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SOME RESULTS ON THE COMPLEMENT OF THE
INTERSECTION GRAPH OF SUBGROUPS OF A
FINITE GROUP

S. VISWESWARAN* AND P. VADHEL

ABSTRACT. In this article we consider groups G such that G ad-
mits at least one nontrivial subgroup (recall that a subgroup H
of G is said to be nontrivial if H ¢ {G,{e}}). Let G be a group.
Recall that the intersection graph of subgroups of G, denoted by
I'(G), is an undirected graph whose vertex set is the set of all non-
trivial subgroups of G and distinct vertices H, K are joined by an
edge in this graph if and only if H N K # {e}. Let G be a finite
group. The aim of this article is to investigate the interplay be-
tween the group-theoretic properties of a finite group G and the
graph-theoretic properties of the complement of I'(G).

1. INTRODUCTION

Let G be a group which admits at least one nontrivial subgroup. Re-
call that the intersection graph of G, denoted by I'(G) is an undirected
simple graph whose vertex set is the set of all nontrivial subgroups
of G and distinct vertices H, K are joined by an edge in this graph
if and only if H N K # {e}. The intersection graphs of groups have
been investigated by several algebraists (for example, refer the articles
[1,4,7,8,9, 11, 12]). Let G = (V, E) be a simple graph. Recall from
[2, Definition 1.1.13] that the complement of G, denoted by G° is a
graph whose vertex set is V' and distinct vertices u, v are joined by an
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edge in G¢ if and only if there is no edge joining v and v in G. Thus
for a group G which admits at least one nontrivial subgroup, (I'(G))*
is a graph whose vertex set is the set of all nontrivial subgroups of
G and distinct vertices H, K are joined by an edge in (I'(G))° if and
only if H N K = {e}. The groups considered in this article are finite
which admit at least one nontrivial subgroup. Let G be a finite group.
The purpose of this article is to investigate the effect of certain graph
parameters of (I'(G))° on the group structure of G.

It is useful to recall the following definitions and results from graph
theory before we give an account of results that are proved on (I'(G))¢,
where G is a finite group which admits at least one nontrivial subgroup.
The graphs considered in this article are undirected and simple. Let
G = (V,E) be a graph. Let a,b € V,a # b. Recall from [2] that the
distance between a and b, denoted by d(a,b) is defined as the length
of a shortest path in G between a and b if such a path exists in G.
Otherwise, we define d(a,b) = co. We define d(a,a) = 0. A graph
G = (V, E) is said to be connected if for any distinct a,b € V, there
exists a path in G between a and b. Let G = (V, E) be a connected
graph. Recall from [2, Definition 4.2.1] that the diameter of G, denoted
by diam(G) is defined as diam(G) = sup{d(a,b) : a,b € V}. Let
a € V. The eccentricity of a, denoted by e(a) is defined as e(a) =
sup{d(a,b) : b € V}. The radius of G, denoted by r(G) is defined as
r(G) = min{e(a) : a € V}.

Let G = (V, E) be a graph. Suppose that G contains a cycle. Recall
from [2, p. 159] that the girth of G, denoted by girth(G) is the length
of a shortest cycle in G. If G does not contain any cycle, then we
set girth(G) = oo. A complete graph on n vertices is denoted by
K,. Recall from [2, Definition 1.2.2] that a clique of G is a complete
subgraph of G. Let G = (V, E) be a simple graph. Suppose that there
exists k € N such that any clique of G is a clique on at most k vertices.
Then the clique number of G, denoted by w(G) is defined as the largest
positive integer n such that G contains a clique on n vertices. If G
contains a clique on n vertices for all n > 1, then we set w(G) = oc.

Let G = (V,E) be a graph. Recall from [2, p.129] that a vertex
coloring of G is a mapping f : V — S, where S is a set of distinct
colors. A vertex coloring f : V — S is said to be proper if adjacent
vertices of GG receive distinct colors of S; that is, if u and v are adjacent
in G, then f(u) # f(v). The chromatic number of G, denoted by x(G)
is the minimum number of colors needed for a proper vertex coloring
of G. It is clear that for any graph G, w(G) < x(G).

Let G be a group. Recall that a nontrivial subgroup H of G is said
to be a minimal subgroup of G if there is no nontrivial subgroup K of
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GG such that K is properly contained in H. A nontrivial subgroup H
of GG is said to be a maximal subgroup of G if there is no nontrivial
subgroup K of G such that H is properly contained in K. If G is a
finite group with at least one nontrivial subgroup, then it is clear that
G admits at least one minimal (respectively, one maximal) subgroup
of G. Let G be a finite group with at least one nontrivial subgroup.
Let C = {H : H is a minimal subgroup of G}. As in [9], we denote the
subgroup of G generated by UgccH by Ng. In Section 2 of this article,
we discuss some results regarding the connectedness of (I'(G))¢. Let G
be a finite group with at least two nontrivial subgroups. It is shown in
Proposition 2.1 that (I'(G))¢ is connected if and only if N¢ = G. And
in the case (I'(G))¢ is connected, it is verified in Proposition 2.1 that
diam((I'(G))°) < 3. In Lemma 2.5 and Proposition 2.6, we characterize
finite groups G which admit at least two nontrivial subgroups such that
(I'(G))° is complete. Let G be a finite abelian group which admits at
least two nonrivial subgroups. With the help of fundamental theorem
of finite abelian groups [0, Theorem 2.14.1, p.109] and Proposition 2.1,
we are able to determine the structure of finite abelian groups G such
that (I'(G))¢ is connected (see Propositions 2.8 and 2.9). Moreover,
in the case when (I'(G))° is connected, we characterize finite abelian
groups G such that diam((I'(G))¢) = 1,2 or 3 (see Propositions 2.8
and 2.11). Furthermore, in the case when (I'(G))¢ is connected, we
determine r((I'(G))¢) (see Proposition 2.8 and Remark 2.13).

