
Journal of Algebraic Systems
Vol. 7, No. 1, (2019), pp 33-50

HYPERIDEALS IN M-POLYSYMMETRICAL
HYPERRINGS

M. A. MADANI, S. MIRVAKILI∗ AND B. DAVVAZ

Abstract. An M-polysymmetrical hyperring (R,+, ·) is an alge-
braic system, where (R,+) is an M-polysymmetrical hypergroup,
(R, ·) is a semigroup and · is bilaterally distributive over +. We
introduce the concept of hyperideals of an M-polysymmetrical hy-
perring and by using this concept, we construct an ordinary quo-
tient ring. Finally, the fundamental theorem of homomorphism is
derived in the context of M-polysymmetrical hyperrings.

1. Introduction

The concept of a hyperstructures was first introduced by Marty at
the 8th international Congress of Scandinavian Mathematicians. Unfor-
tunately Marty had a short life (1911-1940) and he died young, during
the Second World War when his airplane was shot down over the baltic
sea, while he was going on a mission to Finland. The hyperstructure
theory had applications to several domains of theoretical and applied
mathematics[2, 4]. Mittas in his paper[16], which has been announced
in the French Academy of Sciences, has introduced a special type of
hypergroup that he has named polysymmetrical. Also, in the same pa-
per, Mittas has given certain fundamental properties of this hyperstruc-
ture. Staring from the above paper and having called Mittas’ structure
M-polysymmetrical hypergroup (in order to distinguish this polysym-
metrical hypergroup from other types of polysymmetrical hypergroups)
Yatras has proceeded to a profound analysis of this hypergroup [23] and
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its subhypergroups[24] and homomorphisms[22]. The hyperings have
appeared as a new class of algebraic hyperstructures more general than
that of hyperfields, introduced by krasner[12] in the theory of valued
fields. Different types of hyperrings have been proposed[3, 5, 13, 19, 18].
Mittas and Yatras in [17] introduced M-polysymmetrical hyperrings
(M-P.HRs). In [5], the isomorphism theorems of ring theory are de-
rived in the context of Krasner hyperrings. Now, in this paper, we
investigate the hyperideals of M-polysymmetrical hyperrings.

An outline of the paper is as follows. After the introduction, in Sec-
tions 2 and 3, we briefly present introductory concepts concerning the
M-polysymmetrical hypergroups, M-polysymmetrical hyperrings, and
we recall some basic theorems. In Section 4, we introduce the hyper-
ideals of M-polysymmetrical hyperrings and show that every quotient
M-polysymmetrical hyperring by any hyperideal is a ring. In Section 5,
we give the isomorphism theorems in the context of M-polysymmetrical
hyperrings. Finally, in Section 6, we consider fundamental relations.

2. Basic definitions and results

We recall the definition of M-polysymmetrical hypergroup of [23] as
follows.

Definition 2.1. A non-empty set H is called an M-polysymmetrical
hypergroup (M-P.H.) if it is endowed with a hyperoperation + : H ×
H → P∗(H), where P∗(H) is the set of all non-empty subsets of H,
that satisfies the following axioms:

(1) + is associative, i.e, for every x, y, z ∈ H we have x+ (y+ z) =
(x+ y) + z;

(2) + is commutative, i.e, for every x, y ∈ H, x+ y = y + x;
(3) there exists 0 ∈ H such that for every x ∈ H we have x ∈ x+0;
(4) for every x ∈ H there exists x′ ∈ H such that 0 = x+ x′, (x′ is

an opposite or symmetrical of x, with regard to considered 0,
and the set of all the opposites S(x) = {x′ | 0 = x + x′} is the
symmetrical set of x);

(5) for every x, y, z ∈ H, x′ ∈ S(x), y′ ∈ S(y) and z′ ∈ S(z), x ∈
y + z implies that x′ ∈ y′ + z′.

Note that in the above definition, if A and B are two non-empty
subsets of H and x ∈ H, then

A+B =
∪
a∈A
b∈B

a+ b, x+ A = {x}+ A and A+ x = A+ {x}.
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Theorem 2.2. [23] Let E be a set and G its subset with the structure
of an abelian group. Also let 0 be its neutral element and for each
x ∈ G, −x be its opposite. If

(1) there exist a partition R of E and mapping one-to-one of quotient-
set E/R on G such as for every x ∈ G, f−1(x) = CR(x), [where
CR(x) is the class of E mod R that contains the element x] and

(2) CR(0) = {0},
then the hyperoperation x ⊕ y = f−1[f(CR(x)) + f(CR(y))] defined on
E, through the group G gives in E the structure of a M-P.H of which
the group of reduction E/(0) coincides to E/R.
Lemma 2.3. [23]

(1) S(0)=0 therefore 0+0=0.
(2) For every x ∈ H we have 0 ∈ 0 + x ⇒ x = 0; more generally

for every x, y ∈ H, y ∈ x+ y ⇒ x = 0.
(3) 0 is unique, named zero (of H).
(4) For every x, y, z, w ∈ H we have

(x+ y) ∩ (z + w) ̸= ϕ⇒ x+ y = z + w.

