Journal of Algebraic Systems

Vol. 7, No. 1, (2019), pp 95-103

ON THE NORMALITY OF t-CAYLEY HYPERGRAPHS OF ABELIAN GROUPS

R. BAYAT, M. ALAEIYAN AND S. FIROUZIAN*

Abstract

A t-Cayley hypergraph $X=t-\operatorname{Cay}(G, S)$ is called normal for a finite group G, if the right regular representation $R(G)$ of G is normal in the full automorphism group $A u t(X)$ of X. In this paper, we investigate the normality of t-Cayley hypergraphs of abelian groups, where $|S| \leq 4$.

1. Introduction

A hypergraph X is a pair (V, E), where V is a finite nonempty set and E is a finite family of nonempty subsets of V. The elements of V are called hypervertices or simply vertices and the elements of E are called hyperedges or simply edges. Two vertices u and v are adjacent in hypergraph $X=(V, E)$ if there is an edge $e \in E$ such that $u, v \in e$. If for two edges $e, f \in E$ holds $e \cap f \neq 0$, we say that e and f are adjacent. A vertex v and an edge e are incident if $v \in e$. We denote by $X(v)$ the neighborhood of a vertex v, i.e. $X(v)=\{u \in V:\{u, v\} \in E\}$. Given $v \in V$, denote the number of edges incident with v by $d(v) ; d(v)$ is called the degree of v. A hypergraph in which all vertices have the same degree d is said to be regular of degree d or d-regular. The size, or the cardinality, $|e|$ of a hyperedge is the number of vertices in e. A hypergraph $X=(V, E)$ is simple if no edge is contained in any other edge and $|e| \geq 2$ for all $e \in E$. A hypergraph is known as uniform or k-uniform if all the edges have cardinality k. Note that an ordinary graph with no isolated vertex is a 2-uniform hypergraph.

[^0]A path of length k in a hypergraph (V, E) is an alternating sequence $\left(v_{1}, e_{1}, v_{2}, \ldots, v_{k}, e_{k}, v_{k+1}\right)$ in which $v_{i} \in V$ for each $i=1,2, \ldots, k+1$, $e_{i} \in E,\left\{v_{i}, v_{i+1}\right\} \subseteq e_{i}$ for $i=1,2, \ldots, k$ and $v_{i} \neq v_{j}$ and $e_{i} \neq e_{j}$ for $i \neq j$. A hypergraph is connected if there is a path between every pair of vertices.

Let $X_{1}=\left(V_{1}, E_{1}\right)$ and $X_{2}=\left(V_{2}, E_{2}\right)$ be two hypergraphs. A homomorphism $\varphi: X_{1} \rightarrow X_{2}$ is a map $\varphi: V_{1} \rightarrow V_{2}$ that preserves adjacencies, that is, $\varphi(e) \in E_{2}$ for each $e \in E_{1}$. When φ is a bijection and its inverse map is also a homomorphism then φ is an isomorphism between the two hypergraphs and X_{1} and X_{2} are isomorphic.

An isomorphism from a hypergraph X onto itself is an automorphism. The automorphism group of X is denoted by $\operatorname{Aut}(X)$. For more information about hypergraphs, the readers are referred to $[3,4]$.

For a group G and a subset S of G such that $1_{G} \notin S$ and $S=S^{-1}:=$ $\left\{s^{-1} \mid s \in S\right\}$, the Cayley graph $X=\operatorname{Cay}(G, S)$ of G with respect to S is defined as the graph with vertex set $V(X)=G$, and edge set $E(X)=\left\{\{g, h\} \mid h g^{-1} \in S\right\}$.

Obviously, the Cayley graph $\operatorname{Cay}(G, S)$ has valency $|S|$, and it easily follows that $\operatorname{Cay}(G, S)$ is connected if and only if $G=\langle S\rangle$, that is, S generates G. For a group G, denote $R(G)$ as the right regular representation of G. Define

$$
\operatorname{Aut}(G, S):=\left\{\alpha \in \operatorname{Aut}(G) \mid S^{\alpha}=S\right\}
$$

acting naturally on G. Then, it is easy to see that each Cayley graph $X=\operatorname{Cay}(G, S)$ admits the group $R(G) \cdot A u t(G, S)$ as a subgroup of automorphisms. Moreover (see [6]), $N_{\text {Aut }(X)}(R(G))=R(G)$.Aut (G, S). Note that $R(G) \cong G$. So, we can identify G with $R(G) \leq A u t(X)$ for $X=\operatorname{Cay}(G, S)$. The Cayley graph $X=\operatorname{Cay}(G, S)$ is called normal if G is normal in $\operatorname{Aut}(X)$. In this case, $\operatorname{Aut}(X)=G \cdot \operatorname{Aut}(G, S)$.

