelian poly-Z-group
G and an integer n ≥ 3, there exists a polyhedron P with π1(P ) ∼= G
and dimP = n dominating infinitely many polyhedra of different ho-
motopy types which shows that such examples are not rare (see [12]).
In particular, there exist polyhedra with nilpotent fundamental groups
and infinite capacities ([12]). However, Kolodziejczyk has given posi-
tive answer to the above question under some conditions: in [15] the
author proved (using the results of localization theory in the homotopy
category of CW-complexes) that every simply connected polyhedron
dominates only finitely many different homotopy types. Also, in [14]
the author has proved that polyhedra with finite fundamental groups
dominate only finitely many different homotopy types. In [13], by ex-
tending the methods of [14], it has been proved that for some classes of
polyhedra with abelian fundamental groups, the answer to the above
question is positive. In addition, Kolodziejczyk proved that every nilpo-
tent polyhedron dominates only finitely many different homotopy types
([14]).

In this paper, we compute the capacities of Moore spaces M(A, n)
and Eilenberg-MacLane spaces K(G, n). In fact, we show that the ca-
pacities of a Moore space M(A, n) and an Eilenberg-MacLane space
K(G, n) are equal to the number of all isomorphism classes of direct
summands of A and semidirect factors of G, respectively. Also, we
compute the capacity of wedge sum of finitely many Moore spaces of
different degrees and the capacity of product of finitely many Eilenberg-
MacLane spaces of different homotopy types. In particular, we com-
pute the capacity of wedge sum of finitely many spheres of the same
or different dimensions. Note that Borsuk in [3] has mentioned that
C(Sn) = 2 and C(

∨
k S1) = k + 1.
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W. Holsztynski in [10] proved that the number of homotopy idem-
potents of a CW-complex is an upper bound for its capacity. Finally,
we show that this upper bound is not so good (see Remark 4.13).

2. Preliminaries

In this paper, every topological space is assumed to be connected.
We expect that the reader is familiar with the basic notions and facts
of shape theory (see [5] and [17]) and retract theory [4]. We need the
following results and definitions for the rest of the paper.

Theorem 2.1. [9]. If a map f : X −→ Y between connected CW
complexes induces isomorphisms f∗ : πn(X) −→ πn(Y ) for all n, then
f is a homotopy equivalence.

Definition 2.2. [1]. Let λ : C −→ D be a functor. By the suffi-
ciency and the realizability conditions, with respect to λ, we mean the
following:

(1) Sufficiency: if λ(f) is an isomorphism, then so is f , where f is
a morphism in C. That is, the functor λ reflects isomorphisms.

(2) Realizability: two following conditions satisfy:
• The functor λ is representative, that is, for each object D

in D there is an object C in C such that λ(C) is isomorphic
to D. In this case, we say that D is λ-realizable.
• The functor λ is full, that is, for objects X, Y in C and

for each morphism f : λ(X) −→ λ(Y ) in D there is a
morphism f0 : X −→ Y in C with λ(f0) = f . In this case,
we also say that f is λ-realizable.

Definition 2.3. [1]. We call λ : C −→ D a detecting functor if λ
satisfies both sufficiency and realizability conditions, or equivalently if
λ reflects isomorphisms, is representative and full.

A faithful detecting functor is called an equivalence of categories.
By a faithful functor, we mean a functor λ : C −→ D such that the
induced maps λ : Hom(X, Y ) −→ Hom(λX, λY ) are injective, for all
objects X, Y ∈ C (see [1]).

Definition 2.4. [13]. A homomorphism g : G −→ H of groups is an
r-homomorphism if there exists a homomorphism f : H −→ G such
that g ◦ f = idH . Then H is an r-image of G.

In particular, let G be a group with a subgroup H. Then H is called
a retract of G if there exists a homomorphism r : G −→ H such that
r ◦ i = idH , where i : H −→ G is the inclusion homomorphism.
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Lemma 2.5. Every r-image of an arbitrary group G is a semidirect
factor of G and vice versa.