(5) For every x, y, z, w ∈ H we have
z ∈ x+ y ⇒ x+ y = 0 + z.

(6) For every x, y, z ∈ H

z ∈ x+ y ⇒ (∀x′ ∈ S(x)) [y ∈ z + x
′
].

Theorem 2.4. [23] The sets C(x) = 0+ x, where x traverse H, form
a partition of H and we have x + y = 0 + x + y = (0 + x) + (0 + y).
Moreover, for every x, y ∈ H, x+ y is a class of the partition and the
set G = {C(x) | x ∈ H} of these classes is an abelian group according
to the operation C(x) + C(y).

According to the induced hyperoperation into H, for every x, y ∈ H,
we define x/y = {t ∈ H | x ∈ t + y}. So, t ∈ x/y ⇒ x ∈ t + y ⇒ t ∈
x + y′ for every y′ ∈ S(y). Also, t ∈ x + y′ ⇒ x ∈ t + y ⇒ t ∈ x : y.
Consequently, x/y = x + y′ and since x + y′ = x + y′ + 0 = x + S(y),
it follows that x/y = x+ S(y).

Note that every M-P.H. (H,+) has subhypergroups, for instance {0},
which is also M-P.H. (trivial case). Let h ⊆ H be a subhypergroup of H
and let x ∈ h. Then, obviously, by virtue of reproductiveness x+h = h,
there is y ∈ h such that x ∈ x + y and therefore y = 0. Thus, 0 ∈ h.
Then we have 0 + x ⊆ h, i.e., C(x) ⊆ h, so the class mod 0 of H
that contains x being contained in h. By virtue of reproductiveness
of h, 0 ∈ x + y. Consequently, there is a symmetric x′ ∈ S(x) of x
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in h. Thus we have 0 + x′ = C(x′) = S(x) ⊆ h. Finally, it is clear
that h satisfies the axiom (5) and so we have the following important
Theorem.

Theorem 2.5. [23]
(1) Every subhypergroup of an M-P.H. is an M-P.H. with the same

zero.
(2) A non void subset h of the M-P.H. (H,+) is a subhypergroup if

and only if, for every x, y ∈ h, x/y ⊆ h is valid.
(3) Consequently we have that every subhypergroup of an M-P.H.

is an M-polysymmetrical subhypergroup (M-P.SH.) of the same
M-P.H.

(4) A non void subset h of the M-P.H. (H,+) is a subhypergroup if
and only if, for every x, y ∈ h, we have x+ S(y) ⊆ h.

(5) A non void subset h of H is an M-P.SH. if and only if it is
stable under the hyperoperation of (H,+) and if it contains an
element x of H, it includes also its symmetric set S(x).

We choose, for every class C, mod 0, of H one element xc as dis-
tinguished element of the class (axiom of choice), let it be G the set
of this elements. Then we consider the mapping f : G → G with
f(C) = xc ∈ G. Obviously, it is one-to-one and by considering this
map, we define the following operation on G: x ⊥ y = f [C(x) + C(y)]
for every x, y ∈ G. Clearly, the above operation is commutative and
associative. On the other hand, since C(0) = {0}, it follows that 0 ∈ G,
and C(0) + C(x) = 0 + x = C(x) holds 0 ⊥ x = x for every x ∈ G.
Also, if x′ is a distinguished element of the class S(x), x ∈ G, we have

S(x) = C(x′) so x ⊥ x′ = f [C(x) + C(x′)] = f [C(0)] = 0.

Finally, we observe that for every x, y ∈ G we have
f [C(x) + C(y)] = f(C(x)) ⊥ f(C(y)).

Consequently, we have the following theorem.

Theorem 2.6. [23] For every M-polysymmetrical hypergroup (H,+),
there is a subset G of H with abelian group’s structure (with the neutral
element zero of the hypergroup) isomorphic to the group of reduction
H/0. We call the group (G,⊥), the group of choice of (H,+).

3. M-polysymmetrical hyperrings

In [17], Mittas and Yatras introduced M-polysymmetrical hyper-
rings. We recall a non-empty set R is an M-polysymmetrical hyperring
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(M-P.HR) if it is endowed with a hyperoperation + : R × R → P∗(R)
and an operation · : R×R → R that satisfies the following axioms:

(1) (R,+) is a M-polysymmetrical hypergroup,
(2) (R, ·) is a semigroup,
(3) the multiplication is bilaterally distributive over addition, i.e,

for all x, y, z ∈ R :

x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z.
If in (3) we have inclusions instead of equalities, then we say that the
M-polysymmetrical hyperring is weak.

Example 3.1. [17] Let (K,+, ·) be a commutative algebraically close
field with characteristic p and n ̸= 0 be a coprime to p number and ξn
be the multiplicative group of the n-th roots of the unity of K. We
define the following hyperoperation in K:

x⊕ y = {z ∈ K : xn + yn = zn},
the x⊕ y is a class modulo ξn in K and it holds that

x⊕ y = (xξn)⊕ (yξn).