Let G be a group and let S be a set of subsets $s_{1}, s_{2}, \ldots, s_{n}$ of $G-$ $\left\{1_{G}\right\}$ such that $G=\left\langle\bigcup_{i=1}^{n} s_{i}\right\rangle$, that is, $\bigcup_{i=1}^{n} s_{i}$ generates G. A Cayley hypergraph $C H(G, S)$ has vertex set G and edge set $\{\{g, g s\} \mid g \in G, s \in$ $S\}$, where an edge $\{g, g s\}$ is the set $\{g\} \cup\{g x \mid x \in s\}$. For all $s \in S$, if $|s|=1$, then the Cayley hypergraph is a Cayley graph. Therefore, a Cayley hypergraph is a generalization of a Cayley graph [7]. Also, Lee and Kwon [7] proved that a hypergraph X is Cayley if and only if $A u t(X)$ contains a subgroup which acts regularly on the vertex set of X. For example, the hypergraph X, with

$$
\begin{aligned}
& V(X)=\{0,1,2,3,4,5,6\} \\
& E(X)=\{\{0,1,3\},\{1,2,4\},\{2,3,5\},\{3,4,6\},\{4,5,0\},\{5,6,1\},\{6,0,2\}\}
\end{aligned}
$$

is considered. This hypergraph which is called the Fano plane, is the Cayley hypergraph $X=C H\left(\mathbb{Z}_{7},\{1,3\}\right)$.

In 1994, Buratti [5] introduced the concept of a t-Cayley hypergraph as follows. Let G be a finite group, S a subset of $G-\left\{1_{G}\right\}$ and t an integer satisfying $2 \leq t \leq \max \{o(s) \mid s \in S\}$. The t-Cayley hypergraph $X=t-C a y(G, S)$ of G with respect to S is defined as the hypergraph with vertex set $V(X)=G$, and for $E \subseteq G$,

$$
E \in E(X) \Longleftrightarrow \exists g \in G, \exists s \in S: E(X)=\left\{g s^{i} \mid 0 \leq i \leq t-1\right\}
$$

Note that any 2-Cayley hypergraph is a Cayley graph and vice versa. For any $s_{i} \in S$, if $s_{i}=\left\{s, \ldots, s^{t-1}\right\}$ for some $s \in G-\left\{1_{G}\right\}$, then the Cayley hypergraph $C H(G, S)$ is a t-Cayley hypergraph $t-C a y(G, S)$. Hence, a Cayley hypergraph is a generalization of a t-Cayley hypergraph. In fact every t-Cayley hypergraph is a subclass of the more general Cayley hypergraphs, or group hypergraphs which is defined by Shee in [8].

The concept of normality of the Cayley graph is known to be of fundamental importance for the study of arc transitive graphs. So, for a given finite group G, a natural problem is to determine all the normal or non-normal Cayley graph of G. Some meaningful results in this direction, especially for the undirected Cayley graphs, have been obtained. Baik et al. [1] determined all non-normal Cayley graphs of abelian groups of valency at most 4 and later [2] dealt with valency 5 . For directed Cayley graphs, Xu et al. [10] determined all non-normal Cayley graphs of abelian groups of valency at most 3. In this paper, we extended the results of [1] to Cayley hypergraphs, and classify all normal t-Cayley hypergraphs, where G is a finite abelian group and $|S| \leq 4$.

The following theorem is the main result of this paper.

