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NEW METHODS FOR CONSTRUCTING
GENERALIZED GROUPS, TOPOLOGICAL

GENERALIZED GROUPS, AND TOP SPACES

Z. NAZARI∗, A. DELBAZNASAB AND M. KAMANDAR

Abstract. The purpose of this paper is to introduce new methods
for constructing generalized groups, generalized topological groups
and top spaces. We study some properties of these structures and
present some relative concrete examples. Moreover, we obtain gen-
eralized groups by using of Hilbert spaces and tangent spaces of
Lie groups, separately.

1. Introduction

Generalized groups as an extension of groups were recently intro-
duced by Molaei in [8]. A generalized group is a non-empty set G ad-
mitting an operation called multiplication, which satisfies the following
conditions:

i) x(yz) = (xy)z, for all x, y ∈ G;
ii) For each x ∈ G, there exists a unique ex ∈ G such that xex =

exx = x (existence and uniqueness of identity element);
iii) For each x ∈ G, there exists x−1 ∈ G such that xx−1 = x−1x =

ex (existence of inverse element) [8].
In [2], Araujo and Konieczny proved that the generalized groups are
equivalent to the notion of completely simple semigroups. In fact a
semigroup S is called a completely simple semigroup if for all a ∈ S,
SaS = S, and if e and f are idempotents in S such that ef = fe then
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e = f . Here we call them as generalized groups. Various applications
of these algebraic structures are studied in the recent papers [1, 3, 4,
5, 6, 7, 11].

In this paper, we shall introduce some methods for constructing gen-
eralized groups, generalized rings, topological generalized groups and
top spaces, and investigate some properties of them. Our motivation
is to introduce methods that identify the relationship between alge-
braic, geometric and topological structures. In particular, we present
some concrete examples of these new methods. Meanwhile, we estab-
lish generalized groups by using of Hilbert spaces and tangent spaces
of Lie groups in separate manners.

In the following, we give a brief review on the definitions which are
useful for establishing our main results.

Definition 1.1. [9] A generalized group G is called a topological gen-
eralized group provided that G is a Hausdorff topological space and
the mappings

I : G→ G,

g 7→ g−1,

and
P : G×G→ G,

(g, h) 7→ gh,

are continuous.

Definition 1.2. [12] A non-empty set R with two different operations
(x, y) 7→ x+ y and (x, y) 7→ xy

is called a generalized ring if the following conditions are satisfied:
i) (R,+) is a generalized group;
ii) x(yz) = (xy)z, for all x, y, z ∈ R;
iii) For all x, y, z ∈ R,

x(y + z) = xy + xz and (x+ y)z = xz + yz.

Definition 1.3. [10] A normal topological generalized groupG is called
top space if

i) The topological space T is a smooth manifold;
ii) The mappings

I : T → T,

x 7→ x−1,

and
P : T × T → T,



NEW METHODS FOR CONSTRUCTING GENERALIZED GROUPS 85

(x, y) 7→ xy,

are C∞ maps.

It is noted that throughout the paper, we assume that Mn(K) is the
set of n×n matrices and GL(n,K) is the set of all nonsingular matrices
over K, where K is the field of real or complex numbers.

2. Main results

In this section, we introduce a new method for constructing general-
ized groups, topological generalized groups and top spaces, and stablish
some results about them.

Theorem 2.1. Let G be a non-empty subset of Mn(K) and let f :
G −→ K \{0} be a map such that f(λB) = λf(B), for all λ ∈ K \{0}.
Define A ∗B := f(A)B, for all A,B ∈ G. Then (G, ∗) is a generalized
group.

Proof. Let A,B,C ∈ G. So, we have
(A ∗B) ∗ C = f(f(A)B)C = f(A)f(B)C,

and
A ∗ (B ∗ C) = A ∗ (f(B)C)

= f(A)(f(B)C)

= f(A)f(B)C

= (A ∗B) ∗ C.
Therefore (G, ∗) is associative.

Moreover, A ∗ ( A
f(A)

) = f(A)( A
f(A)

) = A. Since f(λA) = λf(A), put
λ = 1

f(A)
, so we have

(
A

f(A)
) ∗ A = f(

A

f(A)
)A =

(
1

f(A)
f(A)

)
A = A.

Therefore, eA = A
f(A)

is the identity element of A which is unique. If
not, let EA be an another identity element of A, then

A ∗ EA = A ∗ eA = A

⇒ f(A)EA = f(A)eA

⇒ EA = eA.