Proof. It can be concluded from the definition of semidirect factor. �

In general, concepts of semidirect factor and direct summand of a
group are different, but one can easily see that those are the same for
abelian groups. Using this fact, we have the following corollary.

Corollary 2.6. Let G be an abelian group. Then the cardinality of the
following three sets are equal:

(1) The set of all isomorphism classes of r-images of G.
(2) The set of all isomorphism classes of retracts of G.
(3) The set of all isomorphism classes of direct summands of G.

Proof. (1) & (3): this is a direct result of Lemma 2.5.
(1) & (2): On the one hand, by definition, any retract of G is an

r-image of G. On the other hand, for any r-image H of G, there exist
homomorphisms g : G −→ H and f : H −→ G such that g ◦ f = idH .
Then it is easy to show that f(H)

( ∼= H
)

is a retract of G. �
Proposition 2.7. Let G be a finitely generated abelian group with the
following form:

Z(k1)

p
α1
1
⊕ Z(k2)

p
α2
2
⊕ · · · ⊕ Z(kn)

pαnn
,

where for i 6= j, pαii 6= p
αj
j , pi’s are prime numbers, αi’s are non-

negative integers, Z(ki)

p
αi
i

is the direct sum of ki copies of Zp
αi
i

, and Z1 =

Z. Then the number of direct summands of G, up to isomorphism, is
equal to

(k1 + 1)× · · · × (kn + 1).

Proof. We have the following three steps to finish the proof.
Step One. For each 1 ≤ i ≤ n, the number of direct summands of

Z(ki)

p
αi
i

, up to isomorphism, is equal to ki + 1.

Clearly, Z(t)

p
αi
i

is a direct summand of Z(ki)

p
αi
i

for every 0 ≤ t ≤ ki. Also,

Z(t)

p
αi
i

6∼= Z(t′)
p
αi
i

for every 0 ≤ t 6= t′ ≤ ki. Now, suppose that C is a

direct summand of Z(ki)

p
αi
i

. There exists a subgroup D of Z(ki)

p
αi
i

such that

Z(ki)

p
αi
i

∼= C⊕D. By [11, Corollary 2.1.7], C is a finitely generated abelian

group. Let C ∼= Z(l1)

q
β1
1

⊕ · · · ⊕ Z(ls)

qβss
. Since Z(lj)

q
βj
j

(1 ≤ j ≤ s) is a direct

summand of C and C is a direct summand of Z(ki)

p
αi
i

, Z(lj)

q
βj
j

(1 ≤ j ≤ s)
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is a direct summand of Z(ki)

p
αi
i

. Now, by uniqueness of decomposition of

finitely generated abelian groups [11, Theorem 2.2.6, (iii)], for every

1 ≤ j ≤ s, we have qj = pi and βj = αi. Hence C ∼= Z(s)

p
αi
i

, where

0 ≤ s ≤ ki.

Step Two. The number of direct summands of Z(ki)

p
αi
i

⊕Z(kj)

p
αj
j

for i 6= j,

up to isomorphism, is equal to (ki + 1)(kj + 1).

It is easy to see that for every 0 ≤ t ≤ ki and 0 ≤ s ≤ kj, Z(t)

p
αi
i

⊕Z(s)

p
αj
j

is a direct summand of Z(ki)

p
αi
i

⊕Z(kj)

p
αj
j

. Now similar to Step One, suppose

that C is a direct summand of Z(ki)

p
αi
i

⊕ Z(kj)

p
αj
j

and D is a subgroup of

Z(ki)

p
αi
i

⊕ Z(kj)

p
αj
j

such that Z(ki)

p
αi
i

⊕ Z(kj)

p
αj
j

∼= C ⊕ D. Suppose C ∼= Z(l1)

q
β1
1

⊕
· · · ⊕ Z(ls)

qβss
. Since for every 1 ≤ m ≤ s, Z(lm)

qβmm
is a direct summand of

Z(ki)

p
αi
i

⊕ Z(kj)

p
αj
j

, so similar to the above argument, C ∼= Z(t)

p
αi
i

⊕ Z(s)

p
αj
j

for

some 0 ≤ t ≤ ki and 0 ≤ s ≤ kj.