Theorem 1.1. Let $X=t-\operatorname{Cay}(G, S)$ be a connected t - Cayley hypergraph of an abelian group G with respect to S with $|S| \leq 4$. Then X is normal except one of the following cases happens:
(1) $X=n-\operatorname{Cay}\left(\mathbb{Z}_{n}=\langle a\rangle,\left\{a, a^{-1}\right\}\right)$, where $n \geq 2$.
(2) $X=4-\operatorname{Cay}\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}=\langle a\rangle \times\langle b\rangle,\left\{a, a^{-1}, b\right\}\right)$.
(3) $X=6-\operatorname{Cay}\left(\mathbb{Z}_{6}=\langle a\rangle,\left\{a, a^{-1}, a^{3}\right\}\right)$.
(4) $X=2-C a y\left(\mathbb{Z}_{2}^{3}=\langle r\rangle \times\langle s\rangle \times\langle t\rangle,\{t, t r, t s, t s r\}\right)$.
(5) $X=4-\operatorname{Cay}\left(\mathbb{Z}_{4}=\langle a\rangle,\left\{a, a^{-1}, a^{2}\right\}\right) \times K_{2}$, where $K_{2}=2-C a y\left(\mathbb{Z}_{2}=\right.$ $\langle s\rangle,\{s\})$.
(6) $X=4-C a y\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}=\langle a\rangle \times\langle s\rangle,\left\{a, a^{-1}, a^{2} s, s\right\}\right)$.
(7) $X=4-\operatorname{Cay}\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}^{2}=\langle a\rangle \times\langle r\rangle \times\langle s\rangle,\left\{a, a^{-1}, r, s\right\}\right)$.
(8) $X=4-\operatorname{Cay}\left(\mathbb{Z}_{4}=\langle a\rangle,\left\{a, a^{-1}\right\}\right) \times m-C a y\left(\mathbb{Z}_{m}=\langle b\rangle,\left\{b, b^{-1}\right\}\right)$.
(9) $X=4 m-\operatorname{Cay}\left(\mathbb{Z}_{4 m}=\langle b\rangle,\left\{b, b^{-1}, b^{m}, b^{-m}\right\}\right)$, where $m \geq 2$.
(10) $X=2 m-\operatorname{Cay}\left(\mathbb{Z}_{4 m}=\langle x\rangle,\left\{x^{2}, x^{-2}, x^{m}, x^{-m}\right\}\right)$, where $m \geq 1$.
(11) $X=4 m-\operatorname{Cay}\left(\mathbb{Z}_{4 m} \times \mathbb{Z}_{2}=\langle x\rangle \times\langle y\rangle,\left\{x, x^{-1}, x^{m} y, x^{-m} y\right\}\right)$, where $m \geq 1$.
(12) $X=m-C a y\left(Z_{m} \times \mathbb{Z}_{2}=\langle a\rangle \times\langle b\rangle,\left\{a, a^{-1}, a b, a^{-1} b\right\}\right), m \geq 4$.
(13) $X=n-C a y\left(\mathbb{Z}_{n}=\langle a\rangle,\left\{a, a^{-1}, a^{3}, a^{-3}\right\}\right)$, where $n \geq 5$ and $n \neq 6$.

2. Preliminary Results

In this section, we introduce some preliminary results and definitions which will be needed in the subsequent section.

Lemma 2.1. Let $X=t$-Cay (G, S) be a t-Cayley hypergraph where S is a subset of $G-\left\{1_{G}\right\}$. Then $\operatorname{Aut}(G) \cap \operatorname{Aut}(X)=\operatorname{Aut}(G, S)$.

Proof. By definition we have $\operatorname{Aut}(G, S)=\left\{\alpha \in \operatorname{Aut}(G) \mid S^{\alpha}=S\right\}$. Suppose that $\alpha \in \operatorname{Aut}(X) \cap \operatorname{Aut}(G)$. The claim is $S^{\alpha}=S$. Now, $s \in S$ if and only if

$$
\begin{aligned}
& \left\{1, s, s^{2}, s^{3}, \ldots, s^{t-1}\right\} \in E(X) \\
\Leftrightarrow & \left\{1, s, s^{2}, s^{3}, \ldots, s^{t-1}\right\}^{\alpha} \in E(X) \\
\Leftrightarrow & \left\{1=1^{\alpha}, s^{\alpha},\left(s^{2}\right)^{\alpha}, \ldots,\left(s^{t-1}\right)^{\alpha}\right\} \in E(X) \\
\Leftrightarrow & s^{\alpha} \in S
\end{aligned}
$$

therefore $S^{\alpha}=S$, and hence $\alpha \in \operatorname{Aut}(G, S)$. So $\operatorname{Aut}(G) \cap \operatorname{Aut}(X) \leq$ $\operatorname{Aut}(G, S)$. Now assume $\alpha \in \operatorname{Aut}(G, S)$, which by definition means that $\alpha \in \operatorname{Aut}(G)$. We will have $e \in E(X)$ if and only if $\exists s \in S$ such
that

