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ON EQUALITY OF ABSOLUTE CENTRAL AND
CLASS PRESERVING AUTOMORPHISMS OF FINITE

p-GROUPS

RASOUL SOLEIMANI∗

Abstract. Let G be a finite non-abelian p-group and L(G) de-
notes the absolute center of G. Also, let AutL(G) and Autc(G)
denote the group of all absolute central and the class preserving au-
tomorphisms of G, respectively. In this paper, we give a necessary
and sufficient condition for G such that Autc(G) = AutL(G). We
also characterize all finite non-abelian p-groups of order pn(n ≤ 5),
for which every absolute central automorphism is class preserving.

1. Introduction

Throughout this paper, all groups mentioned are assumed to be finite
and p always denotes a prime number. By G′, Z(G),Φ(G), Inn(G) and
Aut(G), we denote the commutator subgroup, the center, the Frattini
subgroup, the group of all inner automorphisms and the group of all au-
tomorphisms of G, respectively. For x ∈ G, xG denotes the conjugacy
class of all xg = g−1xg, where g ∈ G, and [x,G] stands the set of all
commutators of the form [x, g] = x−1g−1xg, g ∈ G. Since xg = x[x, g],
for all g ∈ G, we have xG = x[x,G] and so |xG| = |[x,G]|. For x ∈ G
and α ∈ Aut(G), the element [x, α] = x−1xα is called the autocom-
mutator of x and α. Also inductively, for all α1, α2, ..., αn ∈ Aut(G),
define [x, α1, α2, ..., αn] = [[x, α1, α2, ..., αn−1], αn]. An automorphism
α of G is called a class preserving automorphism if xα ∈ xG, for all
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x ∈ G. The set of all class preserving automorphisms of G, denoted
by Autc(G), contains Inn(G). Let N be a normal subgroup of G and
α ∈ Aut(G). If Nα = N (or Nxα = Nx for all x ∈ G), we shall
say α normalizes N (centralizes G/N respectively). Now let M and
N be normal subgroups of G. We let AutN(G) denote the group of
all automorphisms α of G normalizing N and centralizing G/N (or
equivalently, [x, α] ∈ N for all x ∈ G), and CAutN (G)(M) the group of

all automorphisms of AutN(G) centralizing M . Hegarty [5] introduced
the absolute center L(G) of a group G as

L(G) = {g ∈ G | [g, α] = 1,∀α ∈ Aut(G)}.
It is easy to check that L(G) is a characteristic subgroup contained in
the center of G. If we choose N = L(G) or N = Z(G), then AutN(G)
is precisely the group of all absolute central or central automorphisms
of G. In this paper, we give a necessary and sufficient condition on a
finite non-abelian p-group G such that AutL(G) = Autc(G). We also
characterize all finite non-abelian p-groups G of order pn(n ≤ 5), for
which AutL(G) = Autc(G).

Recall an abelian p-group A has invariants or is of type (a1, a2, ..., ak)
if it is the direct product of cyclic subgroups of orders pa1 , pa2 , ..., pak ,
where a1 ≥ a2 ≥ ... ≥ ak > 0.

Let G be a finite non-abelian p-group such that G/G′ and L(G) are of
types (a1, a2, ..., ak) and (b1, b2, ..., bl). Also if G/L(G) is abelian, then
G/Z(G) and G′ are of types (e1, e2, ..., en) and (d1, d2, ..., ds). Since
G′ ≤ Z(G), by [2, Section 25], n ≤ k and ej ≤ aj for each 1 ≤ j ≤ n.

The above notation will be used in the rest of the paper. We state the
main result in the following theorem:

Theorem. Let G be a finite non-abelian p-group. Then the following
statements are equivalent:

(i) Autc(G) = AutL(G), where L = L(G);
(ii) G′ = L(G), Z(G) ≤ Φ(G), |Autc(G)| =

∏
1≤i≤n |Ωei

(G′)| and
one of the following conditions holds:
(1) L(G) = Z(G) or
(2) L(G) < Z(G), n = k and b1 = et, where t is the largest

integer between 1 and n such that at > et.