Step Three: the number of direct summands of Z(k1)

p
α1
1
⊕ Z(k2)

p
α2
2
⊕ · · · ⊕

Z(kn)

pαnn
, up to isomorphism, is equal to (k1 + 1)(k2 + 1) · · · (kn + 1).

It is concluded by Step Two and induction on n. �

3. The Capacity of Moore Spaces

In this section, we compute the capacity of Moore spaces. Also, we
compute the capacity of wedge sum of finitely many Moore spaces of
different degrees. In particular, we compute the capacity of wedge sum
of finitely many spheres of the same or different dimensions.

Definition 3.1. [1]. A Moore space of degree n (n ≥ 2) is a simply
connected CW -space X with a single non-vanishing homology group
of degree n, that is H̃i(X,Z) = 0 for i 6= n. We write X = M(A, n),
where A ∼= H̃n(X,Z).

Note that for n = 1, the Moore space M(A, 1) can not be defined,
because of some problems in existence and uniqueness of the space (for
more details, see [9]).

The (n − 1)-fold suspension [20] of a pseudo projective plane Pq =
S1 ∪q e2 [1], is a Moore space of degree n, that is

Σn−1Pq = M(Zq, n).

Recall that Pq is the space obtained by attaching a 2-cell e2 to S1 by a
map q : S1 −→ S1 of degree q.
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It is also obvious that the sphere Sn is also a Moore space, Sn =
M(Z, n).

Theorem 3.2. [1]. The homotopy type of a CW complex Moore space
M(A, n) is uniquely determined by A and n (n > 1).

Let Ab be the category of abelian groups. Also for n ≥ 2, let
Mn ⊂ hTop be the full subcategory of the category hTop consisting
of spaces M(A, n) with A ∈ Ab. For n ≥ 2, FMn denotes the full
subcategory of Mn consists of all Moore spaces M(A, n), where A is a
finitely generated abelian group (see [1]). For each such group we have
a direct sum decomposition

Zq1 ⊕ Zq2 ⊕ · · · ⊕ Zqr , qi ≥ 0

of cyclic groups. Associated with this isomorphism there is a homotopy
equivalence

M(A, n) ' Σn−1
(
Pq1 ∨ Pq2 ∨ · · · ∨ Pqr

)
,

where Pn = S1 ∪n e2 is a pseudo-projective plane if n > 0, and P0 = S1

(see [1]).

Theorem 3.3. [9]. For a wedge sum
∨
αXα , the inclusions iα : Xα ↪→∨

αXα induce an isomorphism
⊕

α iα∗ :
⊕

α H̃n(Xα) −→ H̃n(
∨
αXα),

provided that the wedge sum is formed at basepoints xα ∈ Xα, such that
the pairs (Xα, xα)’s are good.

By a good pair (X,A), we mean a topological spaceX and a nonempty
closed subspace A of X in which A is also a deformation retract of some
neighborhood in X. For any CW-complex X and any subcomplex A
of X, (X,A) is a good pair (see [9, Proposition A.5]).

Lemma 3.4. Let A be an abelian group and n ≥ 2. Then a space X
is homotopy dominated by Moore space M(A, n) if and only if X has
the homotopy type of M(B, n), where B is a direct summand of A.

Proof. Suppose that X is homotopy dominated by M(A, n). Then
H̃i(X) is a direct summand of H̃i(M(A, n)), for all i. Hence H̃i(X) = 0
if i 6= n and H̃n(X) = B, where B is a direct summand of A. Therefore,
X has the homotopy type of M(B, n).

Conversely, assume that B is a direct summand of A. So there
exists a subgroup C of A such that A = B ⊕ C. Put X = M(A, n),
Y = M(B, n) and Z = M(C, n). Then by Theorem 3.3,

H̃i(Y ∨ Z) ∼= H̃i(Y )⊕ H̃i(Z) ∼=
{
B ⊕ C = A, i = n

0, i 6= n.
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This shows that Y ∨ Z is an M(A, n). Now by Theorem 3.2, Y ∨ Z is
homotopy equivalent to X. Since Y is a retract of Y ∨Z, it is therefore
homotopy dominated by X. Thus the proof is finished. �

The previous lemma and Theorem 3.2 imply the following result.