Let n > 3 and let S,, denote the symmetric group of degree n.
With the help of Proposition 2.1, it is verified in Proposition 2.14 that
(I'(S,))¢ is connected. Moreover, it is shown that diam((I'(S5))¢) = 1
and for n > 4, it is proved that diam((I'(S,))¢) = r((I'(S,))¢) = 2
(see Proposition 2.14 and Remark 2.15). Let n > 4 and let A, de-
note the alternating group of degree n. It is shown in Proposition 2.17
that (I'(A,))¢ is connected and diam((I'(A,))¢) = 2. It is observed in
Proposition 2.18(i) that r((I'(A4))¢) = 1 and for any n > 5, it is shown
in Proposition 2.18(¢i) that H is any minimal subgroup of A, with
either o(H) € {2,3} or o(H) = 1(mod4), then e(H) > 2 in (T'(4,))°".
Let n > 3 and let D,, denote the dihedral group of degree n. It is shown
that (I'(D,,))¢ is connected and moreover, the values of n are classified
according as diam((I'(D,,))) is either 1, 2 or 3 (see Remark 2.19 and
Proposition 2.20). Let n > 4 be such that n is not a prime number. It
is proved in Remark 2.21 that r((I'(D,,))°) = 2.

In Section 3 of this article, we discuss some results regarding the
girth of (I'(G))¢, where G is a finite group which admits at least one
nontrivial subgroup. It is proved in Proposition 3.1 that w((I'(G))¢) =
X((T'(G))¢) = k, where k is the number of minimal subgroups of G.
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It is noted in Proposition 3.2 that girth((I'(G))¢) = 3 if and only if
GG has at least three minimal subgroups. It is observed in Remark 3.4
that if o(G) is divisible by at least three distinct prime numbers, then
girth((I'(G))¢) = 3. Let G be a finite abelian group such that o(G)
is divisible by exactly t distinct prime numbers. Then it is shown in
Proposition 3.3 that w((I'(G))¢) = t if and only if G is cyclic. Let G
be a finite group with o(G) = pi'p5?, where p;, py are distinct prime
numbers and n; > 1 for each i € {1,2}. If n; = 1 for each i € {1, 2},
then it is proved in Proposition 3.5 that girth((I'(G))¢) € {3,00}. If
G is cyclic and if n; > 1 for each ¢ € {1,2}, then it is shown in
Proposition 3.7 that girth((I'(G))°) = 4. If G is cyclic and if ny > 1
and ny = 1, then it is verified in Proposition 3.8 that the subgraph of
(I'(G))° induced on its nonisolated vertices is a star graph and hence,
girth((I'(G))¢) = oco. If G is abelian but not cyclic, then it is proved
in Proposition 3.9 that girth((I'(G))¢) = 3.

Whenever a set A is a subset of a set B and A # B, we denote it
symbolically by A C B.

2. MAIN RESULTS

Let GG be a finite group admitting at least two nontrivial subgroups.
The aim of this section is to characterize G such that (I'(G))¢ is con-
nected and also to determine diam((I'(G))°) in the case when (I'(G))°

is connected.

Proposition 2.1. Let G be a finite group which admits at least two
nontrivial subgroups. Then the following statements are equivalent:
(i) (T'(G)) is connected.
(i) Ng = G.
Moreover, if either (i) or (ii) holds, then diam((I'(G))°) < 3.

Proof. (i) = (ii) Assume that (I'(G))° is connected. Let H be a non-
trivial subgroup of GG. Since G is finite, there exists a minimal subgroup
K of G such that H O K. Hence, HN Ng 2 K and so, H N Ng # {e}.
If N¢ # G, then we obtain that Ng is an isolated vertex of (I'(G))°.
This is impossible since G has at least two nontrivial subgroups and
(I'(G))¢ is connected. Therefore, N = G.

(17) = (i) Assume that Ng = G. Let Hy, Hy be nontrivial subgroups
of G with H; # Hy;. We now verify that there exists a path of length
at most three between H; and Hs in (I'(G))°. We can assume that H;
and H, are not adjacent in (I'(G)). If H is any nontrivial subgroup of
G, then as Ng = G, it follows that there exists a minimal subgroup K
of G such that K € H.
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Case(1): There exists a minimal subgroup K of G such that K ¢ H,
and K ¢ Hs.

Observe that H1 N K = HyN K = {e} . Hence, H; — K — Hy is a
path of length two between H; and H, in (I'(G))°.

Case(2): There exists a minimal subgroup W of G such that W, € H;
but W; C Hy and there exists a minimal subgroup W5 of G such that
W2 Z H2 but W2 Q Hl.

It is clear that Hy N Wy, = Hy N Wy = Wy N Wy = {e} and so,
H, — W, — W5 — Hy is a path of length three between H; and H, in
(0(G))”.

This proves that (I'(G))¢ is connected and diam((I'(G))¢) < 3.