And finally, it is easily seen that A−1 = A
f(A)2

. □

Remark 2.2. Similary, if A ∗B = A f(B), for all A,B ∈ G, then (G, ∗)
is a generalized group.
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Example 2.3. Suppose that T = {A ∈ Mn(R)|tr(A) ̸= 0}, where
tr(A) is the trace of matrix A. Define A⋆B := tr(A)B, for all A,B ∈ T ,
then (T, ⋆) is a generalized group. Indeed, for all A ∈ T and λ ∈ R\{0}
we have tr(λA) = λtr(A). Therefore

(A ⋆ B) ⋆ C = tr(tr(A)B).C = tr(A)tr(B)C,

and

A ⋆ (B ⋆ C) = A ⋆ (tr(B)C)

= tr(A)(tr(B)C)

= tr(A)tr(B)C = (A ⋆ B) ⋆ C,

so (R, ⋆) is associative. It is easy to check that eA =
A

tr(A)
is the

unique identity element and A−1 = A
tr2(A)

is the inverse element of A.

Example 2.4. Let A,B ∈ GL(n,C). Define A ∗ B := n
√
det(A) B.

Then (GL(n,C), ∗) is a generalized group. Indeed, for all A ∈ GL(n,C)
and λ ∈ C \ {0} we have n

√
det(λA) = λ n

√
det(A). So, we have

(A ∗B) ∗ C =
n

√
det( n

√
det(A)B) C = n

√
det(A) n

√
det(B) C

and

A ∗ (B ∗ C) = n
√
detA(

n
√
detB C) = n

√
det(A) n

√
det(B) C

= (A ∗B) ∗ C,

so (GL(n,C), ∗) is associative. Moreover

A ∗ A
n
√
det(A)

= n
√
det(A)

A
n
√
det(A)

= A,

and
A

n
√
det(A)

∗ A = n

√
det(

A
n
√
det(A)

) A = A.

So eA =
A

n
√
det(A)

is the identity element of A. Simply we see that
A

n
√

det(A)2
is the inverse of A.

Proposition 2.5. Let x⊕
n
y := x +

[10ny]

10n
, for every x, y ∈ R. Then

(R,⊕
n
) is a generalized group.



NEW METHODS FOR CONSTRUCTING GENERALIZED GROUPS 87

Proof. Let x, y, z ∈ R. Then

(x⊕
n
y)⊕

n
z = x+

[10ny]

10n
+

[10nz]

10n
,

and

x⊕
n
(y⊕

n
z) = x⊕

n
(y +

[10nz]

10n
) = x+

10n(y +
[10nz]

10n
)

10n

= x+
[10ny + [10nz]]

10n

= x+
[10ny] + [10nz]

10n
.

Therefore (R,⊕
n
) is associative. Now, we show that ex = x− [10nx]

10n
is

the unique identitiy element of x. Indeed, we have

x⊕
n
(x− [10nx]

10n
) = x+

[10n(x− [10nx]

10n
)]

10n

= x+
[10nx]− [10nx]

10n
= x.

Also

(x− [10nx]

10n
)⊕

n
x = (x− [10nx]

10n
) +

[10nx]

10n
= x.

One can easily check that ex is unique and x−1 = x − 2[10nx]

10n
is the

inverse of x. □

Lemma 2.6. If α is an arbitrary element of R, then lim
n→∞

(
[10nα]

10n
) = α.

Proof. Let ϵ > 0. We choose m ∈ N, such that 1 < 10mϵ. So, for all
n ≥ m, we have ∣∣ [10nα]

10n
− α

∣∣ =
∣∣ [10nα]− 10nα

10n
∣∣

≤ 1

10n

≤ 1

10m
< ϵ.

□
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Corollary 2.7. Let x, y ∈ R. Then lim
n→∞

(x⊕
n
y) = x+ y.

Proposition 2.8. Let x⊕
n
y := x +

[10ny]

10n
and x ⋆ y := x, for all

x, y ∈ R. Then (R, ⋆,⊕
n
) is a generalized ring.

Proof. Obviously, (R, ⋆) is a generalized group. By using of Proposi-
tion 2.5, (R,⊕

n
) is a generalized group, so it is associative. The other

properties can be checked as follows:

x⊕
n
(y ⋆ z) = x⊕

n
y = x+

[10ny]

10n
,

and
(x⊕

n
y) ⋆ (x⊕

n
z) = x⊕

n
y = x+

[10ny]

10n
,

So
x⊕

n
(y ⋆ z) = (x⊕

n
y) ⋆ (x⊕

n
z).