It can easily be proved that K endowed with the above hyperoperation
is a M-P.H. This M-P.H combined with the multiplication in K give
the hyperstructure (K,⊕, ·) which is an M-P.HR.

The following theorem, which is described in [17], gives us a method
to construct an M-P.HR.

Theorem 3.2. Suppose that E is a set with the structure of a multi-
plicative semigroup whose has an absorbing element, having as a subset,
a ring (A,+, ·) such that multiplication is the restriction of the corre-
sponding one of the semigroup (E, ·) in A and the zero (0) of A is the
absorbing element of the semigroup (E, ·). Then, if

(1) there is a partition R of E having the property
xCR(y) = CR(x)y = CR(xy) for every x, y ∈ E,

(2) there is a bijective mapping of the quotient set E/R on A such
that for every x ∈ A

f−1(x) = CR(x),

where CR(x) is the class of E mod(R) that contains element x,
(3) CR(0) = {0}.

the hyperoperation x ⊕ y = f−1[f(CR(x)) + f(CR(y))] defined on E
through the group (A,+) of the operation x◦y = xy (that is the operation
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of the semigroup and the ring) makes E an M-P.HR whose ring of
reduction E/(0) coincides with E/R.

Example 3.3. Let E = {0, 1, a, b, c, d, e} be a semigroup such that its
multiplication is according to the following table:

· 0 1 a b c d e
0 0 0 0 0 0 0 0
1 0 1 a b c d e
a 0 a 1 c b e d
b 0 b c 0 0 c b
c 0 c b 0 0 b c
d 0 d e b c 1 a
e 0 e d b c a 1

and (A = {0, 1, b, e},+, ·) is a ring according to the following tables:

+ 0 1 b e
0 0 1 b e
1 1 b e 0
b b e 0 a
e e 0 1 b

· 0 1 b e
0 0 0 0 0
1 0 1 b e
b 0 b 0 b
e 0 e b 1

Now, if we get a partition R = {CR(0) = {0}, CR(1) = {1, a}, CR(b) =
{b, c}, CR(e) = {d, e}} of E, by using Theorem 3.2 we can construct
E as an M-P.HR such that the addition is according to the following
table

+ 0 1 a b c d e
0 0 {1, a} {1, a} {b, c} {b, c} {d, e} {d, e}
1 {1, a} {b, c} {b, c} {d, e} {d, e} 0 0
a {1, a} {b, c} {b, c} {d, e} {d, e} 0 0
b {b, c} {d, e} {d, e} 0 0 {1, a} {1, a}
c {b, c} {d, e} {d, e} 0 0 {1, a} {1, a}
d {d, e} 0 0 {1, a} {1, a} {b, c} {b, c}
e {d, e} 0 0 {1, a} {1, a} {b, c} {b, c}.

Lemma 3.4. Let (S, ·) be a semigroup with an absorbing element 0
and {Ax}x∈S be a family of non-empty sets such that A0 = {0̄} and
for every x, y ∈ S,Ax ∩ Ay = ∅. Fix x̄ ∈ Ax, for all x ∈ S and
set K = ∪x∈SAx, then for every a, b ∈ K there is x, y ∈ S such that
a ∈ Ax, b ∈ Ay. We define

a⊙ b = x · y, ∀(a, b) ∈ Ax × Ay.

Then (K,⊙) is a semigroup with absorbing element 0̄.
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Proof. Let a, b ∈ K, then since for all x, y ∈ S, Ax ∩ Ay = ϕ, there
exists unique elements x, y ∈ S where a ∈ Ax, b ∈ Ay. Thus there
exists unique element z = x · y such that a⊙ b = x · y = z. So (S,⊙) is
well defined. Also (S,⊙) is associative, because for all a, b, c ∈ K there
exists x, y, z ∈ S such that a ∈ Ax, b ∈ Ay, c ∈ Az and so

(a⊙ b)⊙ c = x · y⊙ c = (x · y) · z = x · (y · z) = a⊙ y · z = a⊙ (b⊙ c).

Finally, for all a ∈ K there exists x ∈ S such that a ∈ Ax and so
a⊙ 0 = x · 0 = 0. Similarly 0⊙ a = 0. □

The following theorem states a method for construction an M-P.HR
of an arbitrary ring.

Theorem 3.5. Let (R,+, ·) be an arbitrary ring and {Ax}x∈R be a
family of sets such that A0 = {0̄} and for every x, y ∈ R,Ax ∩Ay = ∅.
Set K = ∪x∈RAx, then for every a, b ∈ K there is x, y ∈ R such that
a ∈ Ax, b ∈ Ay. We define

a⊕ b = Ax+y,

then (K,⊕,⊙) is a weak M-P.HR, where ⊙ is defined in Lemma 3.4.
Moreover, if the sum of products is a singleton then (K,⊕,⊙) is an
M-P.HR.