The proof of the moreover part is contained in the proof of (i) = (i)
of this Proposition. OJ

Let G be a finite group which admits at least two nontrivial sub-
groups. We next try to characterize G such that (I'(G))¢ is complete.

Remark 2.2. Let G be a group. It is not hard to verify that G has a
unique nontrivial subgroup if and only if GG is a finite cyclic group with
o(G) = p*, where p is a prime number.

Lemma 2.3. Let G be a finite group which admits at least one nontriv-
ial subgroup. Then (T'(G))¢ is complete if and only if every nontrivial
subgroup of G is minimal.

Proof. Assume that (I'(G))¢ is complete. Let H be a nontrivial sub-
group of G. Let K be a nontrivial subgroup of GG such that K C H.
If K # H, then as H,K are adjacent in (I'(G))¢, we obtain that
H N K = {e}. This implies that K = HN K = {e}. This is a
contradiction and so, H is a minimal subgroup of G.

Conversely, assume that any nontrivial subgroup of GG is minimal.
Let Hy, Hy be nontrivial subgroups of G such that H; # H;. Then
H,N Hy = {e} and so, H; and H; are adjacent in (I'(G))¢. This shows
that (I'(G))€ is complete. O

Remark 2.4. Let GG be a finite group which admits at least one nontrivial
subgroup. If K is any minimal subgroup of G, then o(K) is a prime
number.

Proof. Suppose that o(K) is composite. Let p be a prime number such
that p divides o(K). We know from Cauchy’s theorem [0, Theorem
2.11.3, p.87] that there exists a subgroup H of K such that o(H) = p.
It is clear that {¢} C H C K. This implies that K is not a minimal
subgroup of GG. This is a contradiction. Therefore, o(K) is a prime
number. 0
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Lemma 2.5. Let G be a finite group with at least two nontrivial sub-
groups. Suppose that o(G) = p™, where p is a prime number and n > 2.
Then the following statements are equivalent:

(7) (I(G))° is complete.

(i) n =2 and G is not cyclic.

Proof. (1) = (ii) Assume that (I'(G))€ is complete. Then we know from
Lemma 2.3 that any nontrivial subgroup of G is minimal. Suppose
that n > 3. Note that p? is a divisor of o(G). Hence, we obtain from
[0, Theorem 2.12.1, p.92] that there exists a subgroup H of G such
that o(H) = p*. We know from Remark 2.4 that H is not a minimal
subgroup of G. This is a contradiction. Therefore, n < 2. Since G has
at least two nontrivial subgroups, we obtain that n > 2 and so, n = 2.
This shows that o(G) = p*. As a cyclic group of order p? has a unique
nontrivial subgroup, it follows that G is not cyclic.

(it) = (i) Assume that o(G) = p?, where p is a prime number and G
is not cyclic. We know from [0, Corollary, p.86] that G is abelian. Let
g € G,g # e. It follows as a consequence of Lagrange’s theorem [0,
Corollary 1, p.41] that o(g) is a divisor of o(G) = p*. Since G is not
cyclic, we obtain that o(g) = p. Hence, it follows from [10), Example 2.5,
p.146] that there exist cyclic subgroups Aj, Ay of G such that o(A4;) = p
for each i € {1,2} and G is the internal direct product of A; and As.
It is clear from Lagrange’s theorem [0, Theorem 2.4.1, p.41] that any
nontrivial subgroup of G is of order p and it is well-known that there
are exactly p+ 1 subgroups of G each of order p. Therefore, (I'(G))° is
Kyt O

Let G be a finite group such that o(G) is divisible by at least two
distinct prime numbers. In Proposition 2.6, we characterize G such
that (I'(G))€ is complete.

Proposition 2.6. Let G be a finite group such that o(G) is divisible
by at least two distinct prime numbers. Then the following statements
are equivalent:

(i) (T'(G))¢ is complete.

(17) o(G) = p1p2, where p1 and ps are distinct prime numbers.

Proof. (1) = (ii) Assume that (I'(G))° is complete. We know from
Lemma 2.3 that each nontrivial subgroup of G is minimal. Let o(G) =
[T, P! be the factorization of o(G) into product of prime numbers
(here p1,pa,...,pr are distinct prime numbers and n; € N for each
i€ {1,2,...,k}). We claim that ny = ny = --- = ny = 1. Suppose
that n; > 1 for some ¢ € {1,2,...,k}. We know from [0, Theorem
2.12.1, p.92] that there exists a subgroup H of G such that o(H) = p".



COMPLEMENT OF THE INTERSECTION GRAPH OF A FINITE GROUP 111

We know from Remark 2.4 that H is not a minimal subgroup of G.
This is a contradiction. Therefore, n; = 1 for each ¢ € {1,2,... k}.
We next verify that £ = 2. By hypothesis, £ > 2. We know
from Cauchy’s theorem [6, Theorem 2.11.3, p.87] that for each i €
{1,2,...,k}, there exists a subgroup P; of G such that o(P;) = p;.
We claim that P; is normal in G for at least one i € {1,2,... k}.
Suppose that P; is not normal in G for each i € {1,2,... k}. Let
i€ {l,...,k}. Observe that N(P;) D P;, where N(P;) is the normal-
izer of P; in G. Since P; is not normal in G, it follows that N(F;) # G.
Hence, N(P;) is a nontrivial subgroup of G. As any nontrivial sub-
group of G is minimal, we obtain that N(FP;) = P,. Note that P, is a
pi-Sylow subgroup of G. We know from [0, Lemma 2.12.6, p.99] that

the number of p;-Sylow subgroups in G equals o(f\fgj),)) = ;’((g)) = OLG).
Let {P;, = Py, Py, ... o(G)} be the set of all p;-Sylow subgroups of

