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ON THE NORMALITY OF t-CAYLEY HYPERGRAPHS
OF ABELIAN GROUPS

R. BAYAT, M. ALAEIYAN AND S. FIROUZIAN∗

Abstract. A t-Cayley hypergraph X = t-Cay(G,S) is called
normal for a finite group G, if the right regular representation
R(G) of G is normal in the full automorphism group Aut(X) of X.
In this paper, we investigate the normality of t-Cayley hypergraphs
of abelian groups, where |S| ≤ 4.

1. Introduction

A hypergraph X is a pair (V,E), where V is a finite nonempty set
and E is a finite family of nonempty subsets of V . The elements of V
are called hypervertices or simply vertices and the elements of E are
called hyperedges or simply edges. Two vertices u and v are adjacent
in hypergraph X=(V,E) if there is an edge e ∈ E such that u, v ∈ e.
If for two edges e, f ∈ E holds e ∩ f ̸= 0, we say that e and f are
adjacent. A vertex v and an edge e are incident if v ∈ e. We denote by
X(v) the neighborhood of a vertex v, i.e. X(v) = {u ∈ V : {u, v} ∈ E}.
Given v ∈ V , denote the number of edges incident with v by d(v); d(v)
is called the degree of v. A hypergraph in which all vertices have the
same degree d is said to be regular of degree d or d-regular. The size,
or the cardinality, |e| of a hyperedge is the number of vertices in e. A
hypergraph X=(V,E) is simple if no edge is contained in any other
edge and |e| ≥ 2 for all e ∈ E. A hypergraph is known as uniform or
k-uniform if all the edges have cardinality k. Note that an ordinary
graph with no isolated vertex is a 2-uniform hypergraph.
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A path of length k in a hypergraph (V,E) is an alternating sequence
(v1, e1, v2, . . . , vk, ek, vk+1) in which vi ∈ V for each i = 1, 2, . . . , k + 1,
ei ∈ E, {vi, vi+1} ⊆ ei for i = 1, 2, . . . , k and vi ̸= vj and ei ̸= ej for
i ̸= j. A hypergraph is connected if there is a path between every pair
of vertices.

Let X1=(V1, E1) and X2=(V2, E2) be two hypergraphs. A homomor-
phism φ : X1 → X2 is a map φ : V1 → V2 that preserves adjacencies,
that is, φ(e) ∈ E2 for each e ∈ E1. When φ is a bijection and its inverse
map is also a homomorphism then φ is an isomorphism between the
two hypergraphs and X1 and X2 are isomorphic.

An isomorphism from a hypergraph X onto itself is an automor-
phism. The automorphism group of X is denoted by Aut(X). For
more information about hypergraphs, the readers are referred to [3, 4].

For a group G and a subset S of G such that 1G /∈ S and S = S−1 :=
{s−1|s ∈ S}, the Cayley graph X = Cay(G,S) of G with respect to
S is defined as the graph with vertex set V (X) = G, and edge set
E(X) = {{g, h}|hg−1 ∈ S}.

Obviously, the Cayley graph Cay(G,S) has valency |S|, and it eas-
ily follows that Cay(G,S) is connected if and only if G = ⟨S⟩, that
is, S generates G. For a group G, denote R(G) as the right regular
representation of G. Define

Aut(G,S) := {α ∈ Aut(G)|Sα = S},

acting naturally on G. Then, it is easy to see that each Cayley graph
X = Cay(G,S) admits the group R(G).Aut(G,S) as a subgroup of
automorphisms. Moreover (see [6]), NAut(X)(R(G)) = R(G).Aut(G,S).
Note that R(G) ∼= G. So, we can identify G with R(G) ≤ Aut(X) for
X = Cay(G,S). The Cayley graph X = Cay(G,S) is called normal if
G is normal in Aut(X). In this case, Aut(X) = G.Aut(G,S).