Proof. Following [23, Theorem 3.1], (K,⊕) is an M-P.H. Also, consid-
ering previous lemma (K,⊕) is semigroup. It only remains that show
(K,⊕,⊙) is weakly distributive. For every a, b, c ∈ K there exists
x, y, z ∈ S such that a ∈ Ax, b ∈ Ay, c ∈ Az and

a⊙ (b⊕ c) = x · (y + z) = x · y + x · z ⊆ x · y ⊕ x · z = a⊙ b⊕ a⊙ c.

□
By using the above theorem we make the following example.

Example 3.6. Suppose that the ring (R,+, ·) is defined according to
the following tables:

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

· 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 2 2
3 0 0 2 2

we set
A0 = {0} A1 = {a, b} A2 = {c} A3 = {d, e}

K = {0, a, b, c, d, e}
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then (K,⊕,⊙) is made according to the following tables is an M-P.HR:
⊕ 0 a b c d e
0 0 {a, b} {a, b} c {d, e} {d, e}
a {a, b} 0 0 {d, e} c c
b {a, b} 0 0 {d, e} c c
c c {d, e} {d, e} 0 {a, b} {a, b}
d {d, e} c c {a, b} 0 0
e {d, e} c c {a, b} 0 0

and
⊙ 0 a b c d e
0 0 0 0 0 0 0
a 0 0 0 0 0 0
b 0 0 0 0 0 0
c 0 0 0 c c c
d 0 0 0 c c c
e 0 0 0 c c c

4. Hyperideals in M-P.HRs

In this section, for the first time we introduce the concept of hyper-
ideal of an M-P.HR and present some results in this respect. Moreover,
by using this concept, we construct a quotient ring.
Definition 4.1. Let I be a non-empty subset of R. We call I is a
left (right)[bi-] hyperideal of R if I is a subhypergroup of (R,+) and
RI ⊆ I(IR ⊆ I)[RIR ⊆ I]. A hyperideal is a left and right hyperideal.
Theorem 4.2. I is a left hyperideal if and only if

(1) x ∈ I implies x′ ∈ I, for all x′ ∈ S(x);
(2) x, y ∈ I implies x+ y ⊆ I,
(3) x ∈ I implies rx ∈ I, for all r ∈ R.

Proof. By Theorem 2.5, we have I is a subhypergroup of (R,+) if and
only if (1) and (2) hold. So, by the definition of left hyperideal, the
proof is completed. □
Remark 4.3. In the above theorem, (1), (2) are equivalent with x +
S(y) ⊆ I, that it means I is also a subhypergroup of R.
Corollary 4.4. Let I be a hyperideal of an M-P.HR (R,+, ·). Then,
(I,+, ·) is an M-P.HR.
Example 4.5. Clearly (0) and R are hyperideals of R.
Example 4.6. Let (E,+, ·) be the M-P.HR in Example 3.3. If we get
I = {0, b, c} then I is a hyperideal of E.
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Example 4.7. Let (K,⊕,⊙) be the M-P.HR in Example 3.6. Set
I = {0, c} and J = {0, a, b}. Then I, J are two hyperideals of K.
Lemma 4.8. Let (R,+, ·) be an M-P.HR. If {Ij}j∈J is a family of
hyperideals of R, then ∩Ij is also a hyperideal of R.
Proof. By Theorem 4.2, proof is straightforward. □
Definition 4.9. Let R be an M-P.HR and X a subset of R, then the
smallest, in the sense of inclusion, hyperideal of R which contains X
is called generated hyperideal by X and denoted by < X >. If X = ϕ
then < X >= {0}.

By considering Definition 4.9 and using Lemma 4.8, we conclude that
< X >= ∩Ij, where {Ij}j∈J is a family of hyperideals of R containing
X.
Proposition 4.10. If R is a commutative M-P.HR and X is a non-
empty subset of R, then the following set

Y = {t | t ∈
m∑
i=1

rixi +
n∑

i=1

xi : ri ∈ R, xi ∈ X ∪ S(X)}

is a hyperideal of R containing X, where S(X) = ∪x∈XS(x).
Proof. We consider x ∈

∑m
i=1 rixi +

∑n
i=1 xi, y ∈

∑m
i=1 riyi +

∑n
i=1 yi

with ri ∈ R, xi, yi ∈ X ∪ S(X) then according to the definition of
M-P.HR we have y′ ∈

∑m
i=1 riy

′
i+

∑n
i=1 y

′
i for y′ ∈ S(y), y′i ∈ S(yi) and

x+y′ ⊆
∑m

i=1 rixi+
∑n

i=1 xi+
∑m

i=1 riy
′
i+

∑n
i=1 y

′
i =

∑2m
i=1 rizi+

∑2n
i=1 zi

where zj ∈ X ∪ S(X). Thus x+ y′ ⊆ Y , i. e, x+ S(y) ⊆ Y .
Also for every r, ri ∈ R, xi ∈ X ∪ S(X) we have r(

