Journal of Algebraic Systems Vol. 6, No. 2, (2019), pp 147-155

ON EQUALITY OF ABSOLUTE CENTRAL AND CLASS PRESERVING AUTOMORPHISMS OF FINITE *p*-GROUPS

RASOUL SOLEIMANI*

ABSTRACT. Let G be a finite non-abelian p-group and L(G) denotes the absolute center of G. Also, let $\operatorname{Aut}^{L}(G)$ and $\operatorname{Aut}_{c}(G)$ denote the group of all absolute central and the class preserving automorphisms of G, respectively. In this paper, we give a necessary and sufficient condition for G such that $\operatorname{Aut}_{c}(G) = \operatorname{Aut}^{L}(G)$. We also characterize all finite non-abelian p-groups of order $p^{n} (n \leq 5)$, for which every absolute central automorphism is class preserving.

1. INTRODUCTION

Throughout this paper, all groups mentioned are assumed to be finite and p always denotes a prime number. By $G', Z(G), \Phi(G), \operatorname{Inn}(G)$ and Aut(G), we denote the commutator subgroup, the center, the Frattini subgroup, the group of all inner automorphisms and the group of all automorphisms of G, respectively. For $x \in G$, x^G denotes the conjugacy class of all $x^g = g^{-1}xg$, where $g \in G$, and [x, G] stands the set of all commutators of the form $[x, g] = x^{-1}g^{-1}xg$, $g \in G$. Since $x^g = x[x, g]$, for all $g \in G$, we have $x^G = x[x, G]$ and so $|x^G| = |[x, G]|$. For $x \in G$ and $\alpha \in \operatorname{Aut}(G)$, the element $[x, \alpha] = x^{-1}x^{\alpha}$ is called the autocommutator of x and α . Also inductively, for all $\alpha_1, \alpha_2, ..., \alpha_n \in \operatorname{Aut}(G)$, define $[x, \alpha_1, \alpha_2, ..., \alpha_n] = [[x, \alpha_1, \alpha_2, ..., \alpha_{n-1}], \alpha_n]$. An automorphism α of G is called a class preserving automorphism if $x^{\alpha} \in x^G$, for all

MSC(2010): Primary: 20D45; Secondary: 20D25, 20D15.

Keywords: Absolute centre, Absolute central automorphisms, Class preserving automorphisms, Finite p-groups.

Received: 11 March 2018, Accepted: 03 September 2018.

^{*}Corresponding author.

RASOUL SOLEIMANI

 $x \in G$. The set of all class preserving automorphisms of G, denoted by $\operatorname{Aut}_c(G)$, contains $\operatorname{Inn}(G)$. Let N be a normal subgroup of G and $\alpha \in \operatorname{Aut}(G)$. If $N^{\alpha} = N$ (or $Nx^{\alpha} = Nx$ for all $x \in G$), we shall say α normalizes N (centralizes G/N respectively). Now let M and N be normal subgroups of G. We let $\operatorname{Aut}^N(G)$ denote the group of all automorphisms α of G normalizing N and centralizing G/N (or equivalently, $[x, \alpha] \in N$ for all $x \in G$), and $C_{\operatorname{Aut}^N(G)}(M)$ the group of all automorphisms of $\operatorname{Aut}^N(G)$ centralizing M. Hegarty [5] introduced the absolute center L(G) of a group G as

$$L(G) = \{ g \in G \mid [g, \alpha] = 1, \forall \alpha \in \operatorname{Aut}(G) \}.$$

It is easy to check that L(G) is a characteristic subgroup contained in the center of G. If we choose N = L(G) or N = Z(G), then $\operatorname{Aut}^{N}(G)$ is precisely the group of all absolute central or central automorphisms of G. In this paper, we give a necessary and sufficient condition on a finite non-abelian p-group G such that $\operatorname{Aut}^{L}(G) = \operatorname{Aut}_{c}(G)$. We also characterize all finite non-abelian p-groups G of order $p^{n}(n \leq 5)$, for which $\operatorname{Aut}^{L}(G) = \operatorname{Aut}_{c}(G)$.