Let G be a group and let S be a set of subsets s1, s2, . . . , sn of G−
{1G} such that G = ⟨

∪n
i=1 si⟩, that is,

∪n
i=1 si generates G. A Cayley

hypergraph CH(G,S) has vertex set G and edge set {{g, gs}|g ∈ G, s ∈
S}, where an edge {g, gs} is the set {g} ∪ {gx|x ∈ s}. For all s ∈ S,
if |s| = 1, then the Cayley hypergraph is a Cayley graph. Therefore,
a Cayley hypergraph is a generalization of a Cayley graph [7]. Also,
Lee and Kwon [7] proved that a hypergraph X is Cayley if and only if
Aut(X) contains a subgroup which acts regularly on the vertex set of
X. For example, the hypergraph X, with

V (X) = {0, 1, 2, 3, 4, 5, 6},
E(X) = {{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}}
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is considered. This hypergraph which is called the Fano plane, is the
Cayley hypergraph X = CH(Z7, {1, 3}).

In 1994, Buratti [5] introduced the concept of a t-Cayley hypergraph
as follows. Let G be a finite group, S a subset of G − {1G} and t an
integer satisfying 2 ≤ t ≤max{o(s)|s ∈ S}. The t-Cayley hypergraph
X = t-Cay(G,S) of G with respect to S is defined as the hypergraph
with vertex set V (X) = G, and for E ⊆ G,

E ∈ E(X) ⇐⇒ ∃g ∈ G,∃s ∈ S : E(X) = {gsi|0 ≤ i ≤ t− 1}.

Note that any 2-Cayley hypergraph is a Cayley graph and vice versa.
For any si ∈ S, if si = {s, . . . , st−1} for some s ∈ G − {1G}, then the
Cayley hypergraph CH(G,S) is a t-Cayley hypergraph t−Cay(G,S).
Hence, a Cayley hypergraph is a generalization of a t-Cayley hyper-
graph. In fact every t-Cayley hypergraph is a subclass of the more
general Cayley hypergraphs, or group hypergraphs which is defined by
Shee in [8].

The concept of normality of the Cayley graph is known to be of
fundamental importance for the study of arc transitive graphs. So,
for a given finite group G, a natural problem is to determine all the
normal or non-normal Cayley graph of G. Some meaningful results in
this direction, especially for the undirected Cayley graphs, have been
obtained. Baik et al. [1] determined all non-normal Cayley graphs of
abelian groups of valency at most 4 and later [2] dealt with valency 5.
For directed Cayley graphs, Xu et al. [10] determined all non-normal
Cayley graphs of abelian groups of valency at most 3. In this paper,
we extended the results of [1] to Cayley hypergraphs, and classify all
normal t-Cayley hypergraphs, where G is a finite abelian group and
|S| ≤ 4.

The following theorem is the main result of this paper.

Theorem 1.1. Let X = t-Cay(G,S) be a connected t- Cayley hyper-
graph of an abelian group G with respect to S with |S| ≤ 4. Then X is
normal except one of the following cases happens:

(1) X = n-Cay(Zn = ⟨a⟩, {a, a−1}), where n ≥ 2.

(2) X = 4-Cay(Z4 × Z2 = ⟨a⟩ × ⟨b⟩, {a, a−1, b}).

(3) X = 6-Cay(Z6 = ⟨a⟩, {a, a−1, a3}).

(4) X = 2-Cay(Z3
2 = ⟨r⟩ × ⟨s⟩ × ⟨t⟩, {t, tr, ts, tsr}).
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(5) X = 4-Cay(Z4 = ⟨a⟩, {a, a−1, a2})×K2, where K2 = 2-Cay(Z2 =
⟨s⟩, {s}).

(6) X = 4-Cay(Z4 × Z2 = ⟨a⟩ × ⟨s⟩, {a, a−1, a2s, s}).

(7) X = 4-Cay(Z4 × Z2
2 = ⟨a⟩ × ⟨r⟩ × ⟨s⟩, {a, a−1, r, s}).