∑m
i=1 rixi +∑n

i=1 xi) =
∑m

i=1(rri)xi +
∑n

i=1 rxi =
∑m+n

i=1 sxi ⊆ Y where s ∈ R.
Thus Y is a hyperideal of R. Also (if in Y set ri = 0) Y is clearly
containing X. □
Corollary 4.11. If R is commutative M-P.HR the hyperideal Y in the
above proposition is equal to < X >, namely

< X >= {t | t ∈
m∑
i=1

rixi +
n∑

i=1

xi : ri ∈ R, xi ∈ X ∪ S(X)}

because it is clear that < X >⊆ Y (because Y is one of the hyperideals
containing X ). Also Y ⊆< X > because we have X ⊆< X >
and since a hyperideal is also an M-P.SH then S(X) ⊆< X >, thus
X ∪ S(X) ⊆< X > and so for every ri ∈ R, xi ∈ X ∪ S(X) we
have

∑n
i=1(rixi + xi) ⊆< X >, therefore Y ⊆< X >. Consequently

Y =< X >.
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Corollary 4.12. If R is a commutative and unitary M-P.HR and X
is a non-empty subset of R then

⟨X⟩ = {t : t ∈
n∑

i=1

rixi : ri ∈ R, xi ∈ X}.

If R is an arbitrary M-P.HR and X is a subset of R, then

⟨X⟩ = {t : t ∈
m∑
i=1

rixi +
n∑

i=1

xisi +
v∑

i=1

rixisi +
w∑
i=1

xi : ri, si ∈ R},

where xi ∈ X ∪ S(X).
We remained that on an M-P.H H for every x ∈ H the set C0(x) =

0 + x construct a partition on H, which is denoted by mod(0) or (0),
such that

x ≡ y mod(0) ⇔ C0(x) = C0(y) ⇔ 0 + x = 0 + y

and the set H/(0) = {C0(x) = 0 + x : x ∈ H} is an abelian group,
which we call it group of reduction of H. For every x ∈ H, x′ ∈ S(x)
we have S(x) = C(x′).

Similarly, if h is an M-P.SH of H then the set Ch(x) = x+h construct
a partition on H, which is denoted by mod(h) such that

x ≡ y mod(h) ⇔ Ch(x) = Ch(y) ⇔ x+ h = y + h

and the set of equivalence classes H/(h) = {Ch(x) : x ∈ H} is an
abelian group, which we call it group of reduction of H by h.

Theorem 4.13. Let I be a hyperideal of an M-P.HR R. On the set
R/I = {CI(x) = x + I | x ∈ R} of equivalence classes mod(I) if we
define

CI(x) + CI(y) = CI(z) for all z ∈ x+ y,
CI(x) · CI(y) = CI(xy),

then we have (R/I,+, ·) as a ring which is called the ring of reduction
of M-P.HR R by I and is denoted by R(I).
Proof. The operation + is well-defined because

(1) The set {CI(z) : z ∈ x+y} is a singleton, because z ∈ x+y ⇒
x+ y = 0 + z and so
CI(x) + CI(y) = x+ y + I = 0 + z + I = z + I = CI(z).

(2) For every x1, y1, x2, y2 ∈ R if CI(x1) = CI(x2) and CI(y1) =
CI(y2) then x1 + x′2 ⊆ I and y1 + y′2 ⊆ I with x′2 ∈ S(x2), y

′
2 ∈

S(y2) and therefore since S(x′2 + y′2) = C0((x2 + y2)
′) we have

x1 + y1 + (x2 + y2)
′ ⊆ I and so x1 + y1 + I = x2 + y2 + I which

means CI(x1 + y1) = CI(x2 + y2).
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Also the operation · is well-defined because if CI(x1) = CI(x2) and
CI(y1) = CI(y2) then x1 + x′2 ⊆ I and y1 + y′2 ⊆ I. Since I is a
hyperideal we have

x1y1 + x′2y2 = x1(y1 + y′2) + (x1 + x′2)y2 ⊆ I ⇒ x1y1 + 0 + x′2y2 ⊆ I

Since x′2y2 ∈ S(x2y2) and S(x2y2) = 0 + x′2y2 then x1y1 + (x2y2)
′ ⊆

I. □

Theorem 4.14. Let I and J be two hyperideals of an M-P.HR R and
I ⊆ J . Then, CI(J) is a hyperideal of the reduction of M-P.HR R.,

Proof. Let CI(r) ∈ R(I) and CI(a) ∈ CI(J) then by Theorem 4.13,
CI(a)CI(r) = CI(ar) ∈ CI(J), because J is a hyperideal and ar ∈
J. □

Corollary 4.15. Let R be an M-P.HR. On the set R/(0) = {C0(x) =
0 + x : x ∈ R} of equivalence classes mod(0) if we define

C0(x) + C0(y) = C0(z) for all z ∈ x+ y
C0(x) · C0(y) = C0(xy),

then we have (R/(0),+, ·) as a ring which is called the ring of reduction
of M-P.HR R denoted by R(0).

Proposition 4.16. If the M-P.HR R is M-polysymmetrical hyperfield
(M-P.HF) and I be a hyperideal of R then, the set R/I of the equivalence
classes mod(I) is a field called field of reduction of M-P.HR R by I
denoted by F (I).

