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GENERALIZED UNI-SOFT INTERIOR IDEALS IN
ORDERED SEMIGROUPS

R. KHAN∗, A. KHAN, B. AHMAD AND R. GUL

Abstract. For all M,N ∈ P (U) such that M ⊂ N , we first
introduced the definitions of (M,N )-uni-soft ideals and (M,N )-
uni-soft interior ideals of an ordered semigroup and studied them.
When M = ∅ and N = U , we meet the ordinary soft ones. Then we
proved that in regular and in intra-regular ordered semigroups the
concept of (M,N )-uni-soft ideals and the (M,N )-uni-soft interior
ideals coincide. Finally, we introduced (M,N )-uni-soft simple or-
dered semigroup and characterized the simple ordered semigroups
in terms of (M,N )-uni-soft interior ideals.

1. Introduction

An ideal of a semigroup is a special subsemigroup satisfying certain
conditions. The best way to know an algebraic structure is to begin
with a special substructure of it. There are plenty of papers on ideals.
After Zadeh’s introduction of fuzzy set in 1965 [20], the fuzzy sets have
been used in the reconsideration of classical mathematics. For exam-
ple, Meng and Guo [15] researched fuzzy ideals of BCK/BCI-algebras,
Koguep [13] researched fuzzy ideals of hyperlattices, and Kehayopulu
and Tsingelis [9] researched fuzzy interior ideals of ordered semigroups.

This inadequacy is removed by Molodtsov [16], by the invention of
soft set theory in 1999. He introduced parameterization tools to tackle
various uncertainties. Due to the beauty of parameterization tools,
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several researchers attracted towards this direction. Many papers have
been published in this regard. In [14], Maji et al. studied various
operations on soft sets. Some new operations on soft sets have been
introduced by Ali et al. in [2]. Aktas and Cagman [1], compared
soft sets to the related concepts of fuzzy sets and rough sets. Also,
Feng and Li [4], considered soft product operations. Jun et al., [6],
applied the concept of soft set theory to ordered semigroups. Khan et
al. [10, 11, 12], characterized different classes of ordered semigroups by
using soft-union quasi-ideals and soft-union ideals.

In this paper, we introduced the concept of (M,N )-uni-soft ideals
and (M,N )-uni-soft interior ideals of an ordered semigroup and stud-
ied them. We also proved that in regular and in intra-regular ordered
semigroups the concept of (M,N )-uni-soft ideals and the (M,N )-uni-
soft interior ideals coincide. Lastly, we introduced (M,N )-uni-soft
simple ordered semigroup and characterized the simple ordered semi-
groups in terms of (M,N )-uni-soft interior ideals.

2. Basic definitions and preliminaries

An ordered semigroup (S, ·,≤) is a Poset (S,≤) equipped with a
binary operation “·” such that
(1) (S, ·) is a semigroup,

(2) If x, a, b ∈ S, then a ≤ b =⇒
{

xa ≤ xb
ax ≤ bx.

Let (S, ·,≤) be an ordered semigroup. For subsets A and B of an
ordered semigroup S, we denote

AB := {ab | a ∈ A, b ∈ B}.
If A is a subset of S, we denote by (A] the subset of S defined as

follows
(A] := {t ∈ S | t ≤ h for some h ∈ A}.

For a ∈ S, we write (a] instead of ({a}]. For subsets A and B of an
ordered semigroup S, we have A ⊆ (A]. If A ⊆ B, then (A] ⊆ (B],
(A](B] ⊆ (AB], ((A]] = (A] and ((A](B]] ⊆ (AB].

Let (S, ·,≤) be an ordered semigroup. A non-empty subset A of S
is called a subsemigroup of S if A2 ⊆ A.