(8) X = 4-Cay(Z4 = ⟨a⟩, {a, a−1})×m-Cay(Zm = ⟨b⟩, {b, b−1}).

(9) X = 4m-Cay(Z4m = ⟨b⟩, {b, b−1, bm, b−m}), where m ≥ 2.

(10) X = 2m-Cay(Z4m = ⟨x⟩, {x2, x−2, xm, x−m}), where m ≥ 1.

(11) X = 4m-Cay(Z4m×Z2 = ⟨x⟩×⟨y⟩, {x, x−1, xmy, x−my}), where
m ≥ 1.

(12) X = m-Cay(Zm × Z2 = ⟨a⟩ × ⟨b⟩, {a, a−1, ab, a−1b}), m ≥ 4.

(13) X = n-Cay(Zn = ⟨a⟩, {a, a−1, a3, a−3}), where n ≥ 5 and
n ̸= 6.

2. Preliminary Results

In this section, we introduce some preliminary results and definitions
which will be needed in the subsequent section.

Lemma 2.1. Let X = t-Cay(G,S) be a t-Cayley hypergraph where S
is a subset of G− {1G}. Then Aut(G) ∩ Aut(X) = Aut(G,S).

Proof. By definition we have Aut(G,S) = {α ∈ Aut(G)|Sα = S}.
Suppose that α ∈ Aut(X)∩Aut(G). The claim is Sα = S. Now, s ∈ S
if and only if

{1, s, s2, s3, . . . , st−1} ∈ E(X)

⇔ {1, s, s2, s3, . . . , st−1}α ∈ E(X)

⇔ {1 = 1α, sα, (s2)α, . . . , (st−1)α} ∈ E(X)

⇔ sα ∈ S,

therefore Sα = S, and hence α ∈ Aut(G,S). So Aut(G) ∩ Aut(X) ≤
Aut(G,S). Now assume α ∈ Aut(G,S), which by definition means
that α ∈ Aut(G). We will have e ∈ E(X) if and only if ∃ s ∈ S such
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that
e = {x, xs, xs2, . . . , xst−1} ∈ E(X)

⇔ {xα, xαsα, xα(s2)α, . . . , xα(st−1)α} ∈ E(X)

⇔ {xα, xαs
′
, xα(s

′
)2, . . . , xα(s

′
)t−1} ∈ E(X),

where sα = s
′ . Thus α ∈ Aut(X) and so α ∈ Aut(X) ∩Aut(G), which

implies Aut(G,S) ≤ Aut(X) ∩ Aut(G). □
The coming result is obtained from previous lemma. Consider A :=

Aut(X).
Lemma 2.2. Let X = t-Cay(G,S) be a t-Cayley hypergraph of G with
respect to S. Then NA(R(G)) = R(G).Aut(G,S). Furthermore, the
stabilizer of 1G in NA(R(G)) is Aut(G,S).
Definition 2.3. Let X = t-Cay(G,S) be a t-Cayley hypergraph of G
with respect to S. Then X is called normal if R(G)◁ A.

The following obvious result is a direct consequence of Definition 2.3
and Lemma 2.2.
Lemma 2.4. Let X = t-Cay(G,S). Then X is normal if and only if
A1 = Aut(G,S), where A1 is the stabilizer of 1G in A.
Proposition 2.5. Let G be a finite group, and let S be a generating
set of G not containing the identity 1G, and α an automorphism of G.
Then t-Cayley hypergraph X = t-Cay(G,S) is normal if and only if
X

′
= t-Cay(G,Sα) is normal.

Proof. Let A
′
= Aut(X

′
). It will be shown that (1) α−1Aα = A

′ ,
and (2) α−1R(G)α = R(G). For the first equation, we suppose that
α−1ρα ∈ α−1Aα, where ρ ∈ A. Now if E ′ ∈ E(X

′
), then E

′
= {xsi|0 ≤

i ≤ t− 1} for some x ∈ G and s ∈ S. Therefore
(E

′
)α

−1ρα = {(xsi)α−1ρα|0 ≤ i ≤ t− 1}
= {xα−1

, xα−1

(s)α
−1

, . . . , xα−1

(st−1)α
−1}

ρα
.