2. Preliminary results

A p-group G is said to be extraspecial if G′ = Z(G) = Φ(G) is
of order p. If α is an automorphism of G and x is an element of



ABSOLUTE CENTRAL AND CLASS PRESERVING AUTOMORPHISMS 149

G, we write xα for the image of x under α. For a finite group G,
exp(G), d(G), Ωi(G), and o(x) respectively denote the exponent of G,
minimal number of generators of G, the subgroup of G generated by
its elements of order dividing pi and the order of x. We use Un for
the direct product of n-copies of a group U , Cn for the cyclic group
of order n where n ≥ 1, as usual D8, respectively Q8, for the dihedral
group, resp. the quaternion group, of order 8. Also the minimal non-
abelian p-groups Mp(n,m) and Mp(n,m, 1) of order pn+m and pn+m+1

as defined respectively by

〈x, y | xpn

= yp
m

= 1, xy = x1+pn−1〉,
where n ≥ 2, m ≥ 1 and

〈x, y, z | xpn

= yp
m

= zp = 1, [x, y] = z, [x, z] = [y, z] = 1〉,
where n ≥ m ≥ 1 and if p = 2, then m+ n > 2.
Let L1(G) = L(G), and for n ≥ 2, define Ln(G) inductively as

Ln(G) = {g ∈ G | [g, α1, α2, ..., αn] = 1, ∀α1, α2, ..., αn ∈ Aut(G)}.
A group G is called the autonilpotent of class n if n is the smallest
natural number such that Ln(G) = G. Finally, let G and H be any two
groups. We denote by Hom(G,H) the set of all homomorphisms from
G into H. Clearly, if H is an abelian group, then Hom(G,H) forms an
abelian group under the following operation (fg)(x) = f(x)g(x), for
all f, g ∈ Hom(G,H) and x ∈ G.

The following lemma is well-known and will be used in the proof of
our results.

Lemma 2.1. Let U, V and W be finite abelian groups. Then

(i) Hom(U × V,W ) ∼= Hom(U,W )× Hom(V,W );
(ii) Hom(U, V ×W ) ∼= Hom(U, V )× Hom(U,W );

(iii) Hom(Cm, Cn) ∼= Cf , where f is the greatest common divisor of
m and n.

The following preliminary lemma is well-known result [10, Lemma
2.2].

Lemma 2.2. Let G be a group and M , N be normal subgroups of G
with N ≤M and CN(M) ≤ Z(G). Then

CAutN (G)(M) ∼= Hom(G/M,CN(M)).

The following useful result can be found in [11].

Theorem 2.3. [11, Theorem 2.5]. Let G be a finite p-group different
from C2. Then AutL(G) ∼= Hom(G,L(G)).
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3. Proofs

Lemma 3.1. Let G be a finite non-abelian p-group such that G/L(G)
is abelian and Autc(G) = AutL(G). Then

(i) Z(G) ≤ Φ(G) and

Autc(G) ∼= Hom(G/Z(G), G′) ∼= Hom(G/Z(G), L(G))

∼= Hom(G/G′, L(G));

(ii) |Autc(G)| = ∏
1≤i≤n |Ωei

(G′)|.
Proof. (i) Suppose, on the contrary, that there exists a maximal sub-
group M of G such that Z(G) � M . Then G = M〈z〉, for some z
in Z(G)\M . We choose an element u in Ω1(L(G)). Then it is easy
to see that the map α : hzi 7→ h(zu)i, where h ∈ M and 0 ≤ i < p,
is an absolute central automorphism of G which is not class preserv-
ing. Hence Z(G) ≤ Φ(G). Next, since Autc(G) ≤ CAutG′ (G)(Z(G)) ≤
CAutL(G)(Z(G)) ≤ AutL(G) = Autc(G), by Lemma 2.2 and Theorem
2.3, we have

Autc(G) = CAutG′ (G)(Z(G)) ∼= Hom(G/Z(G), G′)

∼= Hom(G/Z(G), L(G)) ∼= Hom(G/G′, L(G)).

(ii) Let G/Z(G) = 〈x̄1, x̄2, ..., x̄n〉 such that o(x̄i) = o(xiZ(G)) = pei ,
for 1 ≤ i ≤ n. Since Z(G) ≤ Φ(G), by [13, Lemma 3.5], {x1, x2, ..., xn}
is a minimal generating set for G. Now the correspondence σ →
(xσ1 , ..., x

σ
n) is one-to-one mapping from Autc(G) onto xG1 ×...×xGn . Thus

|Autc(G)| ≤ ∏
1≤i≤n |xGi |. By [13, Lemma 3.1], exp([xi, G]) = o(x̄i) =

o(xiZ(G)), for any 1 ≤ i ≤ n. So |Hom(〈x̄i〉, [xi, G])| = |[xi, G]|. Hence,

|Autc(G)| = |Hom(G/Z(G), L(G))| ≥ |Hom(G/Z(G), G′)|

=
∏

1≤i≤n
|Hom(〈x̄i〉, G′)| ≥

∏

1≤i≤n
|Hom(〈x̄i〉, [xi, G])| =

∏

1≤i≤n
|[xi, G]|

=
∏

1≤i≤n
|xGi | ≥ |Autc(G)|.