A non-empty subset A of S is called a right (resp., left) ideal of S if:
(1) AS ⊆ A (resp., SA ⊆ A) and
(2) if a ∈ A and S ∋ b ≤ a, then b ∈ A.
If A is both a right and a left ideal of S, then it is called an ideal of

S.
A non-empty subset A of S is called a interior ideal of S if:
(1) SAS ⊆ A
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(2) if a ∈ A and S ∋ b ≤ a, then b ∈ A.
An ordered semigroup S is said to be regular if for every x ∈ S there

exist a ∈ S such that a ≤ axa.
An ordered semigroup S is said to be intra-regular if for all a ∈ S

there exists x, y ∈ S such that a ≤ xa2y.
An ordered semigroup S is said to be left (resp., right) simple if it

contains no proper left (resp., right) ideal.
An ordered semigroup S is said to be simple if it contains no proper

two-sided ideal.
In the following, we assume that U is an initial universe set, E is a set

of parameters, P (U) denotes the power set of U and A,B,C, . . . ⊆ E.
And we will assume that ∅ ⊆ M ⊂ N ⊆ U.

A soft set theory is introduced by Molodstov [16], and Çağman [3]
provided new definitions and various results on soft set theory.

Definition 2.1. [16, 3] A soft set fA over U is defined to be the set of
ordered pairs

fA = {(x, fA(x)) | x ∈ E, fA(x) ∈ P (U)} ,
where fA : E −→ P (U) such that fA(x) = ∅ if x /∈ A.
The function fA is also called an approximation function.
It is clear from Definition 2.1, that a soft set is a parameterized family

of subsets of U . Note that the set of all soft sets over U will be denoted
S(U).

Define an ordered relation “⊆̃(M,N )” on P (U) as follows:
For any fA, fB ∈ S(U), ∅ ⊆ M ⊂ N ⊆ U, we defined

fA⊆̃(M,N )fB ⇐⇒ fA (x) ∩N ⊆ fB (x) ∪M,

and we define a relation “=(M,N )” as follows:
fA =(M,N ) fB ⇐⇒ fA⊆̃(M,N )fB and fB⊆̃(M,N )fA.

The soft union of fA and fB, denoted by fA∪̃fB = fA∪B, is defined
by (

fA∪̃fB
)
(x) = fA(x) ∪ fB(x) for all x ∈ E.

The soft intersection of fA and fB, denoted by fA∩̃fB = fA∩B, is
defined by (

fA∩̃fB
)
(x) = fA(x) ∩ fB(x) for all x ∈ E.

For a soft fA over U and δ ⊆ U . The δ−exclusive set of (fA, S),
denoted by eA(fA; δ), is defined as

eA(fA; δ) = {x ∈ L |fA(x) ⊆ δ}
For a non-empty subset A of S, the characteristic soft set (χA, S)

over U is a soft set defined as follows:
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χA : S −→ P (U), x 7−→
{

U, if x ∈ A,
∅, if x ∈ S\A.

For the characteristic soft set (χA, S) over U, the soft set (χc
A, S) over

U is given as follows:

χc
A : S −→ P (U), x 7−→

{
∅, if x ∈ A,
U, if x ∈ S\A.

3. (M,N )-uni-soft interior ideals of ordered semigroups

In this section, we define (M,N )-uni-soft interior ideals of ordered
semigroups and study their properties as regards soft set operations
and soft uni-product. Also, it is shown that every (M,N )-uni-soft
ideal is a (M,N )-uni-soft interior ideal.

Definition 3.1. Let (S, ·,≤) be an ordered semigroup. A soft set
(fS, S) over U is called (M,N )-uni-soft left ideal over U if:

(1) x ≤ y =⇒ fS(x) ∩N ⊆ fS(y) ∪M for all x, y ∈ S and
(2) fS(xy) ∩N ⊆ fS(y) ∪M For all x, y ∈ S.
A soft set (fS, S) over U is called (M,N )-uni-soft right ideal over U

if:
(1) x ≤ y =⇒ fS(x) ∩N ⊆ fS(y) ∪M for all x, y ∈ S and
(2) fS(xy) ∩N ⊆ fS(x) ∪M For all x, y ∈ S.
A soft set fS of S over U is called a (M,N )-uni-soft ideal of S over

U if it is both a (M,N )-uni-soft left and a (M,N )-uni-soft right ideal
of S over U .

Example 3.2. Let S = {e, a} be an ordered semigroup defined by the
order relation e ≤ a with the following multiplication table:

· e a
e e a
a a e

Define a soft set (fS, S) over U as follows:

fS : S −→ P (U), x 7−→ fS(x) =

{
γ if x = e,
γ if x = a.