Proposition 3.5. There is a one-to-one correspondence between the
set of all homotopy types of spaces homotopy dominated by M(A, n)
and the set of all isomorphism classes of direct summands of A, for
n ≥ 2.

The following result is a consequence of Proposition 2.7 and Propo-
sition 3.5.

Proposition 3.6. Let X be a Moore Space M(A,m) (m ≥ 2), where
A is a finitely generated abelian group of the form

Z(k1)

p
α1
1
⊕ Z(k2)

p
α2
2
⊕ · · · ⊕ Z(kn)

pαnn
,

where for i 6= j, pαii 6= p
αj
j , pi’s are prime numbers, αi’s are non-

negative integers, Z(ki)

p
αi
i

is the direct product of ki copies of Zp
αi
i

and

Z1 = Z. Then the capacity of X is equal to

(k1 + 1)× · · · × (kn + 1).

As an example, by Proposition 3.5, the capacity of the Moore space
M(Q, n) is exactly 2. Recall that Q is not the direct sum of any
family of its proper subgroups. Also, by Proposition 3.6, the capacity
of M(Z2 ⊕Z2 ⊕Z3 ⊕Z⊕Z, n), M(Z9 ⊕Z64), M(Z, n) and M(Zpm , n)
are 18, 4, 2 and 2, respectively.

Remark 3.7. The computation of the capacity of wedge sum of finitely
many spheres with the same or different dimensions seems interesting.
In [3], it has been mentioned that the capacity of

∨
k S1 is equal to

k + 1. Also, Kolodziejczyk in [13] asked the following question:
Does every polyhedron P with the abelian fundamental group π1(P )

dominate only finitely many different homotopy types?
It has been proved that two extensive classes of polyhdera, polyhedra

with finite fundamental groups, and polyhedra P with abelian funda-
mental groups and finitely generated homology groups Hi(P̃ ) (i ≥ 2),
have finite capacities, where P̃ denotes the universal covering space
of P (see [13],[14]). The wedge sum S1 ∨ S2 is a simple example of
a polyhedron P with abelian fundamental group π1(P ) and infinitely
generated homology group H2(P̃ ; Z) which the finiteness of its capacity
is still unknown. Note that S1 ∨ S2 is neither a Moore space nor an
Eilenberg-MacLane space.
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In the following, we compute the capacity of wedge sum of finitely
many Moore spaces with the same or different degrees. In particular,
we compute the capacities of

∨
k Sn, Sm ∨ Sn (m,n ≥ 2,m 6= n), and

the general case
∨
n∈I(∨inSn), where I is a finite subset of N \ {1} and

the index in ∈ N denotes the number of copies of Sn in
∨
n∈I(∨inSn).

Corollary 3.8. Let n ≥ 2 be fixed. The capacity of
∨
α∈I Sn is finite

if and only if I is finite. In particular, C(
∨
i∈{1,··· ,k} Sn) = k + 1, for

every n ≥ 1.

Proof. Suppose that the capacity of
∨
α∈I Sn is finite. Then, since

Hn(
∨
α∈I Sn) =

⊕
α∈I Z, by Proposition 3.5, the set I is finite. Con-

versely, suppose I is finite and |I| = k. Hence, by Theorem 3.3, we
have Hn(

∨
i∈{1,··· ,k} Sn) = Z(k) and since

∨
i∈{1,··· ,k} Sn is a Moore space

of degree n, by Proposition 3.6, the capacity of
∨
i∈{1,··· ,k} Sn is equal

to k + 1. �
Recall that a group G is called Hopfian if every epimorphism f :

G −→ G is an automorphism (equivalently, N = {1} is the only normal
subgroup of G for which G/N ∼= G). It is easy to see that if G is a
Hopfian group and H ∼= G, then H is also Hopfian. Moreover, if G is
an abelian Hopfian group and K is a direct summand of G, then K is
also Hopfian [19].