Therefore, |Autc(G)| = ∏
1≤i≤n |xGi | and for each 1 ≤ i ≤ n,

|Hom(〈x̄i〉, G′)| = |Hom(〈x̄i〉, [xi, G])|.
As |Hom(〈x̄i〉, [xi, G])| = |[xi, G]|, it follows from [13, Lemma 2.7], that

|[xi, G]| = |Hom(〈x̄i〉, G′)| = |Hom(〈x̄i〉,Ωei
(G′))| = |Ωei

(G′)|.
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On the other hand, [xi, G] ≤ Ωei
(G′) and hence [xi, G] = Ωei

(G′), for
1 ≤ i ≤ n. Since |xGi | = |[xi, G]| for 1 ≤ i ≤ n, we have |Autc(G)| =∏

1≤i≤n |Ωei
(G′)|, which completes the proof. �

Proof of Theorem.

First assume that Autc(G) = AutL(G). For any x, y ∈ G, by the
inner automorphism iy ∈ Autc(G), induced by y ∈ G, x−1xiy =
[x, y] ∈ L(G) and thus G′ ≤ L(G). So by Lemma 3.1(ii), |Autc(G)| =∏

1≤i≤n |Ωei
(G′)|, Z(G) ≤ Φ(G) and |Autc(G)| = |Hom(G/Z(G), G′)|.

We claim that G′ = L(G). Suppose, on the contrary, that G′ <
L(G). Then G/L(G) is a proper quotient subgroup of G/G′ and
|G/G′/G/L(G)| = |L(G)/G′| > 1. It thus follows from [3, Lemma
D] and L(G) ≤ Z(G) that Hom(G/Z(G), G′) is isomorphic to a proper
subgroup of Hom(G/G′, L(G)). Hence |Autc(G)| < |AutL(G)|, a con-
tradiction. Therefore G′ = L(G).
Next, let L(G) 6= Z(G). So G′ < Z(G). By Lemma 3.1(i), we have

|Hom(G/Z(G), L(G))| = |Hom(G/G′, L(G))|

and so by Lemma 2.1,
∏

1≤i≤n,1≤j≤l
pmin{ei,bj} =

∏

1≤i≤k,1≤j≤l
pmin{ai,bj}.

We claim that n = k. Suppose, by way of contradiction, that n < k.
Since ej ≤ aj for 1 ≤ j ≤ n, we have

|Hom(G/Z(G), L(G))| = |Hom(Cpe1 × Cpe2 × ...× Cpen , L(G))|

≤ |Hom(Cpa1 × Cpa2 × ...× Cpan , L(G))|
< |Hom(Cpa1 × Cpa2 × ...× Cpan , L(G))|
×|Hom(Cpan+1 × ...× Cpak , L(G))|
= |Hom(Cpa1 × Cpa2 × ...× Cpak , L(G))|
= |Hom(G/G′, L(G))|,

which is impossible. Therefore n = k, as required. Since ai ≥ ei for
1 ≤ i ≤ n, we have min{ai, bj} ≥ min{ei, bj}, where 1 ≤ i ≤ n, 1 ≤ j ≤
l. Thus min{ai, bj} = min{ei, bj}, for 1 ≤ i ≤ n, 1 ≤ j ≤ l. Next since
G′ < Z(G), there exists some 1 ≤ j ≤ n such that ej < aj. Let t be the
largest integer between 1 and n such that et < at. We claim that b1 ≤
et. Suppose, on the contrary, that b1 > et. Then by the above equality,
min{at, b1} = min{et, b1} = et, which is impossible. Thus b1 ≤ et. Now
by [8, Lemma 0.4], e1 = exp(G/Z(G)) = exp(G′) = exp(L(G)) = b1.
Hence b1 ≤ et ≤ ... ≤ e2 ≤ e1 = b1 and so b1 = et.
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Conversely, letG′ = L(G) = Z(G) and |Autc(G)| = ∏
1≤i≤n |Ωei