$$
\begin{aligned}
e & =\left\{x, x s, x s^{2}, \ldots, x s^{t-1}\right\} \in E(X) \\
& \Leftrightarrow\left\{x^{\alpha}, x^{\alpha} s^{\alpha}, x^{\alpha}\left(s^{2}\right)^{\alpha}, \ldots, x^{\alpha}\left(s^{t-1}\right)^{\alpha}\right\} \in E(X) \\
& \Leftrightarrow\left\{x^{\alpha}, x^{\alpha} s^{\prime}, x^{\alpha}\left(s^{\prime}\right)^{2}, \ldots, x^{\alpha}\left(s^{\prime}\right)^{t-1}\right\} \in E(X)
\end{aligned}
$$

where $s^{\alpha}=s^{\prime}$. Thus $\alpha \in \operatorname{Aut}(X)$ and so $\alpha \in \operatorname{Aut}(X) \cap \operatorname{Aut}(G)$, which implies $\operatorname{Aut}(G, S) \leq \operatorname{Aut}(X) \cap \operatorname{Aut}(G)$.

The coming result is obtained from previous lemma. Consider $A:=$ Aut (X).
Lemma 2.2. Let $X=t-\operatorname{Cay}(G, S)$ be a t-Cayley hypergraph of G with respect to S. Then $N_{A}(R(G))=R(G) \cdot A u t(G, S)$. Furthermore, the stabilizer of 1_{G} in $N_{A}(R(G))$ is $\operatorname{Aut}(G, S)$.

Definition 2.3. Let $X=t-\operatorname{Cay}(G, S)$ be a t-Cayley hypergraph of G with respect to S. Then X is called normal if $R(G) \triangleleft A$.

The following obvious result is a direct consequence of Definition 2.3 and Lemma 2.2.

Lemma 2.4. Let $X=t-C a y(G, S)$. Then X is normal if and only if $A_{1}=\operatorname{Aut}(G, S)$, where A_{1} is the stabilizer of 1_{G} in A.
Proposition 2.5. Let G be a finite group, and let S be a generating set of G not containing the identity 1_{G}, and α an automorphism of G. Then t-Cayley hypergraph $X=t-C a y(G, S)$ is normal if and only if $X^{\prime}=t-C a y\left(G, S^{\alpha}\right)$ is normal.
Proof. Let $A^{\prime}=\operatorname{Aut}\left(X^{\prime}\right)$. It will be shown that (1) $\alpha^{-1} A \alpha=A^{\prime}$, and (2) $\alpha^{-1} R(G) \alpha=R(G)$. For the first equation, we suppose that $\alpha^{-1} \rho \alpha \in \alpha^{-1} A \alpha$, where $\rho \in A$. Now if $E^{\prime} \in E\left(X^{\prime}\right)$, then $E^{\prime}=\left\{x s^{i} \mid 0 \leq\right.$ $i \leq t-1\}$ for some $x \in G$ and $s \in S$. Therefore

$$
\begin{aligned}
\left(E^{\prime}\right)^{\alpha^{-1} \rho \alpha} & =\left\{\left(x s^{i}\right)^{\alpha^{-1} \rho \alpha} \mid 0 \leq i \leq t-1\right\} \\
& =\left\{x^{\alpha^{-1}}, x^{\alpha^{-1}}(s)^{\alpha^{-1}}, \ldots, x^{\alpha^{-1}}\left(s^{t-1}\right)^{\alpha^{-1}}\right\}^{\rho \alpha} .
\end{aligned}
$$

It follows that,

$$
\left(E^{\prime}\right)^{\alpha^{-1} \rho \alpha}=\left\{y, y s^{\prime}, y\left(s^{\prime}\right)^{2}, \ldots, y\left(s^{\prime}\right)^{t-1}\right\}^{\rho \alpha}
$$

where $s^{\prime}=s^{\alpha^{-1}}$ and $x^{\alpha^{-1}}=y$. Since $\rho \in A$,

$$
\left.\left(E^{\prime}\right)^{\alpha^{-1} \rho \alpha}=\left\{z, z s^{\prime \prime}, \ldots, z\left(s^{\prime \prime}\right)^{t-1}\right)\right\}^{\rho} \in E\left(X^{\prime}\right)
$$

where $s^{\prime \prime}=\left(s^{\prime}\right)^{\alpha}$ and $y^{\alpha}=z$. By a similar argument $A^{\prime} \subseteq \alpha^{-1} A \alpha$ and so $\alpha A \alpha^{-1}=A^{\prime}$. Also it is easy to see that $\alpha^{-1} R(G) \alpha=R(G)$. Now X is normal, that is, $R(G) \triangleleft A$ if and only if $R(G)=\alpha^{-1} R(G) \alpha \triangleleft \alpha^{-1} A \alpha=$ A^{\prime}.