Recall an abelian *p*-group *A* has invariants or is of type $(a_1, a_2, ..., a_k)$ if it is the direct product of cyclic subgroups of orders $p^{a_1}, p^{a_2}, ..., p^{a_k}$, where $a_1 \ge a_2 \ge ... \ge a_k > 0$.

Let G be a finite non-abelian p-group such that G/G' and L(G) are of types $(a_1, a_2, ..., a_k)$ and $(b_1, b_2, ..., b_l)$. Also if G/L(G) is abelian, then G/Z(G) and G' are of types $(e_1, e_2, ..., e_n)$ and $(d_1, d_2, ..., d_s)$. Since $G' \leq Z(G)$, by [2, Section 25], $n \leq k$ and $e_j \leq a_j$ for each $1 \leq j \leq n$.

The above notation will be used in the rest of the paper. We state the main result in the following theorem:

Theorem. Let G be a finite non-abelian p-group. Then the following statements are equivalent:

- (i) $\operatorname{Aut}_c(G) = \operatorname{Aut}^L(G)$, where L = L(G);
- (ii) $G' = L(G), Z(G) \leq \Phi(G), |\operatorname{Aut}_c(G)| = \prod_{1 \leq i \leq n} |\Omega_{e_i}(G')|$ and one of the following conditions holds:
 - (1) L(G) = Z(G) or
 - (2) L(G) < Z(G), n = k and $b_1 = e_t$, where t is the largest integer between 1 and n such that $a_t > e_t$.

2. Preliminary results

A *p*-group *G* is said to be extraspecial if $G' = Z(G) = \Phi(G)$ is of order *p*. If α is an automorphism of *G* and *x* is an element of G, we write x^{α} for the image of x under α . For a finite group G, exp(G), d(G), $\Omega_i(G)$, and o(x) respectively denote the exponent of G, minimal number of generators of G, the subgroup of G generated by its elements of order dividing p^i and the order of x. We use U^n for the direct product of n-copies of a group U, C_n for the cyclic group of order n where $n \geq 1$, as usual D_8 , respectively Q_8 , for the dihedral group, resp. the quaternion group, of order 8. Also the minimal nonabelian p-groups $M_p(n,m)$ and $M_p(n,m,1)$ of order p^{n+m} and p^{n+m+1} as defined respectively by

$$\langle x, y \mid x^{p^n} = y^{p^m} = 1, x^y = x^{1+p^{n-1}} \rangle,$$

where $n \ge 2, m \ge 1$ and

$$\langle x, y, z \mid x^{p^n} = y^{p^m} = z^p = 1, [x, y] = z, [x, z] = [y, z] = 1 \rangle,$$

where $n \ge m \ge 1$ and if p = 2, then m + n > 2. Let $L_1(G) = L(G)$, and for $n \ge 2$, define $L_n(G)$ inductively as

$$L_n(G) = \{ g \in G \mid [g, \alpha_1, \alpha_2, ..., \alpha_n] = 1, \forall \alpha_1, \alpha_2, ..., \alpha_n \in Aut(G) \}$$

A group G is called the autonilpotent of class n if n is the smallest natural number such that $L_n(G) = G$. Finally, let G and H be any two groups. We denote by $\operatorname{Hom}(G, H)$ the set of all homomorphisms from G into H. Clearly, if H is an abelian group, then $\operatorname{Hom}(G, H)$ forms an abelian group under the following operation (fg)(x) = f(x)g(x), for all $f, g \in \operatorname{Hom}(G, H)$ and $x \in G$.

The following lemma is well-known and will be used in the proof of our results.