G. As any element g of a 10Z Sylow subgroup with g # e is of order p;,
it follows that G has exactly O(G)( — 1) elements of order p;. As any
nontrivial subgroup of G is mlmmal it follows that if z € G with = # e,
then o(x) = p; for some i € {1,2,...,k}. It is now clear from the above
discussion that o(G) = %(pl 1)+ Og) (po—1)+---+ O(G) (pr—1)+1.
This implies that 1 = k — (pi1 + p% + plk) + O(G) We can assume
that 2 < p; < py < --- < px. Hence, we obtain that £ — 1 + m < %
This is a contradiction. Therefore, P; is normal in G for at least one
i€ {1,2,...,k}. Fixie {1,2,...,k} such that P, is normal in G.
Suppose that £ > 3. Let j € {1,2,...,k}\{i}. Observe that PP} is a
subgroup of G and as P, N P; = {e}, it follows from [0, Theorem 2.5.1,
p.45] that o(P;P;) = p;p;. Note that P,P; is a nontrivial subgroup of
G and is not minimal. This is in contradiction to the assumption that
(I'(G))¢ is complete. Therefore, k& = 2. Hence, o(G) = pips, where
p1, P2 are distinct prime numbers.

(i1) = (i) Assume that o(G) = pipe, where p; and py are distinct
prime numbers. It follows from Lagrange’s theorem that any nontrivial
subgroup of GG is of order either p; or p,. Hence, any nontrivial subgroup
of G is minimal and so, we obtain from Lemma 2.3 that (['(G)) is
complete. O

Remark 2.7. Let G be a finite group with o(G) = pips, where py, po
are distinct primes. In this remark, we mention some well-known facts
about the structure of G. If G is abelian, then G is necessarily cyclic
and in such a case, (I'(G))¢ is K,. Suppose that G is not abelian. We
can assume that p; < ps. We know from [, Theorem 2.12.3 and Lemma
2.12.6, p.100, p.99] that G has a unique subgroup H with o(H) = po
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and has exactly ps subgroups of G each of order p;. Hence, (I'(G))° is
Kp2+l'

Let GG be a finite abelian group which admits at least two nontrivial
subgroups. We next proceed to discuss regarding the characterization
of G such that (I'(G))° is connected and determine its diameter when it
is connected. First, we consider finite abelian groups with o(G) = p™,
where p is prime number and n > 2.

Proposition 2.8. Let G be a finite abelian group with o(G) = p",
where p is a prime number and n > 2. Then the following statements
are equivalent:

(1) (I(G))¢ is connected.

(11) G is the internal direct product of cyclic subgroups Ay, Ao, ..., A,
with o(A;) = p for each i € {1,2,...,n}.

Moreover, in the case when (I'(G))¢ is connected, diam((I'(G))¢) =1
if n =2 and diam((I'(G@))°) = r((I'(G))¢) =2 if n > 3.

Proof. (1) = (ii) Assume that (I'(G))° is connected. We know from
Proposition 2.1 that Ng = G. Since o(G) = p™ where p is a prime
number, we obtain that any minimal subgroup of G is of order p. As G
is the subgroup of G generated by all its minimal subgroups, it follows
that each element g € G with g # e is of order p. We know from [10, Ex-
ample 2.5, p.146] that there exist cyclic subgroups Ay, Ay, ..., A, of G
satisfying the following properties: o(A;) = p for each i € {1,2,...,n}
and G is the internal direct product of Ay, As, ..., A,. This shows that
G is the internal direct product of cyclic subgroups Ay, As, ..., A, with
o(A;) =pforeachie {1,2,...,n}.

(73) = (i) Assume that there exist cyclic subgroups Ay, As ..., A, with
o(A;) =pforeachi e {1,2,...,n} and G is the internal direct product
of Al,AQ, ce 7An'

Suppose that n = 2. Then we know from the proof of (ii) = (i) of
Lemma 2.5 that (I'(G))¢ is Kp11. Therefore, diam((I'(G))¢) = 1.