It follows that,
(E

′
)α

−1ρα = {y, ys′, y(s′
)2, . . . , y(s

′
)t−1}ρα,

where s
′
= sα

−1 and xα−1
= y. Since ρ ∈ A,

(E
′
)α

−1ρα = {z, zs′′
, . . . , z(s

′′
)t−1)}ρ ∈ E(X

′
),

where s
′′
= (s

′
)α and yα = z. By a similar argument A

′ ⊆ α−1Aα and
so αAα−1 = A

′ . Also it is easy to see that α−1R(G)α = R(G). Now X
is normal, that is, R(G)◁A if and only if R(G) = α−1R(G)α◁α−1Aα =
A′. □
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By considering the above proposition, the following result is ob-
tained.

Proposition 2.6. Let G be a finite abelian group, and let S be a
generating set of G not containing the identity 1G. Assume S satisfies
the condition s, t, u, v ∈ S with

st = uv ̸= 1 ⇒ {s, t} = {u, v}. (2.1)
Then the t-Cayley hypergraph is normal.

Let G and H be two groups. Given (g1, h1) and (g2, h2) ∈ G × H
define the product by the rule: (g1, h1)(g2, h2) = (g1g2, h1h2). With
this rule for multiplication, G ×H becomes a group, called the direct
product of G and H.

The direct product of two hypergraphs is as follows:

Definition 2.7. Let X1 and X2 be two hypergraphs. The direct product
X1×X2 is defined as the graph with vertex set V (X1×X2) = V (X1)×
V (X2) such that for any two vertices x = (u1, v1) and y = (u2, v2) in
V (X1 ×X2), [x, y] is an edge in X1 ×X2 whenever the first element of
all of the pairs is the same and the second element of all of the pairs
be an edge in X2, or the first elements of all of the pairs be an edge in
X1 and the second element of all of the pair is the same.

Two hypergraphs are called relatively prime if they have no non-
trivial common direct factor. We omit the easy proof of the following
lemma.

Lemma 2.8. Let G = G1 × G2 be the direct product of two finite
groups G1 and G2, S1 and S2 subsets of G1 and G2, respectively, and
S = S1 ∪ S2 the disjoint union of S1 and S2. Let t, t

′
, t

′′ be integers
where t=max{t′ , t′′}. Then

(i) t-Cay(G,S) ∼= t
′-Cay(G1, S1)× t

′′-Cay(G2, S2).

(ii) If t-Cay(G,S) is normal, then t
′-Cay(G1, S1) is also normal.

(iii) If t′-Cay(G1, S1) and t
′′-Cay(G2, S2) are both normal and rela-

tively prime, then t-Cay(G,S) is normal.

Proposition 2.9. [5, Proposition 1.10] A t-Cayley hypergraph X = t-
Cay(G,S) is connected if and only if S is a set of generators for G.

Let X = t-Cay(G,S) be a connected t-Cayley hypergraph of an
abelian group G with respect to S, and T the subgroup generated by
all non-involutions in S. Set K = T∩S and J = S−K so that T = ⟨K⟩.
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Let Y = t-Cay(T,K). If J is independent, then ⟨J⟩ = ZJ
2 , the direct

product of J copies of Z2. So by Proposition 2.6, t-Cay(⟨J⟩, J) is
normal for ⟨J⟩. From Lemma 2.8, we have the following.
Lemma 2.10. If T ∩ ⟨J⟩ = 1 and J is independent, then G = T × ZJ

2

and X = Y× t-Cay(⟨J⟩, J). Moreover, if Y is normal and relatively
prime with K2, then X is normal.

Now, we are ready to give the proof of Theorem 1.1.