Lemma 2.1. Let U, V and W be finite abelian groups. Then

- (i) $\operatorname{Hom}(U \times V, W) \cong \operatorname{Hom}(U, W) \times \operatorname{Hom}(V, W);$
- (ii) $\operatorname{Hom}(U, V \times W) \cong \operatorname{Hom}(U, V) \times \operatorname{Hom}(U, W);$
- (iii) $\operatorname{Hom}(C_m, C_n) \cong C_f$, where f is the greatest common divisor of m and n.

The following preliminary lemma is well-known result [10, Lemma 2.2].

Lemma 2.2. Let G be a group and M, N be normal subgroups of G with $N \leq M$ and $C_N(M) \leq Z(G)$. Then

$$C_{\operatorname{Aut}^N(G)}(M) \cong \operatorname{Hom}(G/M, C_N(M)).$$

The following useful result can be found in [11].

Theorem 2.3. [11, Theorem 2.5]. Let G be a finite p-group different from C_2 . Then $\operatorname{Aut}^L(G) \cong \operatorname{Hom}(G, L(G))$.

3. Proofs

Lemma 3.1. Let G be a finite non-abelian p-group such that G/L(G) is abelian and $\operatorname{Aut}_c(G) = \operatorname{Aut}^L(G)$. Then

(i)
$$Z(G) \leq \Phi(G)$$
 and
 $\operatorname{Aut}_{c}(G) \cong \operatorname{Hom}(G/Z(G), G') \cong \operatorname{Hom}(G/Z(G), L(G))$
 $\cong \operatorname{Hom}(G/G', L(G));$
(ii) $|\operatorname{Aut}_{c}(G)| = \prod_{1 \leq i \leq n} |\Omega_{e_{i}}(G')|.$

Proof. (i) Suppose, on the contrary, that there exists a maximal subgroup M of G such that $Z(G) \notin M$. Then $G = M\langle z \rangle$, for some zin $Z(G) \backslash M$. We choose an element u in $\Omega_1(L(G))$. Then it is easy to see that the map $\alpha : hz^i \mapsto h(zu)^i$, where $h \in M$ and $0 \leq i < p$, is an absolute central automorphism of G which is not class preserving. Hence $Z(G) \leq \Phi(G)$. Next, since $\operatorname{Aut}_c(G) \leq C_{\operatorname{Aut}^{G'}(G)}(Z(G)) \leq C_{\operatorname{Aut}^L(G)}(Z(G)) \leq \operatorname{Aut}^L(G) = \operatorname{Aut}_c(G)$, by Lemma 2.2 and Theorem 2.3, we have

$$\operatorname{Aut}_{c}(G) = C_{\operatorname{Aut}^{G'}(G)}(Z(G)) \cong \operatorname{Hom}(G/Z(G), G')$$
$$\cong \operatorname{Hom}(G/Z(G), L(G)) \cong \operatorname{Hom}(G/G', L(G)).$$

(ii) Let $G/Z(G) = \langle \bar{x}_1, \bar{x}_2, ..., \bar{x}_n \rangle$ such that $o(\bar{x}_i) = o(x_i Z(G)) = p^{e_i}$, for $1 \leq i \leq n$. Since $Z(G) \leq \Phi(G)$, by [13, Lemma 3.5], $\{x_1, x_2, ..., x_n\}$ is a minimal generating set for G. Now the correspondence $\sigma \rightarrow (x_1^{\sigma}, ..., x_n^{\sigma})$ is one-to-one mapping from $\operatorname{Aut}_c(G)$ onto $x_1^G \times ... \times x_n^G$. Thus $|\operatorname{Aut}_c(G)| \leq \prod_{1 \leq i \leq n} |x_i^G|$. By [13, Lemma 3.1], $\exp([x_i, G]) = o(\bar{x}_i) = o(x_i Z(G))$, for any $1 \leq i \leq n$. So $|\operatorname{Hom}(\langle \bar{x}_i \rangle, [x_i, G])| = |[x_i, G]|$. Hence,