Where M ⊆ γ ⊂ N . Then fS(xy) ∩ N = fS(e) ∩ N = γ ∩ N =
γ = γ ∪M = fS(e) ∪M = fS(y) ∪M, for every x, y ∈ S. Therefore,
(fS, S) is a (M,N )-uni-soft left (resp., right) ideal over U .

Definition 3.3. Let (S, ·,≤) be an ordered semigroup. A soft set
(fS, S) over U is called (M,N )-uni-soft interior ideal over U if:
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(1) x ≤ y =⇒ fS(x) ∩N ⊆ fS(y) ∪M for all x, y ∈ S and
(2) fS(xay) ∩N ⊆ fS(a) ∪M For all a, x, y ∈ S.
In Example 3.2, one can easily show that (fS, S) is a (M,N )-uni-soft

interior ideal over U .

Example 3.4. [11] Let S = {a, b, c, d} be an ordered semigroup with
the following multiplication table and the ordered relation:

· a b c d
a a a a a
b a a a a
c a a b a
d a a b b

≤:= {(a, a), (b, b), (c, c), (d, d), (a, b), (a, d)}.
Let (fS, S) be a soft set over U = Z defined by

fS : S −→ P (U), x 7−→ fS(x) =

 6N if x = a,
3Z if x ∈ {b, d},
3N if x = c.

Where M ⊆ 6N ⊂ 3N ⊂ 3Z ⊆ N . Then (fS, S) is a (M,N )-uni-soft
inteior ideal over U.

Theorem 3.5. Let (S, ·,≤) be an ordered semigroup. Then (fS, S)
is a (M,N )-uni-soft interior ideal of S over U if and only if the δ-
exclusive set of (fS, S) is an interior ideal of S for all δ ∈ P (U), where
M ⊂ δ ⊂ N .

Proof. Suppose that (fS, S) is a (M,N )-uni-soft interior ideal of S
over U and δ ∈ P (U). First, we need to show that xay ∈ eS(fS; δ),
for all a ∈ eS(fS; δ), x, y ∈ S. By hypothesis, we have fS(xay) ∩ N ⊆
fS(a) ∪M ⊆ δ ∪M = δ and δ ⊂ N , which means that fS(xay) ⊆ δ,
that is xay ∈ eS(fS; δ). Now, for all x ∈ S and y ∈ eS(fS; δ) such
that x ≤ y, since (fS, S) is a (M,N )-uni-soft interior ideal of S over
U , so from x ≤ y we have fS(x) ∩ N ⊆ fS(y) ∪M ⊆ δ ∪M = δ, we
conclude that fS(y) ⊆ δ, that is y ∈ eS(fS; δ). Hence the δ-exclusive set
of (fS, S) is an interior ideal of S for all δ ∈ P (U) where M ⊂ δ ⊂ N .

Conversely, assume that the δ-exclusive set of (fS, S) is an interior
ideal of S for all δ ∈ P (U) where M ⊂ δ ⊂ N and a, x, y ∈ S. Let
fS(xay) ∩N ⊃ δ = fS(a) ∪M for δ ∈ P (U). It follows that fS(a) ⊆ δ
and fS(xay) ⊃ δ, that is a ∈ eS(fS; δ) and xay /∈ eS(fS; δ). Which
is a contradiction to the fact that eS(fS; δ) is an interior ideal of S.
HencefS(xay)∩N ⊆ fS(a)∪M for all a, x, y ∈ S. If there are x, y ∈ S
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such that x ≤ y. Let fS(x) ∩ N ⊃ δ = fS(y) ∪ M then δ ⊆ P (U),
which means that fS(y) ⊆ δ and fS(x) ⊃ δ, that is y ∈ eS(fS; δ) and
x /∈ eS(fS; δ). Which is again a contradiction to the fact that eS(fS; δ)
is an interior ideal of S. Hence if x ≤ y, then fS(x)∩N ⊆ fS(y)∪M,
for all x, y ∈ S. Therefore (fS, S) is a (M,N )-uni-soft interior ideal of
S over U. □
Lemma 3.6. Let (S, ·,≤) be an ordered semigroup. A non-empty subset
I of S is an ideal of S if and only if the characteristic function (χc

I , S)
is a (M,N )-uni-soft ideal over U .
Proof. It follows from Theorem 3.5. □
Theorem 3.7. Let (S, ·,≤) be an ordered semigroup. Then the soft
union of two (M,N )-uni-soft interior (resp., left, right) ideals over U
is also a (M,N )-uni-soft interior (resp., left, right) ideal over U.