Proposition 3.9. Let X =
∨
α∈IM(Aα, nα), where all nα are dis-

tinct, nα ≥ 2 and also all Aα are abelian Hopfian groups. Then, every
topological space homotopy dominated by X has the homotopy type of∨
α∈IM(Bα, nα), where Bα is a direct summand of Aα for each α ∈ I.

Proof. Suppose that the space Y is homotopy dominated by X with a
domination map g : X −→ Y and a converse map f : Y −→ X. From
g ◦ f ' idY , we have

Hn(g) ◦Hn(f) = idHn(Y ), (3.1)

for all n ≥ 1. Let hXn : πn(X) −→ Hn(X) denotes the n-th Hurewicz
map. By [1, Proposition 2.6.15], hXn is split surjective for all n > 1. So
there exists a homomorphism φXn : Hn(X) −→ πn(X) such that

hXn ◦ φXn = idHn(X), (3.2)

for all n > 1. Define homomorphism ψYn : Hn(Y ) −→ πn(Y ) by

ψYn = πn(g) ◦ φXn ◦Hn(f), (3.3)

for all n > 1. Then by Eqs. (3.1), (3.2), (3.3) and the fact that the
Hurewicz map is natural, we conclude that

hyn ◦ ψYn = hYn ◦ (πn(g) ◦ φXn ◦Hn(f))
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= (hYn ◦ πn(g)) ◦ φXn ◦Hn(f)

= (Hn(g) ◦ hXn ) ◦ φXn ◦Hn(f)

= Hn(g) ◦ (hXn ◦ φXn ) ◦Hn(f)

= Hn(g) ◦Hn(f)

= idHn(Y ),

for all n > 1. This shows that hYn is split surjective for all n > 1. So
by [1, Proposition 2.6.15], Y has the homotopy type of a one point
union of Moore spaces, say

∨
α∈IM(Bα, nα). On the other hand, by

the distinctness condition of nα’s, we have

H̃nα(Y ) ∼= H̃nα

(∨

α∈I
M(Bα, nα)

)
∼=
⊕

α∈I
H̃nα(M(Bα, nα)) ∼= Bα

which implies that Bα is a direct summand of H̃nα(X) = Aα, for each
α ∈ I. Thus the proof is complete. �

The following corollary is a consequence of Proposition 3.9.

Corollary 3.10. Let X =
∨
α∈IM(Aα, nα), where nα’s are distinct,

nα ≥ 2 and Aα’s are abelian Hopfian groups. Then

C(X) =
∏

α∈I
C(M(Aα, nα)).

Remark 3.11. Note that we can not omit the distinctness condition of
nα’s in Corollary 3.10. For example,

C(S2 ∨ S2 ∨ S3) = 6 6= 8 = C(S2)× C(S2)× C(S3).

To overcome such difficulty, one can condiser M(
⊕

α∈I Aα, n) instead
of
∨
α∈IM(Aα, n). To see this, consider the above example. Then

S2 ∨ S2 = M(Z⊕ Z, 2) and S3 = M(Z, 3) which follows that

C(S2 ∨ S2 ∨ S3) = C(S2 ∨ S2)× C(S3) = 3× 2 = 6.

Now, we are in a position to compute the capacity of wedge sum of
finitely many spheres of the same or different dimensions.

Corollary 3.12. The capacity of
∨
n∈I(∨inSn) is equal to

∏
n∈I(in+1),

where ∨inSn denotes the wedge sum of in copies of Sn, I is a finite subset
of N \ {1} and in ∈ N.

Proof. It can be concluded from Corollaries 3.8 and 3.10. �

By the above corollary, the capacity of Sm ∨ Sn (m,n ≥ 2,m 6= n) is
equal to 4.
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4. The Capacity of Eilenberg-MacLane Spaces

In this section, we intend to compute the capacity of Eilenberg-
MacLane spaces. Note that some of the results concerning the capac-
ity of Eilenberg-MacLane spaces are similar to the results of previous
section for Moore spaces, but their proofs are different. Also note that
there exist Moore spaces which are not Eilenberg-MacLane spaces and
vice versa. For example, Sn (n ≥ 2) is an example of a Moore space
which is not an Eilenberg-MacLane space. Also, k-dimensional torus
Tk (k ≥ 1) is an Eilenberg-MacLane space which is not a Moore space.