3. Proof of Theorem 1.1

By Proposition 2.6, we can assume that S does not satisfy the con-
dition (2.1). If S = {a, a−1}, where o(a) = t, then the permutation
(a, a2, a3, . . . , at−2) is not in Aut(G,S) but in A1 and so X is not nor-
mal. Now suppose that |S| = 3, then the following cases are considered:
i) S = {r, s, t} where r, s, t are involutions. In this case G is an elemen-
tary abelian 2-group and r, s, t are not independent by our assumption.
Then G = Z2

2 and X = K4, so X is normal.
ii) S = {a, a−1, r} where r is an involution but a is not. Then S2− 1 =
{a2, ar, a−2, a−1r}. By our assumption, we have either a2 = a−2 or
r = a3. For the case of a2 = a−2, if r ∈ ⟨a⟩, then G = Z4, and
|A1| = |Aut(G,S)| = 2, where |Aut(G,S)| = ⟨(a, a3)⟩. Therefore
X = 4-Cay(G,S) is normal. Otherwise, G = Z4 × Z2 = ⟨a⟩ × ⟨r⟩
and the permutation (a, ar)(a2, a2r)(a3, a3r) is not in Aut(G,S) but in
A1 and so X = 4-Cay(G,S) is not normal, that is the case (2) in the
theorem. For the case r = a3, we have G = Z6 and the permutation
(a, a2)(a4, a5) is not in Aut(G,S) but in A1 and so X = 6-Cay(G,S)
is not normal, that is the case (3).
Now we assume that |S| = 4, and the following cases are considered:
(i) S = {r, s, t, u} where r, s, t, u are involutions. In this case, G is an
elementary abelian 2-group and r, s, t, u are not independent by our
assumption. So G = Z3

2, if u = rs, then X = K4 ×K2 and if u = rst,
then X = K4,4. When X = K4 × K2 it is normal by Lemma 2.10.
When X = K4,4, since the permutation (rs, rt, st) is not in Aut(G,S)
but in A1, and so it is not normal, that is the case (4) in the theorem.
(ii) S = {a, a−1, r, s} where r, s are involutions, but a is not. Then
S2 − 1 = {a2, a−2, ar, as, rs, a−1r, a−1s}. By our assumption, we only
need to consider the case of a2 = a−2 and the case when a3 = r
or a3 = s. For the case of a2 = a−2, if a2 = r or a2 = s, then
G = Z4 ×Z2. Let Y = 4-Cay(⟨a⟩, {a, a−1, a2}). Then Y is not normal,
and so X = Y × K2, (K2 = 2-Cay(⟨s⟩, {s})) is not normal, that is
the case (5) in the theorem. If a2 = rs again with the same reason
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X = 4-Cay(G,S = {a, a−1, a2s, s}) is not normal, that is the case (6).
Otherwise G = Z4×Z2

2 and S = S1∪S2 = {a, a−1, r}∪{s}, again with
the same reason and by Lemma 2.8, X = 4-Cay(G,S) is not normal,
that is the case (7) in the theorem.
(iii) S = {a, a−1, b, b−1} where a, b are not involutions. First, we sup-
pose s4 = 1 for some s ∈ S. Without loss of generality, we can as-
sume that a4 = 1. If ⟨a⟩ ∩ ⟨b⟩ = 1, then G = Z4 × Zm and by
Lemma 2.8, X = 4-Cay(Z4, {a, a−1}) × m-Cay(Zm, {b, b−1}). Since
Y = 4-Cay(Z4, {a, a−1}) is not normal and so by Lemma 2.8, X is
not normal, that is the case (8). If ⟨a⟩ ∩ ⟨b⟩ = ⟨a⟩, then G = Z4m

with m ≥ 2. We may assume that a = bm, then the permutation
bi → bm+i where 1 ≤ i ≤ m− 1, is not in Aut(G,S) but in A1