Proof. Let (fS, S) and (gS, S) be (M,N )-uni-soft interior ideals over
U. For any x, a, y ∈ S, we have(

fS∪̃gS
)
(xay) ∩N = (fS (xay) ∪ gS (xay)) ∩N

= (fS (xay) ∩N ) ∪ (gS (xay) ∩N )

⊆ (fS (a) ∪M) ∪ (gS (a) ∪M)

= (fS (a) ∪ gS (a)) ∪M
=

(
fS∪̃gS

)
(a) ∪M.

Furtheremore, let x, y ∈ S such that x ≤ y. Since (fS, S) and (gS, S)
are (M,N )-uni-soft interior ideals over U, we have(

fS∪̃gS
)
(x) ∩N = (fS (x) ∪ gS (x)) ∩N

= (fS (y) ∩N ) ∪ (gS (y) ∩N )

⊆ (fS (y) ∪M) ∪ (gS (y) ∪N )

= (fS (y) ∪ gS (y)) ∪M
=

(
fS∪̃gS

)
(y) ∪M.

Therefore
(
fS∪̃gS, S

)
is a (M,N )-uni-soft interior ideal over U. In

a similar way,
(
fS∪̃gS, S

)
is a (M,N )-uni-soft left (resp., right) ideal

over U. □
Let (S, ·,≤) and (T, ·,≤) be two ordered semigroups. Under the

coordinatewise multiplication, i.e.,
(x, a)(y, b) = (xy, ab)

where (x, a), (y, b) ∈ S × T , the Cartesian product
S × T = {(x, a) |x ∈ S, a ∈ T }
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is a semigroup. Define a partial order ≤ on S × T by

(x, a) ≤ (y, b) if and only if x ≤ y and a ≤ b,

where (x, a), (y, b) ∈ S×T. Then, (S × T, ·,≤) is an ordered semigroup.
For uni-soft sets (fS, S) and (fT , T ) over U, we consider a uni-soft

set (fS∨T , S × T ) over U in which fS∨T is defined as follows:

fS∨T : S × T −→ P (U), (x, a) 7−→ fS (x) ∪ fT (a) .

Theorem 3.8. Let (S, ·,≤) be an ordered semigroup. If (fS, S) and
(fT , T ) are (M,N )-uni-soft interior (resp., left, right) ideals over U,
then (fS∨T , S × T ) is a (M,N )-uni-soft interior (resp., left, right) ideal
over U .

Proof. Let (x, a), (y, b), (z, c) ∈ S × T. Then

fS∨T ((x, a), (y, b), (z, c)) ∩N = fS∨T (xyz, abc) ∩N
= (fS (xyz) ∪ fT (abc)) ∩N
= (fS (xyz) ∩N ) ∪ (fT (abc) ∩N ) (#) .

Since (fS, S) and (fT , T ) are (M,N )-uni-soft interior ideal over U,
we have fS (xyz) ∩ N ⊆ fS (y) ∪ M and fT (abc) ∩ N ⊆ fT (b) ∪ M.
Hence from eqution (#) we have

(fS (xyz) ∩N ) ∪ (fT (abc) ∩N ) ⊆ (fS (y) ∪M) ∪ (fT (b) ∪M)

= (fS (y) ∪ fT (b)) ∪M
= fS∨T (y, b) ∪M.

Furthermore, let (x, a), (y, b) ∈ S × T be such that (x, a) ≤ (y, b).
Then

fS∨T (x, a) ∩N = (fS (x) ∪ fT (a)) ∩N
= (fS (x) ∩N ) ∪ (fT (a) ∩N )

⊆ (fS (y) ∪M) ∪ (fT (b) ∪M)

= (fS (y) ∪ fT (b)) ∪M
= fS∨T (y, b) ∪M.