Recall that a space X having just one nontrivial homotopy group
πn(X) ∼= G is called an Eilenberg-MacLane space and is denoted by
K(G, n). The full subcategory of the category hTop consisting of spaces
K(G, n) with G ∈ Gp is denoted by Kn (see [9]).

Theorem 4.1. [1]. The n-th homotopy group functor πn : Kn −→ Ab
is an equivalence of categories for n ≥ 2. Moreover, the functor π1 :
K1 −→ Gp is also an equivalence of categoreis.

Theorem 4.2. [9]. The homotopy type of a CW complex K(G, n) is
uniquely determined by G and n.

Lemma 4.3. Let G be a group. Then the space X is homotopy dom-
inated by Eilenberg-MacLane space K(G, n) if and only if X has the
homotopy type of K(H,n), where H is an r-image of G.

Proof. Suppose that X is homotopy dominated by K(G, n). Then
πi(X) is an r-image of πi(K(G, n)), for each i ≥ 1. Hence πi(X) = 0
for each i 6= n and πn(X) = H, where H is an r-image of G. Therefore
X has the homotopy type of an Eilenberg-MacLane space of the form
K(H,n).

Conversely, suppose that f̄ : H −→ G and ḡ : G −→ H are ho-
momorphisms such that ḡ ◦ f̄ = idH . By Theorem 4.1, there exist
maps f : K(H,n) −→ K(G, n) and g : K(G, n) −→ K(H,n) such
that πn([f ]) = f̄ and πn([g]) = ḡ. Since ḡ ◦ f̄ = idH , we must
have g ◦ f ' idK(H,n). Hence K(H,n) is homotopy dominated by
K(G, n). �

Now, similar to Moore spaces, we have the following result concern-
ing the capacity of Eilenberg-MacLane spaces.

Proposition 4.4. There exists a one-to-one correspondence between
the set of all homotopy types of spaces homotopy dominated by Eilenberg-
MacLane space K(G, n) and the set of all isomorphism classes of r-
images of G.
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Proof. By Lemma 4.3, every space homotopy dominated by K(G, n)
has the form K(H,n), where H is an r-image of G. Also, if H is an
r-image of G, then K(H,n) is homotopy dominated by K(G, n). Now,
By Theorem 4.2, it is obvious that H 7−→ K(H,n) is a one-to-one
correspondence between the set of all isomorphism classes of r-images
H ofG and the set of all homotopy types of spaces homotopy dominated
by K(G, n). �

Note that by a result of Kolodziejczyk [15], the capacity of K(G, n)
is finite, for n ≥ 2. Also, when G is abelian, by another result of
Kolodziejczyk [13, Theorem 2], the capacity of K(G, 1) is also finite.
By Corollary 2.6 and Proposition 4.4, we have the following corollary.

Corollary 4.5. Let G be an abelian group. Then the capacity of
K(G, n) (n ≥ 1) is finite if and only if G has finitely many direct
summands up to isomorphism.

In the following, we compute the capacity of K(G, n), when G is a
finitely generated abelian group.

Proposition 4.6. Let X be an Eilenberg-MacLane space K(G, n) (n ≥
1), where G is a finitely generated abelian group of the form

Z(k1)

p
α1
1
⊕ Z(k2)

p
α2
2
⊕ · · · ⊕ Z(kn)

pαnn
,

where for i 6= j, pαii 6= p
αj
j , pi’s are prime numbers, αi’s are non-

negative integers, Z(ki)

p
αi
i

is the direct sum of ki copies of Zp
αi
i

and Z1 = Z.

Then the capacity of X is equal to

(k1 + 1)× · · · × (kn + 1).

Proof. This is a consequence of Proposition 2.7 and Proposition 4.4. �
As an example, the capacity of n-dimensional torus Tn is equal to

n + 1. Note that Tn is not a Moore space, so its capacity can not be
computed by the results of the previous section.