 $|\operatorname{Aut}_c(G)| = |\operatorname{Hom}(G/Z(G), L(G))| \ge |\operatorname{Hom}(G/Z(G), G')|$

$$= \prod_{1 \le i \le n} |\operatorname{Hom}(\langle \bar{x}_i \rangle, G')| \ge \prod_{1 \le i \le n} |\operatorname{Hom}(\langle \bar{x}_i \rangle, [x_i, G])| = \prod_{1 \le i \le n} |[x_i, G]|$$
$$= \prod_{1 \le i \le n} |x_i^G| \ge |\operatorname{Aut}_c(G)|.$$

Therefore, $|\operatorname{Aut}_{c}(G)| = \prod_{1 \leq i \leq n} |x_{i}^{G}|$ and for each $1 \leq i \leq n$, $|\operatorname{Hom}(\langle \bar{x}_{i} \rangle, G')| = |\operatorname{Hom}(\langle \bar{x}_{i} \rangle, [x_{i}, G])|.$

As $|\operatorname{Hom}(\langle \bar{x}_i \rangle, [x_i, G])| = |[x_i, G]|$, it follows from [13, Lemma 2.7], that $|[x_i, G]| = |\operatorname{Hom}(\langle \bar{x}_i \rangle, G')| = |\operatorname{Hom}(\langle \bar{x}_i \rangle, \Omega_{e_i}(G'))| = |\Omega_{e_i}(G')|.$

150

On the other hand, $[x_i, G] \leq \Omega_{e_i}(G')$ and hence $[x_i, G] = \Omega_{e_i}(G')$, for $1 \leq i \leq n$. Since $|x_i^G| = |[x_i, G]|$ for $1 \leq i \leq n$, we have $|\operatorname{Aut}_c(G)| = \prod_{1 \leq i \leq n} |\Omega_{e_i}(G')|$, which completes the proof. \Box

Proof of Theorem.

First assume that $\operatorname{Aut}_c(G) = \operatorname{Aut}^L(G)$. For any $x, y \in G$, by the inner automorphism $i_y \in \operatorname{Aut}_c(G)$, induced by $y \in G$, $x^{-1}x^{i_y} = [x, y] \in L(G)$ and thus $G' \leq L(G)$. So by Lemma 3.1(ii), $|\operatorname{Aut}_c(G)| = \prod_{1 \leq i \leq n} |\Omega_{e_i}(G')|$, $Z(G) \leq \Phi(G)$ and $|\operatorname{Aut}_c(G)| = |\operatorname{Hom}(G/Z(G), G')|$. We claim that G' = L(G). Suppose, on the contrary, that G' < L(G). Then G/L(G) is a proper quotient subgroup of G/G' and |G/G'/G/L(G)| = |L(G)/G'| > 1. It thus follows from [3, Lemma D] and $L(G) \leq Z(G)$ that $\operatorname{Hom}(G/Z(G), G')$ is isomorphic to a proper subgroup of $\operatorname{Hom}(G/G', L(G))$. Hence $|\operatorname{Aut}_c(G)| < |\operatorname{Aut}^L(G)|$, a contradiction. Therefore G' = L(G).

Next, let $L(G) \neq Z(G)$. So G' < Z(G). By Lemma 3.1(i), we have

$$|\operatorname{Hom}(G/Z(G), L(G))| = |\operatorname{Hom}(G/G', L(G))|$$

and so by Lemma 2.1,

$$\prod_{1 \le i \le n, 1 \le j \le l} p^{\min\{e_i, b_j\}} = \prod_{1 \le i \le k, 1 \le j \le l} p^{\min\{a_i, b_j\}}.$$