By considering the above proposition, the following result is obtained.

Proposition 2.6. Let G be a finite abelian group, and let S be a generating set of G not containing the identity 1_{G}. Assume S satisfies the condition $s, t, u, v \in S$ with

$$
\begin{equation*}
s t=u v \neq 1 \Rightarrow\{s, t\}=\{u, v\} . \tag{2.1}
\end{equation*}
$$

Then the t-Cayley hypergraph is normal.
Let G and H be two groups. Given $\left(g_{1}, h_{1}\right)$ and $\left(g_{2}, h_{2}\right) \in G \times H$ define the product by the rule: $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} h_{2}\right)$. With this rule for multiplication, $G \times H$ becomes a group, called the direct product of G and H.

The direct product of two hypergraphs is as follows:
Definition 2.7. Let X_{1} and X_{2} be two hypergraphs. The direct product $X_{1} \times X_{2}$ is defined as the graph with vertex set $V\left(X_{1} \times X_{2}\right)=V\left(X_{1}\right) \times$ $V\left(X_{2}\right)$ such that for any two vertices $x=\left(u_{1}, v_{1}\right)$ and $y=\left(u_{2}, v_{2}\right)$ in $V\left(X_{1} \times X_{2}\right),[x, y]$ is an edge in $X_{1} \times X_{2}$ whenever the first element of all of the pairs is the same and the second element of all of the pairs be an edge in X_{2}, or the first elements of all of the pairs be an edge in X_{1} and the second element of all of the pair is the same.

Two hypergraphs are called relatively prime if they have no nontrivial common direct factor. We omit the easy proof of the following lemma.

Lemma 2.8. Let $G=G_{1} \times G_{2}$ be the direct product of two finite groups G_{1} and G_{2}, S_{1} and S_{2} subsets of G_{1} and G_{2}, respectively, and $S=S_{1} \cup S_{2}$ the disjoint union of S_{1} and S_{2}. Let $t, t^{\prime}, t^{\prime \prime}$ be integers where $t=\max \left\{t^{\prime}, t^{\prime \prime}\right\}$. Then
(i) $t-\operatorname{Cay}(G, S) \cong t^{\prime}-\operatorname{Cay}\left(G_{1}, S_{1}\right) \times t^{\prime \prime}-\operatorname{Cay}\left(G_{2}, S_{2}\right)$.
(ii) If t-Cay (G, S) is normal, then $t^{\prime}-C a y\left(G_{1}, S_{1}\right)$ is also normal.
(iii) If t' ${ }^{\prime} \operatorname{Cay}\left(G_{1}, S_{1}\right)$ and $t^{\prime \prime}{ }^{-} C a y\left(G_{2}, S_{2}\right)$ are both normal and relatively prime, then $t-C a y(G, S)$ is normal.

Proposition 2.9. [5, Proposition 1.10] A t-Cayley hypergraph $X=t$ Cay (G, S) is connected if and only if S is a set of generators for G.

Let $X=t$ - $\operatorname{Cay}(G, S)$ be a connected t-Cayley hypergraph of an abelian group G with respect to S, and T the subgroup generated by all non-involutions in S. Set $K=T \cap S$ and $J=S-K$ so that $T=\langle K\rangle$.

Let $Y=t-\operatorname{Cay}(T, K)$. If J is independent, then $\langle J\rangle=\mathbb{Z}_{2}^{J}$, the direct product of J copies of \mathbb{Z}_{2}. So by Proposition 2.6, t - $\operatorname{Cay}(\langle J\rangle, J)$ is normal for $\langle J\rangle$. From Lemma 2.8, we have the following.
Lemma 2.10. If $T \cap\langle J\rangle=1$ and J is independent, then $G=T \times \mathbb{Z}_{2}^{J}$ and $X=Y \times t-C a y(\langle J\rangle, J)$. Moreover, if Y is normal and relatively prime with K_{2}, then X is normal.

Now, we are ready to give the proof of Theorem 1.1.