Therefore (fS∨T , S × T ) is a (M,N )-uni-soft interior ideal over U.
Similarly, we show that If (fS, S) and (fT , T ) are (M,N )-uni-soft left
(resp., right) ideals over U, then (fS∨T , S × T ) is a (M,N )-uni-soft left
(resp., right) ideal over U. □

Theorem 3.9. Let φ : S −→ T be a homomorphism of an ordered
semigroup. If (fS, S) is a uni-soft interior (resp., left, right) ideal over
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U , the pre image (φ−1 (fS) , S) of (fS, T ) under φ is auni-soft interior
(resp., left, right) ideal over U, where φ−1 (fS) is given as follows:

φ−1 (fS) : S −→ P (U) , x 7−→ fS (φ (x)) .

Proof. Let (S, ·,≤) be an ordered semigroup and φ : S −→ T be a
homomorphism. Let x, y ∈ S and x ≤ y. Since φ is a homomorphism
of ordered semigroups from S to T, we have φ(x) ≤ φ(y). Since (fS, S)
is a (M,N )-uni-soft interior ideal over U, we have fS (φ(x)) ∩ N ⊆
fS (φ(y)) ∪M. Hence

φ−1 (fS) (x)∩N = fS (φ(x))∩N ⊆ fS (φ(y))∪M = φ−1 (fS) (y)∪M.

Furtheremore, for any x, y, z ∈ S, we have

φ−1 (fS) (xyz) ∩N = fS (φ(xyz)) ∩N
= fS (φ(x)φ(y)φ(z)) ∩N
⊆ fS (φ(y)) ∪M
= φ−1 (fS) (y) ∪M.

Therefore (φ−1 (fS) , S) is a (M,N )-uni-soft interior ideal over U.
Similarly, we can show that (φ−1 (fS) , S) is a (M,N )-uni-soft left
(resp., right) ideal over U. □

Lemma 3.10. Let (S, ·,≤) be an ordered semigroup. Then every
(M,N )-uni-soft two-sided ideal over U is a (M,N )-uni-soft interior
ideal over U.

Proof. Let x, y, a ∈ S. Since (fS, S) is a (M,N )-uni-soft right ideal
over U , we have,

fS(xay) ∩N = fS((xa)y) ∩N ⊆ fS(xa) ∪M, (1)

and since (fS, S) is a (M,N )-uni-soft right ideal over U , we have

fS(xay) ∩N = fS(x (ay)) ∩N ⊆ fS(ay) ∪M. (2)

From (1) and (2) , we get fS(xay) ∩ N = fS(x (ay) ∩ N ) ∩ N ⊆
(fS(ay) ∪M) ∩N = (fS(ay) ∩N ) ∪ (M∩N ) ⊆ (fS(a) ∪M) ∪M =
fS(a) ∪M.

Let x, y ∈ S such that x ≤ y. Then fS(x)∩N ⊆ fS(y)∪M, because
(fS, S) is a (M,N )-uni-soft two-sided ideal over U. Thus (fS, S) is a
(M,N )-uni-soft interior ideal over U. □

The following example shows that the converse of the Lemma 3.10,
is not true in general.
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Example 3.11. In Example 3.4, soft set (fS, S) is a (M,N )-uni-soft
inteior ideal over U . But it is not a uni-soft left ideal over U , since
fS(dc)∩N = fS(b)∩N = 3Z∩N = 3Z ⊈ 3N = 3N∪M = fS(c)∪M,
for every c, d ∈ S, and hence it is not a uni-soft two-sided ideal over U.

4. (M,N )-uni-soft interior ideals of
regular/intra-regular ordered semigroups

In this section, we prove that in regular and in intra-regular ordered
semigroups, the concepts of (M,N )-uni-soft ideals and (M,N )-uni-
soft interior ideals coincide.

Theorem 4.1. Let (S, ·,≤) be a regular ordered semigroup. Then every
(M,N )-uni-soft interior ideal over U is a (M,N )-uni-soft two-sided
ideal over U.