and so X = 4m-Cay(Z4m, {b, b−1, bm, b−m}) is not normal, that is the
case (9). Consider the case when ⟨a⟩ ∩ ⟨b⟩ = ⟨a2⟩. If G be cyclic,
then we have G = Z4m = ⟨x⟩, for some odd integer m > 2. We
may assume a = xm and b = x2, if m is even, there is the per-
mutation σ : xi → xm+i, where 1 ≤ i < 4m(i ̸= m, 2m, 3m) and
σ(xm) = xm, σ(x2m) = x2m, σ(x3m) = x3m. Such that σ is in A1, but
it is not in Aut(G,S). Thus X = 2m-Cay(Z4m, {x2, x−2, xm, x−m})
is not normal. If m is odd, there is the permutation σ in A1 such
that σ = Π4m−1

1 (xi, xi+2)(xm+i, xm+i−1), but this is not in Aut(G,S).
Thus X = 2m-Cay(Z4m, {x2, x−2, xm, x−m}) is not normal, that is the
case (10). For non-cyclic G, we have G = ⟨x⟩ × ⟨y⟩ = Z4m × Z2 and
S = {x, x−1, xmy, x−my}, where m ≥ 1, x = b and y = ab−1, the
permutation

σ = (x, x2, . . . , x2m−1, x2m+1, . . . , x4m−1)

×(y, yx, yx2, . . . , yxm−1, yxm+1, . . . , yx3m−1, yx3m+1, . . . , yx4m−1)

is not in Aut(G,S) but in A1 and so X = 4m-Cay(G,S) is not nor-
mal, that is the case (11). We then assume that neither a4 = 1, nor
b4 = 1. From our assumption, we have either (i) s2 = t2 for some
different s, t in S or (ii) s = t3 for some different s, t in S. For
(i), without loss of generality we only need to consider the case when
a2 = b2. In this case, |G| = 2m, m ≥ 3. We have two cases: a gener-
ates G, or a does not generate G. In the second case, o(a) = m and
G = Zm × Z2 = ⟨a⟩ × ⟨b⟩. where S = {a, a−1, ab, a−1b}, if m ≥ 4
then the permutation (a, a3)(a2b, a4b) is not in Aut(G,S) but in A1

and so X = m-Cay(G,S), (m ≥ 4) is not normal. For m = 4 we have
G = Z4 × Z2 = ⟨a⟩ × ⟨b⟩ and S = {a, a3, ab, a3b}. In this case, the
permutation (ab, a3b)(b, a2b)(a, a3) is not in Aut(G,S) but in A1 and
so X = 4-Cay(G,S) is not normal, that is the case (12).
For (ii), it suffices to consider the case when b = a3, then G = Zn where
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n ≥ 5 and X = n-Cay(Zn, {a1, a−1, a3, a−3}). For n ≥ 5, while n = 6
cannot happen, the permutation (a, a2, . . . , an−1) is not in Aut(G,S)
but in A1 and so X is not normal, that is the case (13).
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R. BAYAT, M. ALAEIYAN AND S. FIROUZIAN

آبلی گروه های از نرمال t-کیلی ابرگراف های

فیروزیان٣ سیامک و علائیان٢ مهدی بیات١، رضا
ایران تهران، نور، پیام دانشگاه ریاضی، ١دانشکده

ایران تهران، صنعت، و علم دانشگاه ریاضی، ٢دانشکده

ایران تهران، نور، پیام دانشگاه ریاضی، ٣دانشکده

،G از R(G) راست منظم نمایش هرگاه گوییم، نرمال را X = t−Cay(G,S) t-کیلی ابر گراف یک
ابرگراف های بودن نرمال شرایط مقاله، این در باشد. نرمال ،X از Aut(X) خودریختی های گروه در

می گیرند. قرار مطالعه مورد ،|S| ≤ ۴ که آبلی گروه های از t-کیلی

نرمال. t-کیلی ابرگراف t-کیلی، ابرگراف ابرگراف، کلیدی: کلمات
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