(G′)|.
Then by [13, Theorem 3.12], Autc(G) = AutZ(G) = AutL(G). Now let
G′ = L(G) < Z(G) ≤ Φ(G), |Autc(G)| = ∏

1≤i≤n |Ωei
(G′)|, n = k and

b1 = et, where t is the largest integer between 1 and n such that at > et.
Let G/Z(G) = 〈x̄1, x̄2, ..., x̄n〉, where x̄i = xiZ(G) and o(x̄i) = pei for
0 < i ≤ n. Since Z(G) ≤ Φ(G), by [13, Lemma 3.5], {x1, ..., xn} is a
minimal generating set for G. We observe that

|Hom(G/Z(G), L(G))| =
∏

1≤i≤n,1≤j≤l
pmin{ei,bj}

and

|Hom(G/G′, L(G))| =
∏

1≤i≤k,1≤j≤l
pmin{ai,bj}.

Now since b1 = et, then e1 ≥ e2 ≥ ... ≥ et−1 ≥ et = b1 ≥ b2 ≥ ... ≥
bl > 0. Therefore, bj ≤ ei ≤ ai for all 1 ≤ j ≤ l and 1 ≤ i ≤ t. So
min{ai, bj} = bj = min{ei, bj} for 1 ≤ i ≤ t and 1 ≤ j ≤ l. Next,
since ai = ei, where i > t, we have min{ai, bj} = min{ei, bj} for all
t + 1 ≤ i ≤ k and 1 ≤ j ≤ l. Thus min{ai, bj} = min{ei, bj} for all
1 ≤ i ≤ k and 1 ≤ j ≤ l, which shows that |Hom(G/Z(G), L(G))| =
|Hom(G/G′, L(G))|. Hence

|Autc(G)| =
∏

1≤i≤n
|Ωei

(G′)| =
∏

1≤i≤n
|Hom(〈x̄i〉,Ωei

(G′))|

=
∏

1≤i≤n |Hom(〈x̄i〉, G′)| = |Hom(G/Z(G), L(G))|

= |Hom(G/G′, L(G))| = |AutL(G)| = |AutG
′
(G)|.

Now since Autc(G) ≤ AutG
′
(G), the proof is complete. �

Camina groups were introduced by Camina in [1]. Let G be a finite
group and N be non-trivial proper normal subgroup of G. Then (G,N)
is called a Camina pair if xN ⊆ xG for all x ∈ G\N . It follows that
(G,N) is a Camina pair if and only if N ⊆ [x,G] for all x ∈ G\N . A
group G is called a Camina group if (G,G′) is a Camina pair.

Corollary 3.2. Let G be a non-abelian autonilpotent finite p-group of
class 2 such that exp(L(G)) = p. Then Autc(G) = AutL(G) if and
only if G′ = L(G) and G is a Camina p-group.

Proof. First assume that G′ = L(G) and G is a Camina p-group. Then
Autc(G) ≤ AutL(G). Now let σ ∈ AutL(G) and x ∈ G. If x ∈ L(G),
then xσ = x and if x ∈ G\L(G), then x−1xσ ∈ L(G) ⊆ [x,G]. This
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shows that xσ = y−1xy, for some y ∈ G. Therefore, σ ∈ Autc(G) and
hence Autc(G) = AutL(G).

To prove the converse, assume that Autc(G) = AutL(G). By the
main Theorem, [7, Corollary 3.7] and [9, Proposition 2.13], G′ = L(G) =
Φ(G) and |Autc(G)| =

∏
1≤i≤n |Ωei

(G′)|. Next, since exp(G/Z(G)) =
exp(G′) = p, we have |Autc(G)| = pns. Notice that any element x ∈
G\L(G) can be included in a minimal generating set {x = x1, x2, ..., xn}
for G. If [x,G] ⊂ L(G) = G′, then |xG| < |G′|, since |xG| = |[x,G]|.
Hence |Autc(G)| < pns, which is a contradiction. Thus G is a Camina
p-group. �
Corollary 3.3. Let G be a finite non-abelian p-group such that G′

is cyclic. Then Autc(G) = AutL(G) if and only if G′ = L(G) and
Z(G) = L(G)Gpn

where exp(L(G)) = pn.