Proposition 4.17. If R is a commutative M-P.HR and I is a hyper-
ideal of R, then R/I is also a commutative ring.

Conversely we have the proposition:

Proposition 4.18. If the cancellation law for multiplication holds in
R then it holds in R/I as well.

5. Homomorphisms

In this section, we give the definition of homomorphism between
M-P.HRs and we present some its properties. Finally, we prove the
fundamental theorem of homomorphisms.

Definition 5.1. Let R,R1 be an M-P.HRs. A mapping φ from R into
R1 is said to be a normal homomorphism if for all a, b ∈ R

φ(a+ b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b)
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Remark 5.2. φ(0) = 01, because φ(0) = φ(0 + 0) = φ(0) + φ(0) ⇒
φ(0) + (φ(0))′ = φ(0) + φ(0) + (φ(0))′, where (φ(0))′ ∈ S(φ(0)) ⇒
01 = φ(0) + 01, therefore by [24], φ(0) = 01.

Regarding the above definition we have the following propositions.
Proposition 5.3. (1) φ(C0(x)) = C0(φ(x)), thus φ(S(x)) = S(φ(x)).

(2) φ(CI(x)) = Cφ(I)(φ(x)), which I is a hyperideal of R.
Proof. (1) We have φ(C0(x)) = φ(0 + x) = φ(0) + φ(x) = 01 + φ(x) =
C01(φ(x)). Since φ(x′) ∈ S(φ(x)), where x′ ∈ S(x), (φ(x))′ ∈ S(φ(x))
(because 01 = φ(0) = φ(x+ x′) = φ(x) + φ(x′)) ⇒ φ(x′) ∈ S(φ(x))),
we have φ(S(x)) = φ(C0(x

′)) = φ(0 + x′) = 01 + φ(x′) = C01(φ(x
′)) =

S(φ(x)).
(2) We have φ(CI(x)) = φ(x+ I) = φ(x) + φ(I) = Cφ(I)(φ(x)). □

Proposition 5.4. (1) The homomorphic image φ(I) of every hy-
perideal I of R is a hyperideal of φ(R) (and if φ is onto, a
hyperideal of R1),

(2) The image inverse φ−1(I1) of every hyperideal I1 of φ(R) is a
hyperideal of R and the kernel ℵ(φ) = φ−1(01) ⊆ φ−1(I1).
Proof. (1) Let a1 ∈ φ(I) then there is a ∈ I such that a1 =
φ(a) ⇒ a1 + φ(I) = φ(a) + φ(I) = φ(a + I) = φ(I). Also
for all r1 ∈ φ(R), a1 ∈ φ(I) there is r ∈ R, a ∈ I such that
r1 = φ(r), a1 = φ(a) ⇒ r1a1 = φ(r)φ(a) = φ(ra) ∈ φ(I).
If φ is onto and r1 ∈ R1 there is r ∈ R such that r1 = φ(r),
also for every a1 ∈ φ(I) there is a ∈ I such that a1 = φ(a) so
r1a1 = φ(r)φ(a) = φ(ra) ∈ φ(I).

(2) Let x, y ∈ φ−1(I1) then there is x1, y1 ∈ I1 such that
x ∈ φ−1(x1), y ∈ φ−1(y1)) so φ(x + S(y)) = φ(x) + φ(S(y)) =
φ(x)+S(φ(y)) ⊆ φ(φ−1(x1))+S(φ(φ

−1(y1))) = x1+S(y1) ⊆ I1.
Also let r ∈ R, a ∈ φ−1(I1) then there is r1 ∈ R1, a1 ∈ I1 such
that r = φ−1(r1), a = φ−1(a1) ⇒ ra = φ−1(r1)φ

−1(a1),
so φ(ra) = φ(φ−1(r1))φ(φ

−1(a1)) = r1a1 ∈ I1, therefore ra ∈
φ−1(I1).

□
Corollary 5.5. The kernel ℵ(φ) of the homomorphism φ, is a hyperideal
of R.
Proposition 5.6. Let φ be a normal homomorphism from R into R1

and ℵ(φ) = {0}, then
φ(x) ≡ φ(y) mod(01) ⇔ x ≡ y mod(0),

conversely if φ is one to one then ℵ(φ) = {0}.
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Proof. Let x, y ∈ R be such that φ(x) ≡ φ(y)mod(01), then 01+φ(x) =
01 + ϕ(y), so φ(x) + φ(y′) = φ(y) + φ(y′), where y′ ∈ S(y). It follows
that φ(x + y′) = φ(y + y′) = φ(0) = 01. Thus, if ℵ(φ) = {0} then
x + y′ = 0 ⇒ 0 + x = 0 + y ⇒ x ≡ y mod(0). From right to left is
similarly proved.