Let us next suppose that n > 3. Let Hy, Hs be two distinct nontrivial
subgroups of G with H; # H,;. We show that there exists a path of
length at most two between H; and Hs in (I'(G))°. We can assume that
H, and H, are not adjacent in (I'(G))°. If Hy, Hy are not comparable
under the inclusion relation, then it is clear that H; U Hs is not a
subgroup of G and therefore, H; U Hy # G. Let g € G be such that
g ¢ H'UH,. Let K =< g >. Note that o(K) = p and H;N K =
{e} for each i € {1,2}. Hence, Hy — K — H, is a path of length
two between H; and Hs in (I'(G))¢. Suppose that H; and H, are
comparable under the inclusion relation. We can assume without loss
of generality that H; C H,. Since Hy # G, it follows that A; € Ho
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for some i € {1,2,...,n}. As o(A;) = p, it follows that Hy N A; = {e}
and so, H N A; = {e}. Hence, H; — A; — H, is a path of length two
between H; and Hs in (I'(G))¢. This shows that (I'(G))¢ is connected
and diam((I'(G))°) < 2. We next verify that e(S) > 2 in (I'(G))°
for any nontrivial subgroup S of G. Note that o(S) = p' for some i
with 1 <4 < n. Observe that there exists a subgroup W of S with
o(W) =p. If i > 1, then W # S and S and W are not adjacent in
(I'(G))¢ and so, d(S,W) > 2 in (I'(G))°. Suppose that i = 1. Now,
A € S for some k € {1,2,...,n}. Hence, A, NS = {e}. Observe that
S Ay is a subgroup of G and it follows from [0, Theorem 2.5.1, p.45]
that o(SAx) = p*. As o(G) = p™ with n > 3, it is clear that SA; is
a nontrivial subgroup of G. Since S N SA; # {e}, we get that S and
S Ay are not adjacent in (I'(G))¢. Therefore, d(S,SAy) > 2 in (I'(G))".
This proves that e(S) > 2 in (I'(G))¢ for each nontrivial subgroup S of
G. This proves that diam((I'(G))¢) = r((I'(G))¢) = 2.

The proof of the moreover part is contained in the proof of (i) = (i)
of this Proposition. O

Let G be a finite abelian group with o(G) = []i_, p , where k > 2
and pq,pa, ..., pr are distinct prime numbers and n; > 1 for each ¢ €
{1,2,...,k}. We next proceed to characterize G such that (I'(G))° is
connected and determine its diameter when it is connected.

Proposition 2.9. Let G be a finite abelian group such that o(G) =
Hle pit, where k > 2 and py,pa,...,pr are distinct prime numbers
and n; > 1 for each i € {1,2,...,k}. For each i € {1,2,... k},
let P; denote the unique p;-Sylow subgroup of G. Then the following
statements are equivalent:

(1) (T'(@))¢ is connected.

(17) Giveni € {1,2,...,k}, either o(P;) = p; or (I'(P;))° is connected.

Proof. (1) = (ii) Assume that (I'(G))¢ is connected. Since k > 2
G has at least two nontrivial subgroups. Indeed, P; is a nontrivial
subgroup of G for each i € {1,2,....k} and o(P;) = p;* for each
i€ {l1,2,...,k}. It is well-known that G is the internal direct product
of P, P, ..., P.. As (I'(G))° is connected, we obtain from (i) = (i3) of
Proposition 2.1 that No = G. Let g € G, g # e. It follows from Ng =
G that o(g) = [[;c4p; for some nonempty subset A of {1,2,... k}.
Let i € {1,2,...,k}. Suppose that o(P;) # p;. Hence, n; > 2. As
any element x of P, with = # e is of order p;, it follows from [10,
Example 2.5, p.146] that there exist cyclic subgroups A;1, Aja, . .., Ain,
of P; such that o(4;;) = p; for each j € {1,2,...,n;} and P, is the



114 S. VISWESWARAN AND P. VADHEL

internal direct product of A;1, Asa, . .., Ain,. Now, it follows from (ii) =
(1) of Proposition 2.8 that (I'(P;))¢ is connected.

(1) = (i) It is well-known that G is the internal direct product of
P, Py...,P,. Let g € G, g # e. Now, there exist unique ele-
ments T, Ty, ...x; with x; € P; for each i € {1,2,...,k} such that
g = Hle x;. As g # e, it follows that x; # e for at least one
i e {1,2,....k}. Let i e {1,2,....k} be such that z; # e. By as-
sumption, either o(P;) = p; or (I'(P;))¢ is connected. If o(P;) = p;,
then o(z;) = p;. Suppose that (I'(P;))¢ is connected. Then it follows
from (i) = (i7) of Proposition 2.8 that o(z;) = p;. Hence, in any case
o(z;) = p;. Now, it follows from g = Hle x; that ¢ € Ng and so,
N = G. Therefore, we obtain from (ii) = (i) of Proposition 2.1 that
(I'(G))¢ is connected. O

Let G be a finite abelian group and let o(G) be as in the statement
of Proposition 2.9. Suppose that (I'(G))¢ is connected. In Proposition

2.11, we determine diam((I'(G))¢). We use Lemma 2.10 in the proof of
Proposition 2.11.

Lemma 2.10. Let G be a finite abelian group such that G has at least
two nontrivial subgroups. Suppose that (I'(G))¢ is connected. Then the
following hold:

(i) diam((I'(G))°) = 2 if and only if G admits a nontrivial subgroup
which is not a minimal subgroup of G and if Hy, Hy are distinct mazimal
subgroups of G with Hy N Hy # {e}, then Hy and Hy are isomorphic.

(17) diam((I'(G))°) = 3 if and only if there exist nonisomorphic
mazximal subgroups Hy, Hy of G such that Hy N Hy # {e}.

Proof. Since (I'(G))¢ is connected, we know from the proof of (ii) = ()
of Proposition 2.1 that diam((I'(G))°) < 3.

(1) Assume that diam((I'(G))¢) = 2. We know from Lemma 2.3 that
GG admits at least one nontrivial subgroup which is not a minimal sub-
group of G. Let Hy, Hy be distinct maximal subgroups of G such that
H, N Hy # {e}. Note that H; and H; are not adjacent in (I'(G))°. As
diam((I'(G))°) = 2, there exists a nontrivial subgroup K of G such that
H, — K — H, is a path of length two between H; and H, in (I'(G))°.
Hence, H; N K = {e} for each ¢ € {1,2}. Let ¢« € {1,2}. As H, is
a maximal subgroup of GG, we obtain that H;K = G. Therefore, we

obtain from the second isomorphism theorem of groups [3, Theorem
2.3, p.98] that & = L& o H?K = H, for each i € {1,2}.