Example 4.7. K(Q, 1) is an infinite CW-complex of capacity 2. In-
deed, Q is not finitely generated abelian group and so by [20, Corollary
7.37], K(Q, 1) is an infinite CW-complex. Also, by Corollary 4.5 and
the fact that Q has only two r-images up to isomorphism, the capacity
of K(Q, 1) is 2.

Let A be an abelian group. A set {a1, · · · , ak} of nonzero elements

of A is called linearly independent if
∑k

i=1 niai = 0 (ni ∈ Z) implies
n1a1 = · · · = nkak = 0. More explicitly, this means ni = 0 if o(ai) =∞
and o(ai)|ni if o(ai) is finite. By the rank r(A) of A is meant the
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cardinal number of a maximal independent set containing only elements
of infinite and prime power orders (see [8]). One can easily see that the
rank of the additive group of rational numbers Q is 1. Accordingly, Q
is a simple example of a finire rank torsion free abelian group which is
not finitely generated.

From Proposition 4.6, the capacity ofK(G, n) for a finite rank torsion
free abelian group G is finite. From the next corollary we can conclude
that the capacity K(G, n) is also finite when G is an infinitely generated
finite rank torsion free abelian group.

Corollary 4.8. The capacity of K(G, n) for finite rank torsion free
abelian group G is finite.

Proof. It can be concluded from Corollary 4.5 and the fact that G has
only finitely many direct summands, up to isomorphism (see [6]). �
Remark 4.9. By the definition of AKS Z-module (for more details, see
[7]), an abelian group is AKS Z-module if and only if it has finitely
many direct summands up to isomorphism. Hence, we can rewrite
Corollary 4.5 for any abelian group G as follows:

“ K(G, n) has finite capacity if and only if G is an AKS Z-module”

As an example, Artinian Z-modules satisfy the definition of AKS Z-
module.

To compute the capacity of finite product of Eilenberg-MacLane
spaces, we give the following proposition.

Proposition 4.10. Let X =
∏

α∈I K(Gα, nα), where nα’s are distinct,
nα ≥ 1 and Gα’s are Hopfian groups. Then every topological space
homotopy dominated by X has the homotopy type of

∏
α∈I K(Hα, nα),

where Hα is an r-image of Gα for each α.

Proof. Suppose that the space Y is homotopy dominated by X with
a domination map g : X −→ Y and a converse map f : Y −→ X.
From g ◦ f ' idY , we have πnα(g) ◦ πnα(f) = idπnα (Y ) for each α ∈
I. This shows that πnα(Y ) is an r-image of πnα(X) = Gα for each
α ∈ I. Then by Lemma 4.3, K(πnα(Y ), nα) is homotopy dominated by
K(Gα, nα) with a domination map dα : K(Gα, nα) −→ K(πnα(Y ), nα)
and a converse map uα : K(πnα(Y ), nα) −→ K(Gα, nα) so that

πnα(dα) = πnα(g) and πnα(uα) = πnα(f). (*)

Then
∏

α∈I K(πnα(Y ), nα) is a homotopy dominated by space X =∏
α∈I K(Gα, nα) with domination map

d =
∏

α∈I
dα : X −→

∏

α∈I
K(πnα(Y ), nα)
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and converse map

u =
∏

α∈I
uα :

∏

α∈I
K(πnα(Y ), nα) −→ X.

Now, consider the map g ◦ u :
∏

α∈I K(πnα(Y ), nα) −→ Y . By (*),

πnα(g ◦ u)
(
πnα(

∏

α∈I
K(πnα(Y ), nα))

)
= πnα(g)(πnα(u)(πnα(Y ))))

= πnα(g)(πnα(f)(πnα(Y )))

= πnα(Y )

for each α ∈ I. This show that for each α ∈ I, πnα(g ◦ u) is an
epimorphism between two isomorphic Hopfian groups which must be
an isomorphism. Now by Theorem 2.1, the map g ◦ u is a homotopy
equivalence. Thus Y has the homotopy type of

∏
α∈I K(πnα(Y ), nα).