For the converse, let x ∈ ℵ(φ), then φ(x) = 01 = φ(0) and since φ is
one to one, x = 0. Thus, ℵ(φ) = {0}. □

In the following we state the isomorphism theorems in the context
of M-polysymmetrical hyperrings.
Theorem 5.7. Let φ be a normal homomorphism from R into R1,
then R/ℵ(φ)

∼= φ(R)/(01) ( where R/ℵ(φ) is the reduced ring of R by
ℵ(φ) and φ(R)/(01) is the reduced ring of φ(R) ).
Proof. We define the mapping

ψ : R/ℵ(φ) → φ(R)/(01)

by setting ψ(Cℵ(φ)
(x)) = C01(φ(x)) for all Cℵ(φ)

(x) ∈ R/ℵ(φ), C01(φ(x)) ∈
φ(R)/(01).

(1) We first prove that ψ is well-defined and one to one,
Cℵ(φ)

(x) = Cℵ(φ)
(y) ⇔ x+ ℵ(φ) = y + ℵ(φ)

⇔ x+ y′ ⊆ ℵ(φ)

⇔ φ(x+ y′) = 01
⇔ φ(x) + φ(y′) = 01
⇔ 01 + φ(x) = 01 + φ(y)
⇔ C01(φ(x)) = C01(φ(y)).

(2) ψ is a homomorphism because
ψ(Cℵ(φ)

(x) + Cℵ(φ)
(y)) = ψ[(x+ ℵ(φ)) + (y + ℵ(φ))]

= {ψ(z + ℵ(φ)) : z ∈ x+ y}
= {φ(z) + 01 : z ∈ x+ y}
= φ(x+ y) + 01
= φ(x) + φ(y) + 01
= (φ(x) + 01) + (φ(y) + 01)
= C01(φ(x)) + C01(φ(y))
= ψ(Cℵ(φ)

(x)) + ψ(Cℵ(φ)
(x)),

also
ψ(Cℵ(φ)

(x) · Cℵ(φ)
(y)) = ψ[(x+ ℵ(φ)) · (y + ℵ(φ))]

= ψ[(xy + ℵ(φ)) = φ(xy) + 01
= φ(x)φ(y) + 01
= (φ(x) + 01) · (φ(y) + 01)
= ψ(Cℵ(φ)

(x)) · ψ(Cℵ(φ)
(y)).
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(3) ψ is clearly onto.
□

Example 5.8. Let R1 = {0, 1, 2, 3, 4} be an M-polysymmetrical hy-
perring by the following tables:

+ 0 1 2 3 4
0 0 {1, 2} {1, 2} 3 4
1 {1, 2} 0 0 3 3
2 {1, 2} 0 0 4 3
3 3 4 4 0 {1, 2}
4 4 3 3 {1, 2} 0

,

· 0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 3 3
4 0 0 0 3 3

Also, let (K,⊕,⊙) be the M-polysymmetrical hyperring studied in Ex-
ample 3.6. Define φ : K → R1 by φ(0) = 0, φ(a) = 1, φ(b) = 2, φ(c) =
3, φ(d) = 4, φ(e) = 4. Then it is not difficult to see that ℵ(φ) = {0}.
Also, φ(K) = R1. So K/ℵ(φ) = K/(0). It is easy to see that K/ℵ(φ)

∼= R
and R1/(01) ∼= R, when R is a ring defined according to the following
tables:

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

,

· 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 2 2
3 0 0 2 2

Therefore, we have K/ℵ(φ)
∼= R1/(01).

Corollary 5.9. If the normal homomorphism φ : R → R1 is onto,
then R/ℵ(φ)

∼= R1/(01).
Corollary 5.10. If ℵ(φ) = {0}, then the ring of reduction R/(0) and
φ(R)/(01) are isomorphic.
Lemma 5.11. If R is an M-P.HR and I, J are hyperideals of R, then
I + J is a hyperideal of R.
Lemma 5.12. If R is an M-P.HR and I, J are hyperideals of R such
that I ⊆ J , then I is a hyperideal of J .
Proof. By Theorem 4.2 and Corollary 4.4, the proof is straightforward.

□
Theorem 5.13. If R is an M-P.HR and I, J are hyperideals of R, then
the reduced ring I/(I ∩ J) is isomorphic to reduced ring (I + J)/J .
Proof. We define the mapping

φ : I/(I ∩ J) → (I + J)/J
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by setting φ(CI∩J(a)) = CJ(a) for all a ∈ I, it is proved φ is a normal
isomorphism and so I/(I ∩ J) ∼= (I + J)/J . □

Lemma 5.14. If R is an M-P.HR and I, J are hyperideals of R such
that I ⊆ J , then J/I is an ideal of R/I.

Theorem 5.15. If R is an M-P.HR and I, J are hyperideals of R such
that I ⊆ J , then (R/I)/(J/I) ∼= R/J .