3. Proof of Theorem 1.1

By Proposition 2.6, we can assume that S does not satisfy the condition (2.1). If $S=\left\{a, a^{-1}\right\}$, where $o(a)=t$, then the permutation $\left(a, a^{2}, a^{3}, \ldots, a^{t-2}\right)$ is not in $\operatorname{Aut}(G, S)$ but in A_{1} and so X is not normal. Now suppose that $|S|=3$, then the following cases are considered: i) $S=\{r, s, t\}$ where r, s, t are involutions. In this case G is an elementary abelian 2-group and r, s, t are not independent by our assumption. Then $G=\mathbb{Z}_{2}^{2}$ and $X=K_{4}$, so X is normal.
ii) $S=\left\{a, a^{-1}, r\right\}$ where r is an involution but a is not. Then $S^{2}-1=$ $\left\{a^{2}, a r, a^{-2}, a^{-1} r\right\}$. By our assumption, we have either $a^{2}=a^{-2}$ or $r=a^{3}$. For the case of $a^{2}=a^{-2}$, if $r \in\langle a\rangle$, then $G=\mathbb{Z}_{4}$, and $\left|A_{1}\right|=|\operatorname{Aut}(G, S)|=2$, where $|\operatorname{Aut}(G, S)|=\left\langle\left(a, a^{3}\right)\right\rangle$. Therefore $X=4$-Cay (G, S) is normal. Otherwise, $G=\mathbb{Z}_{4} \times \mathbb{Z}_{2}=\langle a\rangle \times\langle r\rangle$ and the permutation $(a, a r)\left(a^{2}, a^{2} r\right)\left(a^{3}, a^{3} r\right)$ is not in $\operatorname{Aut}(G, S)$ but in A_{1} and so $X=4-\operatorname{Cay}(G, S)$ is not normal, that is the case (2) in the theorem. For the case $r=a^{3}$, we have $G=\mathbb{Z}_{6}$ and the permutation $\left(a, a^{2}\right)\left(a^{4}, a^{5}\right)$ is not in $\operatorname{Aut}(G, S)$ but in A_{1} and so $X=6-\operatorname{Cay}(G, S)$ is not normal, that is the case (3).
Now we assume that $|S|=4$, and the following cases are considered:
(i) $S=\{r, s, t, u\}$ where r, s, t, u are involutions. In this case, G is an elementary abelian 2 -group and r, s, t, u are not independent by our assumption. So $G=\mathbb{Z}_{2}^{3}$, if $u=r s$, then $X=K_{4} \times K_{2}$ and if $u=r s t$, then $X=K_{4,4}$. When $X=K_{4} \times K_{2}$ it is normal by Lemma 2.10. When $X=K_{4,4}$, since the permutation ($r s, r t, s t$) is not in $\operatorname{Aut}(G, S)$ but in A_{1}, and so it is not normal, that is the case (4) in the theorem. (ii) $S=\left\{a, a^{-1}, r, s\right\}$ where r, s are involutions, but a is not. Then $S^{2}-1=\left\{a^{2}, a^{-2}\right.$, ar, as , rs, $\left.a^{-1} r, a^{-1} s\right\}$. By our assumption, we only need to consider the case of $a^{2}=a^{-2}$ and the case when $a^{3}=r$ or $a^{3}=s$. For the case of $a^{2}=a^{-2}$, if $a^{2}=r$ or $a^{2}=s$, then $G=\mathbb{Z}_{4} \times \mathbb{Z}_{2}$. Let $Y=4-\operatorname{Cay}\left(\langle a\rangle,\left\{a, a^{-1}, a^{2}\right\}\right)$. Then Y is not normal, and so $X=Y \times K_{2},\left(K_{2}=2-\operatorname{Cay}(\langle s\rangle,\{s\})\right)$ is not normal, that is the case (5) in the theorem. If $a^{2}=r s$ again with the same reason