Proof. Let (fS, S) is a (M,N )-uni-soft interior ideal over U and let
x, y ∈ S. Since S is a regular, then there exist a, b ∈ S such that
x ≤ xax and y ≤ yby. We have

fS(xy) ∩N ⊆ (fS((xax) y) ∪M) ∩N
= (fS((xa)xy) ∩N ) ∪ (M∩N )

⊆ (fS (x) ∪M) ∪M
= fS (x) ∪M,

and

fS(xy) ∩N ⊆ (fS(x (yby)) ∪M) ∩N
= (fS(xy (by)) ∩N ) ∪ (M∩N )

⊆ (fS (y) ∪M) ∪M
= fS (y) ∪M.

Now, let x, y ∈ S such that x ≤ y. Then fS(x) ∩ N ⊆ fS(y) ∪
M, because (fS, S) is a (M,N )-uni-soft interior ideal of S over U.
Therefore (fS, S) is a (M,N )-uni-soft two-sided ideal over U. □

By Lemma 3.10 and Theorem 4.1, we have the following:

Remark 4.2. In regular ordered semigroups the concepts of (M,N )-
uni-soft two-sided ideals and (M,N )-uni-soft interior ideals coincide.

Theorem 4.3. Let (S, ·,≤) be an intra-regular ordered semigroup and
(fS, S) is a (M,N )-uni-soft interior ideal over U . Then (fS, S) is a
(M,N )-uni-soft two-sided ideal over U .



78 R. KHAN, A. KHAN, B. AHMAD AND R. GUL

Proof. Let (fS, S) be a (M,N )-uni-soft interior ideal over U. Let x, y ∈
S, since S is a intra-regular then there exists a, b ∈ S such that x ≤ ax2a
and y ≤ by2b. Since (fS, S) is an uni-soft interior ideal of S, we have

fS(xy) ∩N ⊆
(
fS(

(
ax2a

)
y) ∪M

)
∩N

= (fS((ax)x (ay)) ∩N ) ∪ (M∩N )

⊆ (fS(x) ∪M) ∪M
= fS(x) ∪M,

and
fS(xy) ∩N ⊆

(
fS(x

(
by2b

)
) ∪M

)
∩N

= (fS((xb) y (yb)) ∩N ) ∪ (M∩N )

⊆ (fS(y) ∪M) ∪M
= fS(y) ∪M.

Let x, y ∈ S be such that x ≤ y. Then fS(x)∩N ⊆ fS(y)∪M, because
(fS, S) is a (M,N )-uni-soft interior ideal of S over U. Thus (fS, S) is
a (M,N )-uni-soft two-sided ideal of S over U. □

By Lemma 3.10 and Theorem 4.3, we have the following:

Remark 4.4. In intra regular ordered semigroups, the concepts of (M,N )-
uni-soft two-sided ideals and (M,N )-uni-soft interior ideals coincide.

Theorem 4.5. If S is a monoid with identity e. Then every (M,N )-
uni-soft interior ideal over U is a (M,N )-uni-soft two sided ideal over
U.

Proof. Let (fS, S) is a (M,N )-uni-soft interior ideal over U and x, y ∈
S. Then fS (xy)∩N = fS (xye)∩N ⊆ fS (y)∪M and fS (xy)∩N =
fS (exy) ∩ N ⊆ fS (x) ∪ M. Furthermore, let x, y ∈ S be such that
x ≤ y. Then fS(x)∩N ⊆ fS(y)∪M, because (fS, S) is a (M,N )-uni-
soft interior ideal of S over U. Therefore (fS, S) is a (M,N )-uni-soft
two-sided ideal over U. □

5. (M,N )-uni-soft simple ordered semigroups

In this section, we define (M,N )-uni-soft simple ordered semigroups
and characterize simple ordered semigroups in terms of (M,N )-uni-
soft interior ideals.