Conversely, assume that G admits at least one nontrivial subgroup
which is not a minimal subgroup and any two distinct maximal sub-
groups of G which are not adjacent in (I'(G))¢ are isomorphic. As
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there exists at least one nontrivial subgroup of G which is not a mini-
mal subgroup of G, it follows from Lemma 2.3 that diam((I'(G))¢) > 2.
Let Wy, W5 be nontrivial subgroups of G. We prove that there exists
a path of length at most two between W; and Wy in (I'(G))°. We
can assume that W, and Ws are not adjacent in (I'(G))¢. That is,
WiNW, # {e}. Let H; be a maximal subgroup of G such that W; C H;
for each i € {1,2}. Observe that Hy N Hy # {e}. It can happen that
Hy, = Hy. And in the case, H; # Hs, we know from the assumption that
H, and H, are isomorphic. Thus in any case, o(H;) = o(Hs). Hence,
we obtain that O(H%) = O(h%). Since H% is an abelian simple group, we
get that % is a cyclic group for each i € {1,2} with O(H%) =o(&) =p,

Ho
where p is a prime number. As (I'(G))°

is connected, we know from
(i) = (i1) of Proposition 2.1 that N = G. Let ¢ € {1,2}. As H; # G,
there exists a minimal subgroup M; of G such that M; € H;. We
know from Remark 2.4 that o(M;) is a prime number. Since H; is a
maximal subgroup of G, we obtain that H;M; = G. It follows from
H; N M; = {e} and [0, Theorem 2.5.1, p.45] that o(G) = o(H;)o(M;).
Therefore, we obtain that o(M;) = ‘;)((I?i)) = o(H%) =p If My € Hy,
then it follows from Hy N My = Hy N My = {e} that W; N M, = {e} for
each i € {1,2} and so, W; — My — W5 is a path of length two between
Wy and Wy in (I'(G))°. Similarly, if Hy N M; = {e}, then it follows
that W, — M; — W, is a path of length two between W; and W5 in
(I'(G))c. Suppose that My C Hy; and M; C Hy. Note that M; is a
cyclic group with o(M;) = p for each i € {1,2}. Let g1 € M;\ M, and
let go € M\ M. Observe that o(g1g2) = p and let us denote < g9 >
by M. It is clear that M is a minimal subgroup of G and M & H; for
each i € {1,2}. Therefore, W;NM C H;NM = {e} for each i € {1,2}.
Hence, we obtain that W, — M — W5 is a path of length two between
Wy and Wy in (I'(G))¢. Therefore, we get that diam((I'(G))°) = 2.
(17) Assume that diam((I'(G))¢) = 3. Let Wy, W5 be distinct nontrivial
subgroups of G such that d(W,W,) = 3 in (I'(G))°. Let i € {1,2}. Let
H; be a maximal subgroup of GG such that W; C H;. From W; N W, #
{e}, it follows that H; N Hy # {e}. If Hy = H, as groups, then
it follows from the proof of the if part of (i) that d(W;,W3) = 2 in
(I'(G))c. This is in contradiction to the assumption that d(Wy, Ws) = 3
in (I'(G))¢. Therefore, H; and H, are nonisomorphic. This proves that
there exist nonisomorphic maximal subgroups H;, Hy of G such that
Hl N H2 7£ {6}

Conversely, assume that there exist nonisomorphic maximal sub-
groups Hy, Hy of G such that H; N Hy # {e}. Tt follows from the
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proof of the only if part of (i) that d(H;, Hy) > 3 in (I'(G))© and S0,
diam((I'(G))°) > 3. Therefore, we obtain that diam((I'(G))¢) = O

Proposition 2.11. Let G be a finite abelian group. Let
o(G) = Hlep;”, where k > 2 and py,pa,...,pr are distinct prime
numbers, and n; > 1 for each i € {1,2,...,k}. Suppose that (I'(G))*
s connected. Then the following hold.

If k = 2, then diam((I'(G))°) = 1 if and only if ny = ny = 1. If
n; > 2 for some i € {1,2}, then diam((I'(G))¢) = 3.

If k> 3, then diam((I'(G))¢) = 3.

Proof. Suppose that (I'(G))¢ is connected. For each i € {1,2,... k},
let P; denote the unique p;-Sylow subgroup of G. We know that G is
the internal direct product of Py, Ps, ..., P;.

Suppose that £ = 2. If ny = ny = 1, then P, P, are the only
nontrivial subgroups of G and (I'(G))¢ is K3 and so, diam((I'(G))¢) = 1.
Suppose that n; > 2 for some i € {1,2}. Without loss of generality, we
can assume that ny > 2. Let WW; be a subgroup of P, with o(W;) = p?’_l
for each i € {1,2}. Let H; be the internal direct product of W; and
P, and Hs be the internal direct product of P, and W5. Observe that
o(H,) = p*~'ph? and o( Hy) = pP'ph>~t. Tt is clear that H, and H, are
nonisomorphlc max1mal subgroups of G with Hy N Hy # {e}. Hence,
it follows from Lemma 2.10(i7) that diam((I'(G))°) = 3.