Proof. We define the mapping

φ : R/I → R/J

by setting φ(CI(x)) = CJ(x) for all x ∈ R, it is proved φ is an onto
normal homomorphism such that ℵ(φ) = J/I and so by using Corollary
5.9 the proof is completed. □

6. Fundamental relation on M-P.HRs

The notion of fundamental relation on hypergroups was introduced
by Koskas [11], and then studied by Corsini [1], Freni [7, 8, 9] and
Gutan [10], Vougiouklis [20, 21], Davvaz et. al. [6]. In [7], Freni
firstly proved that the relation β is transitive in every hypergroup.
The relations γ and γ∗ were firstly introduced and analyzed by Freni
[8]. He proved that the relation γ on hypergroup is transitive and
γ = γ∗. Also, Freni [9] determined a family Pσ(H) of subsets of a
hypergroup H such that the geometric space (H,Pσ(H)) is strongly
transitive. The letter γ already has been used for the corresponding
fundamental relation on hyperrings by Vougiouklis [20]. Thus, there
is a confusion on the symbolism. In 1990, Vougiouklis at the fourth
AHA congress [20], introduced the concept of fundamental relation γ
on a hyperring, and then it studied by himself and many authors, for
example see [5, 6, 14, 21]. In this section, we use Γ instead of γ for
hyperrings.

Recently, Mirvakili and Davvaz [15] proved that the relation Γ on ev-
ery hyperfield is an equivalence relation and Γ = Γ∗. In [6], Davvaz and
Vougiouklis introduced a new strongly regular equivalence relation on
a hyperring such that the set of quotients is an ordinary commutative
ring and later some properties of relation α are studied[14].

Definition 6.1. [20] Let R be a hyperring. We define the relation Γ
as follows :
x Γ y ⇔ ∃n ∈ N,∃ki ∈ N,∃(xi1, . . . , xiki) ∈ Rki , 1 ≤ i ≤ n, such that
{x, y} ⊆

∑n
i=1

(∏ki
j=1 xij

)
.



48 MADANI, MIRVAKILI AND DAVVAZ

Definition 6.2. [6] Let R be a hyperring. We consider the relation α
as follows:
x α y ⇐⇒ ∃n ∈ N, ∃(k1, . . . , kn) ∈ Nn, ∃σ ∈ Sn and [∃(xi1, . . . , xiki) ∈
Rki , ∃σi ∈ Ski , (i = 1, . . . , n)] such that x ∈

∑n
i=1

(∏ki
j=1 xij

)
and y ∈∑n

i=1Aσ(i), where Ai =

ki∏
j=1

xiσi(j).

The relation α and Γ are reflexive and symmetric. Let α∗ and Γ∗ be
the transitive closure of α and Γ. Then we recall the following theorem:

Theorem 6.3. [20, Theorem 1][6, Theorem 4] Let (R,+, ·) be a hyper-
ring.

(1) Γ∗ is the smallest equivalence relation on R such that the quo-
tient R/Γ∗ is a ring.

(2) α∗ is the smallest equivalence relation on R such that the quo-
tient R/α∗ is a commutative ring.

Theorem 6.4. Γ∗ = mod(0) and so R/Γ∗ ∼= R(0).

Proof. It easy to see that Γ∗(x) = C0(x) for all x ∈ R. Hence, Γ∗ =
mod(0). □
Theorem 6.5. In every R, β+ = β∗

+ = Γ = Γ∗, and so Γ is an
equivalence relation.

Proof. It is clear that if xβ+y, then xΓy. Now, if xΓy, then there
exist n ∈ N, ki ∈ N, and (xi1, . . . , xiki) ∈ Rki , where 1 ≤ i ≤ n such
that {x, y} ⊆

∑n
i=1

(∏ki
j=1 xij

)
. But zi =

∏ki
j=1 xij is singleton and

so {x, y} ⊆
∑n

i=1 ui. This means xβ+y. Freni [8] proved that in any
hypergroup (R,+), β∗

+ = β+ and this completes the proof. □
Theorem 6.6. R/α∗ ∼= R(0)/γ∗· .

Proof. By Theorem 6.4, R/Γ∗ ∼= R(0). Since + is commutative, it
follows that

R/α∗ ∼= R/Γ∗/γ∗·
∼= R(0)/γ∗· .

□
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M-چندمتقارن ابرحلقه های ابرایده آل های

دواز٢ بیژن و میروکیلی١ سعید مدنی١، محمد علی
ایران تهران، نور، پیام دانشگاه ریاضی، ١گروه

ایران یزد، یزد، دانشگاه ریاضی، ٢دانشکده

-M ابرگروه (R,+) آن در که است جبری دستگاه یک (R,+, ·) M-چند متقارن ابرحلقه یک
در دارد. دوطرفه توزیع پذیری خاصیت جمع ابرعمل روی ضرب عمل و نیم گروه (R, ·) چندمتقارن،
این از استفاده با و می کنیم مطالعه را M-چندمتقارن ابرحلقه یک در ابرایده آل ها مفهوم ما مقاله، این
ابرحلقه های برای همریختی اساسی قضیه نهایت، در می آوریم. به دست را خارج قسمتی حلقه مفهوم

می شود. بیان M-چندمتقارن

کاهش یافته. حلقه ابرایده آل، M-چندمتقارن، ابرحلقه کلیدی: کلمات

٣
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