We claim that n = k. Suppose, by way of contradiction, that n < k. Since $e_j \leq a_j$ for $1 \leq j \leq n$, we have

$$\begin{aligned} |\operatorname{Hom}(G/Z(G), L(G))| &= |\operatorname{Hom}(C_{p^{e_1}} \times C_{p^{e_2}} \times \dots \times C_{p^{e_n}}, L(G))| \\ &\leq |\operatorname{Hom}(C_{p^{a_1}} \times C_{p^{a_2}} \times \dots \times C_{p^{a_n}}, L(G))| \\ &< |\operatorname{Hom}(C_{p^{a_1}} \times C_{p^{a_2}} \times \dots \times C_{p^{a_n}}, L(G))| \\ &\times |\operatorname{Hom}(C_{p^{a_{n+1}}} \times \dots \times C_{p^{a_k}}, L(G))| \\ &= |\operatorname{Hom}(C_{p^{a_1}} \times C_{p^{a_2}} \times \dots \times C_{p^{a_k}}, L(G))| \\ &= |\operatorname{Hom}(G/G', L(G))|, \end{aligned}$$

which is impossible. Therefore n = k, as required. Since $a_i \ge e_i$ for $1 \le i \le n$, we have $\min\{a_i, b_j\} \ge \min\{e_i, b_j\}$, where $1 \le i \le n, 1 \le j \le l$. Thus $\min\{a_i, b_j\} = \min\{e_i, b_j\}$, for $1 \le i \le n, 1 \le j \le l$. Next since G' < Z(G), there exists some $1 \le j \le n$ such that $e_j < a_j$. Let t be the largest integer between 1 and n such that $e_t < a_t$. We claim that $b_1 \le e_t$. Suppose, on the contrary, that $b_1 > e_t$. Then by the above equality, $\min\{a_t, b_1\} = \min\{e_t, b_1\} = e_t$, which is impossible. Thus $b_1 \le e_t$. Now by [8, Lemma 0.4], $e_1 = \exp(G/Z(G)) = \exp(G') = \exp(L(G)) = b_1$. Hence $b_1 \le e_t \le \dots \le e_2 \le e_1 = b_1$ and so $b_1 = e_t$.

RASOUL SOLEIMANI

Conversely, let G' = L(G) = Z(G) and $|\operatorname{Aut}_c(G)| = \prod_{1 \le i \le n} |\Omega_{e_i}(G')|$. Then by [13, Theorem 3.12], $\operatorname{Aut}_c(G) = \operatorname{Aut}^Z(G) = \operatorname{Aut}^L(G)$. Now let $G' = L(G) < Z(G) \le \Phi(G)$, $|\operatorname{Aut}_c(G)| = \prod_{1 \le i \le n} |\Omega_{e_i}(G')|$, n = k and $b_1 = e_t$, where t is the largest integer between 1 and n such that $a_t > e_t$. Let $G/Z(G) = \langle \bar{x_1}, \bar{x_2}, ..., \bar{x_n} \rangle$, where $\bar{x_i} = x_i Z(G)$ and $o(\bar{x_i}) = p^{e_i}$ for $0 < i \le n$. Since $Z(G) \le \Phi(G)$, by [13, Lemma 3.5], $\{x_1, ..., x_n\}$ is a minimal generating set for G. We observe that

$$|\text{Hom}(G/Z(G), L(G))| = \prod_{1 \le i \le n, 1 \le j \le l} p^{\min\{e_i, b_j\}}$$

and

$$|\text{Hom}(G/G', L(G))| = \prod_{1 \le i \le k, 1 \le j \le l} p^{\min\{a_i, b_j\}}$$

Now since $b_1 = e_t$, then $e_1 \ge e_2 \ge \dots \ge e_{t-1} \ge e_t = b_1 \ge b_2 \ge \dots \ge b_l > 0$. Therefore, $b_j \le e_i \le a_i$ for all $1 \le j \le l$ and $1 \le i \le t$. So $\min\{a_i, b_j\} = b_j = \min\{e_i, b_j\}$ for $1 \le i \le t$ and $1 \le j \le l$. Next, since $a_i = e_i$, where i > t, we have $\min\{a_i, b_j\} = \min\{e_i, b_j\}$ for all $t + 1 \le i \le k$ and $1 \le j \le l$. Thus $\min\{a_i, b_j\} = \min\{e_i, b_j\}$ for all $1 \le i \le k$ and $1 \le j \le l$, which shows that $|\operatorname{Hom}(G/Z(G), L(G))| = |\operatorname{Hom}(G/G', L(G))|$. Hence