Definition 5.1. An ordered semigroup S is called (M,N )-uni-soft
simple if for any (M,N )-uni-soft ideal of S, we have fS(x) ∩ N ⊆
fS(y) ∪M, for all x, y ∈ S.
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Theorem 5.2. Let (S, · ≤) be an ordered semigroup. Then S is
(M,N )-uni-soft simple if and only if for any (M,N )-uni-soft ideal
(fS, S) of S, if eS (fS, S) ̸= ∅, then eS (fS, δ) = S, for all δ ∈ P (U)
where M ⊂ δ ⊂ N .

Proof. Let (fS, S) be a (M,N )-uni-soft ideal of S over U, and eS (fS, δ) ̸=
∅. We need to show that x ∈ eS (fS, δ) for all x ∈ S, where M ⊂ δ ⊂ N .
Since eS (fS, δ) ̸= ∅, then there exists y ∈ eS (fS, δ) , that is fS (y) ⊆ δ.
By hypothesis we have,

fS(x) ∩N ⊆ fS(y) ∪M ⊆ δ ∪M = δ.

Notice that δ ⊂ N , which means that fS (x) ⊆ δ, that is x ∈
eS (fS, δ) .

Conversely, suppose that for any (M,N )-uni-soft ideal (fS, S) over
U, we have eS (fS, δ) = S for all M ⊂ δ ⊂ N . We need to show that
fS(x) ∩N ⊆ fS(y) ∪M for all x, y ∈ S. Let if

fS(x) ∩N ⊃ δ = fS(y) ∪M.

Then fS (y) ⊆ δ and fS (x) ⊃ δ, which means that x /∈ eS (fS, δ) = S,
a contradiction. So fS(x) ∩N ⊆ fS(y) ∪M for all x, y ∈ S. □

Theorem 5.3. Ley (S, ·,≤) be an ordered semigroup and soft set
(fS, S) a (M,N )-uni-soft right (resp., left) ideal over U. Then Ix =
{y ∈ S |fS(y) ∩N ⊆ fS(x) ∪M} is a right (resp., left) ideal of S, for
all x ∈ S.

Proof. Let x ∈ S. Then Ix ̸= ∅ since x ∈ Ix. Suppose that y ∈ Ix and
s ∈ S, Then ys ∈ Ix. Since (fS, S) is a (M,N )-uni-soft ideal over U
and y, s ∈ S, we have

fS (ys) ∩N = (fS (ys) ∩N ) ∩N
⊆ (fS (y) ∪M) ∩N
= (fS (y) ∩N ) ∪ (M∩N )

⊆ (fS (x) ∪M) ∪M since y ∈ Ix

= fS (x) ∪M.

Hence ys ∈ Ix.
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Furthermore, let s, y ∈ S be such that s ≤ y. If y ∈ Ix, Then s ∈ Ix.
Since (fS, S) is a (M,N )-uni-soft ideal over U and s ≤ y, we have

fS (s) ∩N = (fS (s) ∩N ) ∩N
⊆ (fS (y) ∪M) ∩N
= (fS (y) ∩N ) ∪ (M∩N )

⊆ (fS (x) ∪M) ∪M since y ∈ Ix

= fS (x) ∪M.

So s ∈ Ix. Therefore, Ix is a right ideal of S, for all x ∈ S. □
By left right dual of Theorem 5.3, we have the following result.

Theorem 5.4. Ley (S, ·,≤) be an ordered semigroup and soft set (fS, S)
a (M,N )-uni-soft ideal over U. Then for all x ∈ S, the set

Ix = {y ∈ S |fS(y) ∩N ⊆ fS(x) ∪M}
is a right ideal of S.
Theorem 5.5. An ordered semigroup S is simple if and only if it is
(M,N )-uni-soft simple.
Proof. Assume that S is simple. Let (fS, S) be a (M,N )-uni-soft ideal
over U and x, y ∈ S. By Theorem 5.4, the set Ix is an ideal of S. Since
S is simple, we have Ix = S. Then b ∈ Ix, from which we have that
fS(y) ∩N ⊆ fS(x) ∪M. Thus S is (M,N )-uni-soft simple.