$X=4-\operatorname{Cay}\left(G, S=\left\{a, a^{-1}, a^{2} s, s\right\}\right)$ is not normal, that is the case (6). Otherwise $G=\mathbb{Z}_{4} \times \mathbb{Z}_{2}^{2}$ and $S=S_{1} \cup S_{2}=\left\{a, a^{-1}, r\right\} \cup\{s\}$, again with the same reason and by Lemma 2.8, $X=4-\operatorname{Cay}(G, S)$ is not normal, that is the case (7) in the theorem.
(iii) $S=\left\{a, a^{-1}, b, b^{-1}\right\}$ where a, b are not involutions. First, we suppose $s^{4}=1$ for some $s \in S$. Without loss of generality, we can assume that $a^{4}=1$. If $\langle a\rangle \cap\langle b\rangle=1$, then $G=\mathbb{Z}_{4} \times \mathbb{Z}_{m}$ and by Lemma 2.8, $X=4-\operatorname{Cay}\left(\mathbb{Z}_{4},\left\{a, a^{-1}\right\}\right) \times m-\operatorname{Cay}\left(\mathbb{Z}_{m},\left\{b, b^{-1}\right\}\right)$. Since $Y=4-\operatorname{Cay}\left(\mathbb{Z}_{4},\left\{a, a^{-1}\right\}\right)$ is not normal and so by Lemma 2.8, X is not normal, that is the case (8). If $\langle a\rangle \cap\langle b\rangle=\langle a\rangle$, then $G=\mathbb{Z}_{4 m}$ with $m \geq 2$. We may assume that $a=b^{m}$, then the permutation $b^{i} \rightarrow b^{m+i}$ where $1 \leq i \leq m-1$, is not in $\operatorname{Aut}(G, S)$ but in A_{1} and so $X=4 m-\operatorname{Cay}\left(\mathbb{Z}_{4 m},\left\{b, b^{-1}, b^{m}, b^{-m}\right\}\right)$ is not normal, that is the case (9). Consider the case when $\langle a\rangle \cap\langle b\rangle=\left\langle a^{2}\right\rangle$. If G be cyclic, then we have $G=\mathbb{Z}_{4 m}=\langle x\rangle$, for some odd integer $m>2$. We may assume $a=x^{m}$ and $b=x^{2}$, if m is even, there is the permutation $\sigma: x^{i} \rightarrow x^{m+i}$, where $1 \leq i<4 m(i \neq m, 2 m, 3 m)$ and $\sigma\left(x^{m}\right)=x^{m}, \sigma\left(x^{2 m}\right)=x^{2 m}, \sigma\left(x^{3 m}\right)=x^{3 m}$. Such that σ is in A_{1}, but it is not in $\operatorname{Aut}(G, S)$. Thus $X=2 m-\operatorname{Cay}\left(\mathbb{Z}_{4 m},\left\{x^{2}, x^{-2}, x^{m}, x^{-m}\right\}\right)$ is not normal. If m is odd, there is the permutation σ in A_{1} such that $\sigma=\Pi_{1}^{4 m-1}\left(x^{i}, x^{i+2}\right)\left(x^{m+i}, x^{m+i-1}\right)$, but this is not in $\operatorname{Aut}(G, S)$. Thus $X=2 m-\operatorname{Cay}\left(\mathbb{Z}_{4 m},\left\{x^{2}, x^{-2}, x^{m}, x^{-m}\right\}\right)$ is not normal, that is the case (10). For non-cyclic G, we have $G=\langle x\rangle \times\langle y\rangle=\mathbb{Z}_{4 m} \times \mathbb{Z}_{2}$ and $S=\left\{x, x^{-1}, x^{m} y, x^{-m} y\right\}$, where $m \geq 1, x=b$ and $y=a b^{-1}$, the permutation