Suppose that £k > 3. Let W; be the internal direct product of
P, P, ..., P._q1. Let W5 be the internal direct product of P, ..., Py.
Let U be a subgroup of P, with o(U) = p}*~" and let W be a subgroup
of P, with o(W) = pp*~ . Let H; be the internal direct product of W;
and W and let Hy be the internal direct product of Wy and U. It is
clear that o(Hy) = (TT\=) pi)ps ™", o(Hy) = pi*~ 1(H;C ,0;"), Hy and
H, are nonisomorphic maximal Subgroups of G with Hy N Hy # {e}.
Therefore, we obtain from Lemma 2.10(z4) that diam((I'(G))¢) = 3. O

Remark 2.12. Let G be a finite group which admits at least two non-
trivial subgroups. If (I'(G))¢ is connected, then e(H) < 2 in (I'(G))°
for any minimal subgroup H of G.

Proof. Let H be a minimal subgroup of G. Let W be any nontrivial
subgroup of G with W # H. We claim that d(H,W) < 2 in (I'(G))°.
We can assume that H and W are not adjacent in (I'(G))°. Hence,
HNW # {e}. As H is a minimal subgroup of G, it follows that
H < W. Since (I'(G))¢ is connected, we know from (i) = (i) of
Proposition 2.1 that Ng = G. It follows from W # G that there
exists a minimal subgroup S of G such that S € W. Observe that
HnNS =WnS = {e}. Therefore, H— S — W is a path of length
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two between H and W in (I'(G))¢. This proves that d(H, W) < 2
in (I'(G))¢ for any nontrivial subgroup W of G and so, e(H) < 2 in
(I'(G))° for any minimal subgroup H of G. O

Remark 2.13. Let G be a finite abelian group and let o(G) = Hle i,
where k > 2 and pq, pa, . . ., pi. are distinct prime numbers and n; > 1for
each i € {1,2,...,k}. Suppose that (I'(G))¢ is connected and in the
case k = 2, either ny > 1 or ny > 1. Then r((I'(G))°) = 2.

Proof. Let H be any minimal subgroup of G. We know from Remark
2.12 that e(H) < 2 in (I'(G))".

In the case k > 3, it is clear that if H is a minimal subgroup of G,
then there exists at least one nontrivial subgroup W of G such that
H C W and so, H and W are not adjacent in (I'(G))¢. In the case
k = 2, we are assuming that either n; > 1 or ny > 1. Hence, in this
case also, given a minimal subgroup H of G, there exists a nontrivial
subgroup W of GG such that H C W and so, H and W are not adjacent
in (I'(G))°. Therefore, d(H,W) > 2 in (I'(G))°. It is already shown
that e(H) < 2 in (I'(G))° for any minimal subgroup H of G. This
proves that e(H) = 2 in (I'(G))¢ for any minimal subgroup H of G.
As for a given nontrivial subgroup W of G, there exists a minimal
subgroup H of G such that H C W, it follows that e(W) > 2 in
(I'(G))c. Therefore, we obtain that r((I'(G))°) = 2. O

Let n > 3. Let S, denote the symmetric group of degree n. We
know from [0, Lemma 2.10.2, p.78| that any o € S, is a product of
transpositions. If 7 = (7, 7) is any transposition, then o(7) = 2 in S,,.
Therefore, Ng, = S,, and so, we obtain from (ii) = (i) of Proposi-
tion 2.1 that (I'(.S,))¢ is connected. In Proposition 2.14, we determine
diam((I'(S,))°).

Proposition 2.14. Let n > 3. Then (I'(S,))¢ is connected and
diam((I'(S3))¢) = 1, whereas diam((I'(S,))¢) = 2 for all n > 4.

Proof. It is already noted above that (I'(S,))¢ is connected. Observe
that 0o(S3) = 6 =2 x 3 and Ss is not abelian. We know from Remark
2.7 that (I'(.S3))¢ is a complete graph on four vertices. Therefore, we
obtain that diam((I'(S3))¢) = 1. Let n > 4. Let 0 = (1,2,3,4).
Let H =< 0 > and let K =< 0% >. Observe that o(H) = 4 and
o(K) =2 and HN K = K is nontrivial. Hence, H and K are not
adjacent in (I'(S,))¢. Therefore, diam((I'(S,))¢) > 2. We next verify
that diam((I'(S,))¢) < 2. Let Hy, Hy be any nontrivial subgroups of
S, with H; # H,. We claim that there exists a path of length at most
two between H; and Hs in (I'(S,))¢. We can assume that H; and Ho
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are not adjacent in (I'(S,))¢. It is well-known that S, is generated

by the set of 2-cycles {(1,7) : i € {2,3,...,n}}. Since H; # S,, it
follows that (1,7) ¢ H; for some i € {2,3,...,n}. If (1,7) ¢ Hs, then
with H =< (1,4) >, we get that H; N H = {e} for each i € {1,2}.
Hence, H; — H — H, is a path of length two between H; and Hj in
(I'(S,))¢. Suppose that (1,7) € Hy. As Hy # S,, we obtain that
there exists j € {2,3,...,n} such that (1,j) ¢ Hy. It is clear that
i # 7. 1If (1,5) ¢ Hy, then Hi— < (1,j) > —H, is a path of length
two between H; and Hs in (I'(S,))¢. Suppose that (1,7) € H;. Thus
(1,§) € H\H, and (1,i) € H\H,. Let p = (1,9)(1,j). Note that
p = (1,7,4) is a cycle of length 3 and let Hy =< (1,j,7) >. It is clear
that Hz = {e, p, p*} and p ¢ H;UH,. Hence, we get that H;NHz = {e}
for each i € {1,2}. Therefore, H; — H3 — H is a path of length two
between H; and Hs in (I'(S,))¢. From the above discussion, it is clear
that diam((I'(S,,))¢) < 2 and so, diam((I'(S,))¢) = 2. O

Remark 2.15. Let n > 4. Then r((I'(S,))¢) = 2.