Proof. If G′ = L(G) is cyclic, then by [12, Corollary 3.6], Autc(G) =
Inn(G). On the other hand, we observe that every element of AutL(G)
fixes any element of Z(G). Hence AutL(G) = CAutL(G)(Z(G)) =

Inn(G), by [10, Proposition 3.2]. Thus Autc(G) = AutL(G). The
converse follows from [10, Theorem 3.3]. �

By [7, Lemma 4.4], if G is an abelian p-group, then |L(G)| = 1, 2.
Hence AutL(G) ∼= Cd

2 , where d = d(G) or |AutL(G)| = 1. In the
following corollary, we will characterize all finite non-abelian p-groups
G of order pn(n ≤ 5), such that Autc(G) = AutL(G).

Corollary 3.4. Let G be a finite non-abelian p-group of order pn, n ≤
5. Then Autc(G) = AutL(G) if and only if p = 2, G′ = L(G) is cyclic
and Z(G) = Φ(G).

Proof. We can assume that |G| = pn, 3 ≤ n ≤ 5. Let Autc(G) =
AutL(G). Then G′ = L(G), by the main Theorem. We distinguish two
cases:

CASE I. p is an odd prime. If |G| = p3, then G is an extraspecial

p-group and Inn(G) ≤ Autc(G) ≤ AutG
′
(G) ∼= Hom(G/G′, G′) ∼=

Inn(G), by Lemma 2.2. Hence Autc(G) = Inn(G). If |G| = p4 or
|G| = p5, then Autc(G) = Inn(G), by [6] and [4, Theorem 2.3]. Thus
Inn(G) = AutL(G), which is a contradiction by [11, Section 4].

CASE II. Let p = 2. We discuss the following cases. If |G| = 23, then
G is either D8 or Q8 and G′ = L(G) ∼= C2. Hence by [12, Corollary
3.6], Autc(G) = AutL(G) = Inn(G) and so Z(G) = Φ(G), by Corollary
3.3. Next, assume that |G| = 24. We claim that |Z(G)| = 4. By way
of contradiction, suppose that |Z(G)| = 2. Since G is of class 2, G′ ≤
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Z(G) ∼= C2. So G is an extraspecial 2-group, which is a contradiction
since the order of G is not of the form 22k+1, for some k ∈ N. Therefore
G/Z(G) ∼= C2

2 , and hence |G′| = 2. Thus AutL(G) = Autc(G) =
Inn(G). Now by Corollary 3.3, Z(G) = Φ(G).
Finally, assume that |G| = 25. By [4, Theorem 2.3], Autc(G) = Inn(G).

Hence AutG
′
(G) = AutL(G) = Inn(G) and by [10, Theorem 3.3], G′ is

cyclic. Since d(G/L(G)) > 1, by [7, Theorem 5.1], we can assume that
|L(G)| = 2, 4. First, suppose that G′ = L(G) ∼= C4. Then G/L(G) is

one of the groups C3
2 or C4×C2. In the first case, AutG

′
(G) = Inn(G) ∼=

C3
2 , by Lemma 2.2. Whence G′ = L(G) = Z(G) = Φ(G) ∼= C4 and

exp(G′) = exp(G/Z(G)) = 4, a contradiction. If G/L(G) ∼= C4 × C2,
then by [7, Theorems 4.7 and 5.1], G is one of the groups M2(2, 3) or
M2(3, 1, 1) and L(G) ∼= C2

2 , which is impossible. Therefore, |L(G)| = 2
and by Corollary 3.3, Z(G) = Φ(G). The converse follows at once from
Corollary 3.3. �
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متناهی p-گروه�های در رده حافظ و مطلق مرکزی خودریختی�های تساوی بررسی

سلیمانی رسول
تهران پیام�نور دانشگاه تهران، ایران،

AutL(G) فرضکنیم هم�چنین Gباشد. مطلق L(G)مرکز و غیرآبلی متناهی Gیکp-گروه فرضکنیم
شرط مقاله، این در ما باشند. G رده�ی حافظ و مطلق مرکزی خودریختی�های گروه به�ترتیب Autc(G) و
گروه�های تمام هم�چنین .AutL(G) = Autc(G) به�طوری�که می�کنیم فراهم G گروه برای را کافی و لازم
دسته�بندی را باشد رده حافظ آن�ها مطلق مرکزی خودریختی هر که را (n ≤ ۵) pn مرتبه�ی از غیرآبلی

می�کنیم.

p-گروه�های رده، حافظ خودریختی�های مطلق، مرکزی خودریختی�های مطلق، مرکز کلیدی: کلمات
متناهی.
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