Also
(x ⋆ y)⊕

n
z = x⊕

n
z = x+

[10nz]

10n
,

and
(x⊕

n
z) ⋆ (y⊕

n
z) = x⊕

n
z = x+

[10nz]

10n
,

so (x ⋆ y)⊕
n
z = (x⊕

n
z) ⋆ (y⊕

n
z). This completes the proof. □

Theorem 2.9. Let G be a group. For a non-empty set X, let ψ be
a map from X to G. Define (x, g) ⋆ (x1, g1) := (x, gψ(x1)g1), for all
(x, g), (x1, g1) ∈ X ×G, then (X ×G, ⋆) is a generalized group.

Proof. It is easy to see that (X × G, ⋆) is associative. Now, we show
that (x, ψ(x)−1) is the identity element of (x, g). i.e.,

(x, g) ⋆ (x, ψ(x)−1) = (x, gψ(x)ψ(x)−1) = (x, g),

and also
(x, ψ(x)−1) ⋆ (x, g) = (x, ψ(x)−1ψ(x)g) = (x, g).

One can easily check that the identity element is unique and the inverse
element of (x, g) is (x, ψ(x)−1g−1ψ(x)−1). This completes the proof.

□
Example 2.10. Let X = Z, G = (R,+) and ψ : Z −→ R be the
inclusion map. Define (n, g) ⋆ (n1, g1) := (n, g + n1 + g1), for all
(n, g), (n1, g1) ∈ Z× R. Then (Z× R, ⋆) is a generalized group.
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Example 2.11. Let X = Z and let G be a group. Suppose that
0 ̸= g0 ∈ G and ψ : Z −→ G; ψ(n) = gn0 , for all n ∈ Z. Define
(n, g) ⋆ (n1, g1) := (n, gψ(n)g1), for all (n, g), (n1, g1) ∈ Z × G. Then
(Z×G, ⋆) is a generalized group.

In what follows, In denotes the n× n identity matrix.

Example 2.12. Let X = {kIn| k ∈ Z}, G = Mn(R) and let ψ :
X −→ G be such that ψ(kIn) = kIn. We define (kIn, A) ⋆ (k

′In, A
′) :=

(kIn, A+k′In+A
′), for all (kIn, A), (k′In, A′) ∈ X×G. Then (X×G, ⋆)

is a generalized group.

Example 2.13. Let X = {rIn| r ∈ R − {0}}, G = GL(n,R) and
ψ : X −→ G be such that ψ(rIn) = rIn. Define (rIn, A) ⋆ (sIn, B) :=
(rIn, AsInB) = (rIn, sAB), for all (rIn, A), (sIn, B) ∈ X × G. Then
(X ×G, ⋆) is a generalized group.

Similar to Theorem 2.9, in the following theorems we introduce some
new types of generalized topological groups and top spaces.

Theorem 2.14. Let G be a Hausdorff topological group, X be a Haus-
dorff topological space and ϕ : X → G be a continuous map. Define
(x, g) ∗ (x1, g1) := (x, gϕ(x1)g1), for all (x, g), (x1, g1) ∈ X × G. Then
(X ×G, ∗) is a topological generalized group.

Proof. In Theorem 2.9, we showed that (X × G, ∗) is a generalized
group. Since X and G are Hausdorff topological spaces, so X ×G is a
Hausdorff topological space. It is enough to show that P : (X ×G)×
(X ×G) → (X ×G) such that

P((x, g), (x1)g1)) = (x, g) ∗ (x1, g1) = (x, gϕ(x1)g1),

and I : X ×G→ X ×G such that
I(x, g) = (x, ϕ(x)−1g−1ϕ(x)−1),

are continuous maps. Suppose that h : (X×G)×(X×G) → X×G×X×
G such that h((x, g), (x1, g1)) = (x, g, x1, g1), I : X → X is the identity
map, f : G×X×G→ G such that f(g, x1, g1) = m1(m1(g, ϕ(x1)), g1),
where m1 is the multiplication map of G and h′ : X × G ×X × G →
X×G such that h′(x, g, x1, g1) = (I(x), f(g, x1, g1)). Since the following
diagram is commutative, and h and h′ are continuous, therefore P is
continuous.