$$|\operatorname{Aut}_{c}(G)| = \prod_{1 \leq i \leq n} |\Omega_{e_{i}}(G')| = \prod_{1 \leq i \leq n} |\operatorname{Hom}(\langle \bar{x}_{i} \rangle, \Omega_{e_{i}}(G'))|$$
$$= \prod_{1 \leq i \leq n} |\operatorname{Hom}(\langle \bar{x}_{i} \rangle, G')| = |\operatorname{Hom}(G/Z(G), L(G))|$$
$$= |\operatorname{Hom}(G/G', L(G))| = |\operatorname{Aut}^{L}(G)| = |\operatorname{Aut}^{G'}(G)|.$$

Now since $\operatorname{Aut}_c(G) \leq \operatorname{Aut}^{G'}(G)$, the proof is complete.

Camina groups were introduced by Camina in [1]. Let G be a finite group and N be non-trivial proper normal subgroup of G. Then (G, N) is called a Camina pair if $xN \subseteq x^G$ for all $x \in G \setminus N$. It follows that (G, N) is a Camina pair if and only if $N \subseteq [x, G]$ for all $x \in G \setminus N$. A group G is called a Camina group if (G, G') is a Camina pair.

Corollary 3.2. Let G be a non-abelian autonilpotent finite p-group of class 2 such that $\exp(L(G)) = p$. Then $\operatorname{Aut}_c(G) = \operatorname{Aut}^L(G)$ if and only if G' = L(G) and G is a Camina p-group.

Proof. First assume that G' = L(G) and G is a Camina *p*-group. Then $\operatorname{Aut}_c(G) \leq \operatorname{Aut}^L(G)$. Now let $\sigma \in \operatorname{Aut}^L(G)$ and $x \in G$. If $x \in L(G)$, then $x^{\sigma} = x$ and if $x \in G \setminus L(G)$, then $x^{-1}x^{\sigma} \in L(G) \subseteq [x, G]$. This

152

shows that $x^{\sigma} = y^{-1}xy$, for some $y \in G$. Therefore, $\sigma \in \operatorname{Aut}_{c}(G)$ and hence $\operatorname{Aut}_{c}(G) = \operatorname{Aut}^{L}(G)$.

To prove the converse, assume that $\operatorname{Aut}_c(G) = \operatorname{Aut}^L(G)$. By the main Theorem, [7, Corollary 3.7] and [9, Proposition 2.13], $G' = L(G) = \Phi(G)$ and $|\operatorname{Aut}_c(G)| = \prod_{1 \le i \le n} |\Omega_{e_i}(G')|$. Next, since $\exp(G/Z(G)) = \exp(G') = p$, we have $|\operatorname{Aut}_c(G)| = p^{ns}$. Notice that any element $x \in G \setminus L(G)$ can be included in a minimal generating set $\{x = x_1, x_2, ..., x_n\}$ for G. If $[x, G] \subset L(G) = G'$, then $|x^G| < |G'|$, since $|x^G| = |[x, G]|$. Hence $|\operatorname{Aut}_c(G)| < p^{ns}$, which is a contradiction. Thus G is a Camina p-group.

Corollary 3.3. Let G be a finite non-abelian p-group such that G' is cyclic. Then $\operatorname{Aut}_c(G) = \operatorname{Aut}^L(G)$ if and only if G' = L(G) and $Z(G) = L(G)G^{p^n}$ where $\exp(L(G)) = p^n$.

Proof. If G' = L(G) is cyclic, then by [12, Corollary 3.6], $\operatorname{Aut}_c(G) = \operatorname{Inn}(G)$. On the other hand, we observe that every element of $\operatorname{Aut}^L(G)$ fixes any element of Z(G). Hence $\operatorname{Aut}^L(G) = C_{\operatorname{Aut}^L(G)}(Z(G)) = \operatorname{Inn}(G)$, by [10, Proposition 3.2]. Thus $\operatorname{Aut}_c(G) = \operatorname{Aut}^L(G)$. The converse follows from [10, Theorem 3.3].