Conversely, suppose S contains proper ideals and let I be such ideal
of S. By Lemma 3.6, we know that (χc

I , S) is a (M,N )-uni-soft ideal of
S. We have that S ⊆ I. Indeed, let x ∈ S. Since S is (M,N )-uni-soft
simple, χc

I(x) ∩ N ⊆ χc
I(y) ∪M for all y ∈ S. Now, let z ∈ I. Then

we have
χc
I(x) ∩N ⊆ χc

I(z) ∪M = U ∪M = U.

Notice that M ⊂ N , we conclude that χc
I(x) ⊆ U , which implies that

χc
I(x) = U , that is x ∈ I. Thus we have that S ⊆ I, and so S = I. We

get a contradiction to hypothesis that S contains proper ideals. □
Lemma 5.6. [8, 9] An ordered semigroup S is simple if and only if for
every a ∈ S, we have S = (SaS].
Theorem 5.7. Let (S, ·,≤) be an ordered semigroup. Then S is simple
if and only if for every (M,N )-uni-soft interior ideal (fS, S) of S, we
have fS(x) ∩N ⊆ fS(y) ∪M, for all x, y ∈ S.
Proof. Supose S is simple. Let (fS, S) be a (M,N )-uni-soft interior
ideal over U and x, y ∈ S. Since S is simple and y ∈ S, by Lemma 5.6,
we have S = (SyS] . Since x ∈ S, we have x ∈ (SyS] , then x ≤ ayb for



UNI-SOFT INTERIOR IDEALS 81

some a, b ∈ S. Since (fS, S) is a (M,N )-uni-soft interior ideal over U ,
We have

fS (x) ∩N = (fS (x) ∩N ) ∩N
⊆ (fS (ayb) ∪M) ∩N
= (fS (ayb) ∩N ) ∪ (M∩N )

⊆ (fS (y) ∪M) ∪M
= fS (y) ∪M.

Conversely, suppose that for every (M,N )-uni-soft interior ideal
(fS, S) over U , we have fS (x)∩N ⊆ fS (y)∪M, for all x, y ∈ S. Now let
(fS, S) be any (M,N )-uni-soft ideal of S over U, then it is a (M,N )-
uni-soft interior ideal of S over U . So we have fS (x)∩N ⊆ fS (y)∪M,
for all x, y ∈ S. Thus S is (M,N )-uni-soft simple, then by Theorem
5.5, we conclude that S is simple. □
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GENERALIZED UNI-SOFT INTERIOR IDEALS IN ORDERED SEMIGROUPS

R. Khan, A. Khan, B. Ahmad and R. Gul

مرتب نیم گروه های در تعمیم یافته اجتماع-نرم داخلی ایده آل های

گول۴ روزیا و احمد٣ بختیار خان٢، اصغر خان١، رئیس

پاکستان چارسده، باچا خان، دانشگاه ریاضی، گروه ١,۴

پاکستان مردان، عبدالولی خان، دانشگاه ریاضی، گروه ٢,٣

M,N)-اجتماع- ) ایده آل های مفاهیم ابتدا ،M ⊂ N گونه ای که به M,N ∈ P (U) هر برای
مورد را آن ها و کرده معرفی را مرتب نیم گروه های برای M,N)-اجتماع-نرم ) داخلی ایده آل های و نرم
موجود مفاهیم با فوق مفاهیم ،N = U و M = ∅ که خاص حالت در می دهیم. قرار مطالعه
مرتب نیم گروه های در که می کنیم ثابت سپس می باشند. سازگار نرم، داخلی ایده آل و نرم ایده آل قبلی
ضمن انتها، در می باشند. منطبق برهم فوق شده تعریف مفاهیم درون-منظم، مرتب نیم گروه های و منظم
حسب بر ساده مرتب نیم گروه های رده بندی به M,N)-اجتماع-نرم، ) ساده مرتب نیم گروه مفهوم معرفی

می پردازیم. M,N)-اجتماع-نرم ) داخلی ایده آل های

درون-منظم، مرتب نیم گروه های M,N)-اجتماع-نرم، ) ایده آل های نرم، مجموعه  کلیدی: کلمات
نیم گروه منظم، M,N)-اجتماع-نرم، ) ساده نیم گروه M,N)-اجتماع-نرم، ) داخلی ایده آل های

ساده. مرتب

۵
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