(X ×G)× (X ×G)
h //

P
++VVVV

VVVVV
VVVVV

VVVVV
VV

X ×G×X ×G

h′

��
X ×G
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Let Lg : G→ G and Rg : G→ G be left and right translation maps on
G, respectively. Then

I(x, g) = (I(x), Lϕ−1(x) ◦Rϕ−1(x) ◦m2(g)),

where m2 is the inverse map of G. So the inverse map I is continuous.
□

Example 2.15. Let X = Z be equipped with discrete topology and
G = R be equipped with standard topology. So (X×G, ⋆) in Example
2.10, is a topological generalized group according to Theorem 2.14.

Theorem 2.16. Let G be a Lie group, X be a smooth manifold and
ϕ : X → G be a smooth map. Define (x, g) ∗ (x1, g1) := (x, gϕ(x1)g1),
for all (x, g), (x1, g1) ∈ X ×G. Then (X ×G, ∗) is a top space.

Proof. In Theorem 2.9, we showed that (X × G, ∗) is a generalized
group where the identity element of (x, g) is (x, ψ(x)−1) and the inverse
element of (x, g) is (x, ψ(x)−1g−1ψ(x)−1). Now we show that X × G
is normal. Since for all (x, g), (x1, g1) ∈ X × G, we have e((x, g) ∗
(x1, g1)) = e(x, gϕ(x1)g1) = (x, ϕ(x)−1), and also e((x, g))∗e((x1, g1)) =
(x, ϕ(x)−1)∗(x1, ϕ(x1)−1) = (x, ϕ(x)−1ϕ(x1)ϕ(x1)

−1) = (x, ϕ(x)−1). We
observe that e((x, g) ∗ (x1, g1)) = e((x, g)) ∗ e((x1, g1)). As obviously,
X ×G is a smooth manifold, it is enough to show that P : (X ×G)×
(X ×G) → (X ×G) such that

P((x, g), (x1)g1)) = (x, g) ∗ (x1, g1) = (x, gϕ(x1)g1),

and I : X ×G→ X ×G such that
I(x, g) = (x, ϕ(x)−1g−1ϕ(x)−1),

are smooth maps. Suppose that h : (X × G) × (X × G) → X ×
G × X × G such that h((x, g), (x1, g1)) = (x, g, x1, g1), I : X → X
is the identity map, f : G × X × G → G such that f(g, x1, g1) =
m1(m1(g, ϕ(x1)), g1)) where m1 is the multiplication map of G and h′ :
X×G×X×G→ X×G such that h′(x, g, x1, g1) = (I(x), f(g, x1, g1)).
Since the following diagram is commutative, and h and h′ are smooth,
therefore P is smooth.

(X ×G)× (X ×G)
h //

P
++VVVV

VVVVV
VVVVV

VVVVV
VV

X ×G×X ×G

h′

��
X ×G

Let Lg : G→ G and Rg : G→ G be left and right translation maps on
G, respectively. Then

I(x, g) = (I(x), Lϕ−1(x) ◦Rϕ−1(x) ◦m2(g)),
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where m2 is the inverse map of G. So the inverse map I is smooth,
and the proof is complete. □
Proposition 2.17. Let X, G, ψ be the same as Theorem 2.9 and
Y = {(y, h)|e(y,h) = e(x,g)}, where (x, g) is a fixed element of X × G.
Then the following statements are valid:

i) (Y, ⋆) is a group;
ii) Y and G are isomorphic.

Proof. Since e(y,h) = e(x,g), we have x = y and hence Y = {(x, h)|h ∈
G}. We show that (Y, ⋆) is a group. Associativity property of Y is
trivial. We claim that eY = (x, ψ(x)−1) is the identity element of Y ,
because

(x, h) ⋆ eY = (x, h) ⋆ (x, ψ(x)−1) = (x, hψ(x)ψ(x)−1) = (x, h),

for all (x, h) ∈ Y . Also (x, ψ(x)−1h−1ψ(x)−1) is the inverse of (x, h) for
all (x, h) ∈ Y , because

(x, h) ⋆ (x, ψ(x)−1h−1ψ(x)−1) = (x, ψ(x)−1h−1ψ(x)−1) ⋆ (x, h)

= (x, ψ(x)−1)

= eY .

Now, we show that Y is isomorphic with G. Let ϕ : Y −→ G be such
that ϕ((x, g)) = ψ(x)g. If ϕ(x, h) = ϕ(x, h′), then

ψ(x)h = ψ(x)h′ =⇒ ψ(x)−1ψ(x)h = ψ(x)−1ψ(x)h′

=⇒ h = h′

=⇒ (x, h) = (x, h′).

So, ϕ is one to one. Let h′ be an arbitrary element of G. Now, by
selecting (x, h) = (x, ψ(x)−1h′) ∈ Y , we have

ϕ((x, h)) = ψ(x)h = ψ(x)ψ(x)−1h′ = h′.