By [7, Lemma 4.4], if G is an abelian p-group, then |L(G)| = 1, 2. Hence $\operatorname{Aut}^{L}(G) \cong C_{2}^{d}$, where d = d(G) or $|\operatorname{Aut}^{L}(G)| = 1$. In the following corollary, we will characterize all finite non-abelian p-groups G of order $p^{n}(n \leq 5)$, such that $\operatorname{Aut}^{c}(G) = \operatorname{Aut}^{L}(G)$.

Corollary 3.4. Let G be a finite non-abelian p-group of order $p^n, n \leq 5$. Then $\operatorname{Aut}_c(G) = \operatorname{Aut}^L(G)$ if and only if p = 2, G' = L(G) is cyclic and $Z(G) = \Phi(G)$.

Proof. We can assume that $|G| = p^n, 3 \le n \le 5$. Let $\operatorname{Aut}_c(G) = \operatorname{Aut}^L(G)$. Then G' = L(G), by the main Theorem. We distinguish two cases:

CASE I. p is an odd prime. If $|G| = p^3$, then G is an extraspecial p-group and $\operatorname{Inn}(G) \leq \operatorname{Aut}_c(G) \leq \operatorname{Aut}^{G'}(G) \cong \operatorname{Hom}(G/G', G') \cong \operatorname{Inn}(G)$, by Lemma 2.2. Hence $\operatorname{Aut}_c(G) = \operatorname{Inn}(G)$. If $|G| = p^4$ or $|G| = p^5$, then $\operatorname{Aut}_c(G) = \operatorname{Inn}(G)$, by [6] and [4, Theorem 2.3]. Thus $\operatorname{Inn}(G) = \operatorname{Aut}^L(G)$, which is a contradiction by [11, Section 4].

CASE II. Let p = 2. We discuss the following cases. If $|G| = 2^3$, then G is either D_8 or Q_8 and $G' = L(G) \cong C_2$. Hence by [12, Corollary 3.6], $\operatorname{Aut}_c(G) = \operatorname{Aut}^L(G) = \operatorname{Inn}(G)$ and so $Z(G) = \Phi(G)$, by Corollary 3.3. Next, assume that $|G| = 2^4$. We claim that |Z(G)| = 4. By way of contradiction, suppose that |Z(G)| = 2. Since G is of class $2, G' \leq C$

RASOUL SOLEIMANI

 $Z(G) \cong C_2$. So G is an extraspecial 2-group, which is a contradiction since the order of G is not of the form 2^{2k+1} , for some $k \in \mathbb{N}$. Therefore $G/Z(G) \cong C_2^2$, and hence |G'| = 2. Thus $\operatorname{Aut}^L(G) = \operatorname{Aut}_c(G) =$ $\operatorname{Inn}(G)$. Now by Corollary 3.3, $Z(G) = \Phi(G)$. Finally, assume that $|G| = 2^5$. By [4, Theorem 2.3], $\operatorname{Aut}_c(G) = \operatorname{Inn}(G)$. Hence $\operatorname{Aut}^{G'}(G) = \operatorname{Aut}^L(G) = \operatorname{Inn}(G)$ and by [10, Theorem 3.3], G' is cyclic. Since d(G/L(G)) > 1, by [7, Theorem 5.1], we can assume that |L(G)| = 2, 4. First, suppose that $G' = L(G) \cong C_4$. Then G/L(G) is one of the groups C_2^3 or $C_4 \times C_2$. In the first case, $\operatorname{Aut}^{G'}(G) = \operatorname{Inn}(G) \cong$ C_2^3 , by Lemma 2.2. Whence $G' = L(G) = Z(G) = \Phi(G) \cong C_4$ and $\exp(G') = \exp(G/Z(G)) = 4$, a contradiction. If $G/L(G) \cong C_4 \times C_2$, then by [7, Theorems 4.7 and 5.1], G is one of the groups $M_2(2,3)$ or $M_2(3, 1, 1)$ and $L(G) \cong C_2^2$, which is impossible. Therefore, |L(G)| = 2and by Corollary 3.3, $Z(G) = \Phi(G)$. The converse follows at once from Corollary 3.3.