$$
\begin{gathered}
\sigma=\left(x, x^{2}, \ldots, x^{2 m-1}, x^{2 m+1}, \ldots, x^{4 m-1}\right) \\
\times\left(y, y x, y x^{2}, \ldots, y x^{m-1}, y x^{m+1}, \ldots, y x^{3 m-1}, y x^{3 m+1}, \ldots, y x^{4 m-1}\right)
\end{gathered}
$$

is not in $\operatorname{Aut}(G, S)$ but in A_{1} and so $X=4 m-\operatorname{Cay}(G, S)$ is not normal, that is the case (11). We then assume that neither $a^{4}=1$, nor $b^{4}=1$. From our assumption, we have either (i) $s^{2}=t^{2}$ for some different s, t in S or (ii) $s=t^{3}$ for some different s, t in S. For (i), without loss of generality we only need to consider the case when $a^{2}=b^{2}$. In this case, $|G|=2 m, m \geq 3$. We have two cases: a generates G, or a does not generate G. In the second case, $o(a)=m$ and $G=\mathbb{Z}_{m} \times \mathbb{Z}_{2}=\langle a\rangle \times\langle b\rangle$. where $S=\left\{a, a^{-1}, a b, a^{-1} b\right\}$, if $m \geq 4$ then the permutation $\left(a, a^{3}\right)\left(a^{2} b, a^{4} b\right)$ is not in $\operatorname{Aut}(G, S)$ but in A_{1} and so $X=m$ - $\operatorname{Cay}(G, S),(m \geq 4)$ is not normal. For $m=4$ we have $G=\mathbb{Z}_{4} \times \mathbb{Z}_{2}=\langle a\rangle \times\langle b\rangle$ and $S=\left\{a, a^{3}, a b, a^{3} b\right\}$. In this case, the permutation $\left(a b, a^{3} b\right)\left(b, a^{2} b\right)\left(a, a^{3}\right)$ is not in $\operatorname{Aut}(G, S)$ but in A_{1} and so $X=4-\operatorname{Cay}(G, S)$ is not normal, that is the case (12).
For (ii), it suffices to consider the case when $b=a^{3}$, then $G=\mathbb{Z}_{n}$ where
$n \geq 5$ and $X=n-\operatorname{Cay}\left(\mathbb{Z}_{n},\left\{a^{1}, a^{-1}, a^{3}, a^{-3}\right\}\right)$. For $n \geq 5$, while $n=6$ cannot happen, the permutation $\left(a, a^{2}, \ldots, a^{n-1}\right)$ is not in $\operatorname{Aut}(G, S)$ but in A_{1} and so X is not normal, that is the case (13).

Acknowledgements

The authors are highly thankful to the Editor-in-Chief and the referees for their valuable comments and suggestions for improving the paper.

References

1. Y. G. Baik, H. S. Sim, Y. Feng and M. Y. Xu, On the normality of Cayley graphs of abelian groups, Algebra Colloq., 5 (1998), 297-304.
2. Y. G. Baik, Y. Feng and H. S. Sim, The normality of Cayley graphs of finite abelian groups with valency 5, System Sci. Math. Sci., 13 (2000), 425-431.
3. C. Berge, Graphs and Hypergraphs, North-Holland, New York, (1976).
4. C. Berge, Hypergraphs, North-Holland, Amsterdam, (1989).
5. M. Buratti, Cayley, Marty and Schreier Hypergraphs, Abh. Math. Sem. Univ. Hamburg, 64 (1994), 151-162.
6. C. D. Godsil, On the full automorphism group of a graph, Combinatorica, 1 (1981), 243-256.
7. J. Lee and Y. S. Kwon, Cayley hypergraphs and Cayley hypermaps, Discrete Math., 313 (2013), 540-549.
8. S. C. Shee, On group hypergraphs, Southeast Asian Bull. Math., 14 (1990), 49-57.
9. M. Y. Xu, Automorphism groups and isomorphism of Cayley digraphs, Discrete Math., 182 (1998), 309-319.
10. M. Y. Xu, Q. Zhang and J. X. Zhou, On the normality of directed Cayley graphs of abelian groups, System Sci. Math. Sci., 25 (2005), 700-710.

Reza Bayat

Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.
Email: r.bayat.tajvar@gmail.com

Mehdi Alaeiyan

Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran.
Email: alaeiyan@iust.ac.ir

Siamak Firouzian

Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.
Email: siamfirouzian@pnu.ac.ir

Journal of Algebraic Systems

ON THE NORMALITY OF t－CAYLEY HYPERGRAPHS OF ABELIAN GROUPS
R．BAYAT，M．ALAEIYAN AND S．FIROUZIAN

$$
\begin{aligned}
& \text { ابرگرافهاى t-كيلى نرمال از گروههاى آبلى } \\
& \text { رضا بيات'، مهدى علائيان' 「 و سيامك فيروزيانّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 「ّانشكده رياضى، دانشگاه پییام نور، تهران، ايران }
\end{aligned}
$$

 t－كيلى از گروههاى آبلى كه 4 ＞

كلمات كليدى：ابرگراف، ابرگراف t－كيلى، ابرگراف t－كيلى نرمال．

[^0]: MSC(2010): Primary: 65F05; Secondary: 46L05, 11Y50.
 Keywords: Hypergraph, t-Cayley hypergraph, normal t-Cayley hypergraph.
 Received: 13 February 2018, Accepted: 15 December 2018.
 *Corresponding author.