Therefore ϕ is onto. Also ϕ is homomorphism, because
ϕ((x, h) ⋆ (x, h′)) = ϕ(x, hψ(x)h′)

= ψxhψxh′

= ϕ((x, h))ϕ((x, h′)).

So, the map ϕ is an isomorphism. □
Similarly, we have the following two propositions.

Proposition 2.18. Let X, G, ψ be the same as Theorem 2.14, and
Y = {(y, h)|e(y,h) = e(x,g)} such that (x, g) is a fixed element of X ×G.
Then, the following statements are valid:
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i) (Y, ⋆) is a topological group;
ii) Y and G are isomorphic.

Proposition 2.19. Let X, G, ψ be the same as Theorem 2.16. Define
Y := {(y, h)|e(y,h) = e(x,g)}, where (x, g) is a fixed element of X × G.
Then, the following statements are valid:

i) (Y, ⋆) is a Lie group;
ii) Y and G are isomorphic.

In the following theorem, we obtain a generalized group by using of
a Hilbert space.

Theorem 2.20. Let H be a Hilbert space and u, v be two fixed vector
in H such that ⟨u, v⟩ = 1. Define x ⊕ y := x+ < y, u > v, for all
x, y ∈ H. Then (H,⊕) is a generalized group.

Proof. First we show that (H,⊕) is associative. we have
(x⊕ y)⊕ z = (x+ < y, u > v)⊕ z = x+ < y, u > v+ < z, u > v,

and also
x⊕ (y ⊕ z) = x⊕ (y+ < z, u > v)

= x+ < (y+ < z, u > u), u > v

= x+ < y, u > v+ < z, u >< u, u > v

= x+ < y, u > v+ < z, u > v.

One can easily check that ex = x− < x, u > v and x−1 = x − 2 <
x, u > v are the identity and the inverse of x ∈ H, respectively. □

In the next theorem, we obtain a generalized group on a tangent
space of a Lie group.

Theorem 2.21. Let G be a Lie group equipped with Riemannian met-
ric, TpG be the tangent space of G in p and V be a vector field on G
such that V (g) ̸= 0, for all g ∈ G. Define

xp ⊞ yp := xp+ < yp,
V (p)

∥(V (p)∥
>

V (p)

∥(V (p)∥
,

for all xp, yp ∈ TpG. Then (TpG,⊞) is a generalized group for all p ∈ G.

Proof. Set Ep =
V (p)

∥(V (p)∥ . Then

xp ⊞ (yp ⊞ zp) = xp ⊞ (yp+ < zp, Ep > Ep)

= xp+ < yp+ < zp, Ep > Ep, Ep > Ep

= xp+ < yp, Ep > Ep+ < zp, Ep > Ep.
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And also

(xp ⊞ yp)⊞ zp = (xp+ < yp, Ep > Ep)⊞ zp

= xp+ < yp, Ep > Ep+ < zp, Ep > Ep.

So (TpG,⊞) is associative. Now, we can simply show that the identity
of xp is xp− < xp, Ep > Ep, and the inverse of xp is xp − 2 < xp, Ep >
Ep. □

3. conclusion

The aim of this paper was to find new methods for constructing
generalized groups, topological generalized groups and top spaces which
are the generalization of their corresponding algebraic concepts. We
have studied some their properties and provided some corresponding
examples.
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کماندار٣ مهدی نسب٢و دلباز علی نظری١، زهره
ایران رفسنجان، رفسنجان، عصر(عج) ولی دانشگاه ریاضی، ١دانشکده

ایران یاسوج، یاسوج، فرهنگیان دانشگاه ریاضی، ٢گروه

ایران تهران، شاهد، دانشگاه ریاضی، ٣گروه

توپولوژیک تعمیم یافته گروه های تعمیم یافته، گروه های ساختن جهت جدید روش های معرفی مقاله این هدف
با مرتبط ملموس مثال هایی و بررسی را ساختار ها این خواص مقاله این در ما می باشد. تاپ فضاهای و
گروه های لی، گروه های بر مماس فضاهای و هیلبرت فضاهای از استفاده با به علاوه، می کنیم. ارائه را آن  ها

می آوریم. به دست تعمیم یافته ای

لی. گروه تاپ، فضای توپولوژیک، تعمیم یافته گروه تعمیم یافته، گروه کلیدی: کلمات

۶


	1. Introduction
	2. Main results
	3. conclusion
	References