Acknowledgments

The author is grateful to the referee for his/her helpful comments. This research was in part supported by a grant from Payame Noor University.

References

- A. R. Camina, Some conditions which almost characterize Frobenius groups, Israel J. Math., 31 (1978), 153–160.
- R. D. Carmicheal, Introduction to the theory of groups of finite order, Dover Publications, New York, 1956.
- M. J. Curran and D. J. McCaughan, Central automorphisms that are almost inner, Comm. Algebra, 29(5) (2001), 2081–2087.
- D. Gumber and M. Sharma, Class-preserving automorphisms of some finite pgroups, Proc. Indian Acad. Sci. (Math. Sci.), 125(2) (2015), 181–186.
- 5. P. V. Hegarty, The absolute centre of a group, J. Algebra, 169 (1994), 929–935.
- M. Kumar and L. R. Vermani, Hasse principle for groups of order p⁴, Proc. Japan Acad., 77(6) (2001), 95–98.
- H. Meng and X. Guo, The absolute center of finite groups, J. Group Theory, 18 (2015), 887–904.
- M. Morigi, On the minimal number of generators of finite non-abelian p-groups having an abelian automorphism group, Comm. Algebra, 23 (1995), 2045–2065.
- M. M. Nasrabadi and Z. Kaboutari Farimani, Absolute central automorphisms that are inner, *Indag. Math.*, 26 (2015), 137–141.
- R. Soleimani, On some p-subgroups of automorphism group of a finite p-group, Vietnam J. Math., 36(1) (2008), 63–69.

- 11. R. Soleimani, A note on absolute central automorphisms of finite p-groups, preprint, 2018.
- M. K. Yadav, On automorphisms of some finite p-groups, Proc. Indian Acad. Sci. (Math. Sci.), 118 (2008), 1–11.
- M. K. Yadav, On finite p-groups whose central automorphisms are all class preserving, Comm. Algebra, 41 (2013), 4576–4592.

Rasoul Soleimani

Department of Mathematics, Payame Noor University (PNU), P.O.Box 19395-3697, Tehran, Iran.

Email: r_soleimani@pnu.ac.ir & rsoleimanii@yahoo.com

Journal of Algebraic Systems

ON EQUALITY OF ABSOLUTE CENTRAL AND CLASS PRESERVING AUTOMORPHISMS OF FINITE p-GROUPS

Rasoul Soleimani

بررسی تساوی خودریختیهای مرکزی مطلق و حافظ رده در p-گروههای متناهی رسول سلیمانی ایران، تهران، دانشگاه پیامنور تهران

 $\operatorname{Aut}^{L}(G)$ فرض کنیم G یک p-گروه متناهی غیرآبلی و L(G) مرکز مطلق G باشد. همچنین فرض کنیم Aut $_{c}(G)$ و $\operatorname{Aut}_{c}(G)$ بهترتیب گروه خودریختیهای مرکزی مطلق و حافظ رده ی G باشند. ما در این مقاله، شرط $\operatorname{Aut}_{c}(G)$ و کافی را برای گروه G فراهم میکنیم بهطوریکه $\operatorname{Aut}_{c}(G) = \operatorname{Aut}_{c}(G)$ همچنین تمام گروههای غیرآبلی از مرتبهی p^{n} ($n \leq \Delta$) p^{n} را دسته بندی میکنیم.

کلمات کلیدی: مرکز مطلق، خودریختیهای مرکزی مطلق، خودریختیهای حافظ رده، p-گروههای متناهی.