�
Corollary 4.11. Let {K(Gα, nα)}α∈I be a family of Eilenberg-MacLane
spaces, where nα’s are distinct, nα ≥ 1 and Gα’s are Hopfian groups.
Then C(

∏
α∈I K(Gα, nα)) =

∏
α∈I C

(
K(Gα, nα)

)
.

Proof. This is a direct result of Proposition 4.10. �
Remark 4.12. Note that we can not omit the distinctness condition of
nα’s in Proposition 4.10. For example,

C(S1 × S1 ×K(Z, 2)) = 6 6= 8 = C(S1)× C(S1)× C(K(Z, 2)).

To overcome such difficulty, one can condiser K(
∏

α∈I Gα, n) instead
of
∏

α∈I K(Gα, n). To see this, consider the above example. Then
S1 × S1 = K(Z× Z, 1) which follows that

C(S1 × S1 ×K(Z, 2)) = C(S1 × S1)× C(K(Z, 2)) = 3× 2 = 6.

Let X be a topological space. The set of all maps f : X −→ X
satisfying the condition f 2 = f , constitute a subset of XX which is
denoted by R(X) (see [2]). Also, the set of all homotopy classes of
maps f : X −→ X with f 2 ' f which are called homotopy idempotents
of X, is denoted by hI(X). Similarly, for a group G, the set of all
homomorphisms f : G −→ G with f 2 = f , is denoted by R(G).

Remark 4.13. By [10], we know that |hI(X)| is an upper bound for
the capacity of topological space X. Here we show that |hI(X)| is not
a good upper bound for the capacity of X. To see this, let X be an
Eilenberg-MacLane space K(G, 1). By Theorem 4.1, the correspon-
dence f 7−→ f∗ induces a one-to-one correspondence between [X,X]
and Hom(π1(X), π1(X)). So the number of homotopy classes of maps
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f : X −→ X with f 2 ' f is equal to the number of homomorphisms
g : π1(X) −→ π1(X) with g2 = g. Hence |hI(X)| = |R(π1(X))|. Now,
suppose that X is the torus T2. Then |hI(T2)| = |R(π1(T2))|. Since
π1(T2) ∼= Z × Z, we have Hom(π1(T2), π1(T2)) ∼= M2(Z). Therefore
|R(π1(T2))| equals to the number of idempotent matrices in M2(Z).

But M2(Z) has infinite number idempotents such as

(
1 n
0 0

)
for n ∈ Z.

Hence hI(T2) is infinite, while C(T2) = 3.
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مور و آیلنبرگ-مک�لین فضاهای ظرفیت درباره

میرابراهیمی هانیه مشایخی، بهروز محرری، مجتبی
محض ریاضی گروه ریاضی، علوم دانشکده فردوسی، دانشگاه مشهد، ایران،

متریک فضای یک ظرفیت مفهوم مسکو، در توپولوژیکی کنفرانس در ،١٩٧٩ سال در بورسوک کارول
در نمود. مطرح فشرده متریک فضاهای ظرفیت خواص با ارتباط در سوال چند و کرد معرفی را فشرده
در داد. خواهیم حالات از بعضی در مثبت جزئی پاسخ�های مسائل این از سوال سه به ما مقاله، این
ظرفیت�های آیلنبرگ-مک�لین، و مور فضاهای توسط هموتوپی تسلط تحت فضاهای توصیف با حقیقت،
همچنین، هستند. محاسبه قابل K(G,n) آیلنبرگ-مک�لین فضای یک و M(A, n) مور فضای یک
متناهی تعداد حاصلضرب ظرفیت و متفاوت درجه�های از مور فضای متناهی تعداد الحاق ظرفیت ما
ظرفیت خاص، حالت در نمود. خواهیم محاسبه را متفاوت هموتوپی انواع از آیلنبرگ-مک�لین فضای

می�کنیم. محاسبه را متفاوت یا و یکسان ابعاد از کره متناهی تعداد الحاق

مور. فضای آیلنبرگ-مک�لین، فضای هموتوپیکی، تسلط کلیدی: کلمات

۵