Proof. Let n > 4. We know from Proposition 2.14 that (I'(.S,))¢ is
connected and diam((T'(S,,))¢) = 2. Therefore, e(H) < 2 in (T'(S,))*
for each nontrivial subgroup H of S,,. Hence, to prove this remark, it is
enough to show that e(H) > 2 in (I'(S,,))¢ for any nontrivial subgroup
H of S,,. Let H be any nontrivial subgroup of S,,. If H is not a minimal
subgroup of S, then it is clear that e(H) > 2 in (I'(S,))¢. Hence, we
can assume that H is a minimal subgroup of S,. Note that either
H C A, or H¢Z A,, where A, is the alternating group of degree n.
It is known that o(A,) = @ [0, Lemma 2.10.3, p.80] Thus, A, is a
maximal subgroup of S,, and is a normal subgroup of S,,. If H C A,
then as A, is not a minimal subgroup of S,,, it follows that H # A,.
Therefore, it follows from H N A, = H # {e} that H and A, are not
adjacent in (I'(S,))¢. Hence, e(H) > 2 in (I'(S,,))¢. Suppose that H &
A,. Then A, H =S, and HN A, = {e}. We know from [(, Theorem
2.5.1, p.45] that o(S,) = o(A,)o(H) and so, o(H) = 2. Let 0 € S,, be
such that H = {e,o}. Note that o(o) = 2. It follows from [0, Lemma
2.10.1, p.78] that there exist disjoint transpositions 71, ..., 7, such that
o= Hle 7;. As o is an odd permutation, k£ must be odd. Suppose that
k=1. Let 0 =1 = (i1,42). Asn > 4, there exist distinct symbols i3, i4
such that i3,i4 € {1,2,...,n}\{i1,92}. Let K be the subgroup of S,
generated by {o, (i1,i3)}. It is clear that (i1,i4) ¢ K and so, K # S,.
Since (i1,13) ¢ H, it follows that H C K. Hence, H and K are not
adjacent in (I'(S,))¢ and so, e(H) > 2 in (I'(S,))¢. Suppose that k
is odd and k Z 3. Let T = (il,ig),TQ = (i3,i4), ey T = (iQk_l,igk).
Let K be the subgroup of S,, generated by {0, (i1,i2)}. It is clear that



COMPLEMENT OF THE INTERSECTION GRAPH OF A FINITE GROUP 119

(11,73) ¢ K and so, K # S,. Since (i1,i2) € K\H, it follows that
H C K. Hence, H and K are not adjacent in (I'(S,))¢. Therefore, we
get that e(H) > 2 in (I'(S,))¢. This proves that r((I'(S,))°) =2. O

Remark 2.16. Let n > 4. It is well-known that A, is generated by the
set of 3-cycles {(1,2,4) : i € {3,4,...,n}} [10, Proposition 4.5.1, p.55].
If o € S, is any 3-cycle, then o(c) = 3 and so, < 0 >= {e,0,0%}.
It follows from the above given arguments that Ny, = A, and so, we
obtain from (i7) = (i) of Proposition 2.1 that (I'(A,))¢ is connected.
We prove in Proposition 2.17 that diam((I'(A,))¢) = 2.

Proposition 2.17. Let n > 4. Then (I'(A,))¢ is connected and
diam((T'(A,))¢) = 2.

Proof. 1t is noted in Remark 2.16 that (I'(A,))¢ is connected. Let
H = {e,(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)} and K = {e,(1,2)(3,4)}.
It is clear that H, K are subgroups of A, and H N K = K is non-
trivial. Hence, H and K are not adjacent in (I'(A,))°. Therefore,
d(H,K) > 2 in (I'(A,))¢ and so, diam((I'(A,))¢) > 2. We next verify
that diam((I'(A,))°)) < 2. Let H;, Hy be nontrivial subgroups of A,
with H; # H,. We show that there exists a path of length at most
two between H; and Hs in (I'(4,))°. We can assume that H; and
H, are not adjacent in (I'(A,))°. Since Hy # A,, (1,2,i) ¢ H, for
some i € {3,4,...,n}. If (1,2,4) ¢ Hy, then H1— < (1,2,i) > —H,
is a path of length two between H; and Hy in (I'(A,))°. Suppose
that (1,2,i) € Hy. As Hy # A, there exists j € {3,4,...,n} such
that (1,2,]) ¢ HQ. If (1,2,]) ¢ H17 then Hl— < (1,2,]) > —H2 is
a path of length two between H; and H, in (I'(A,))¢. Suppose that
(1,2,]) S Hl. NOW, (1,2,]) S Hl\Hg and (1,2,1) S HQ\Hl. Let
p=(1,2,4)(1,2,5). Observe that p ¢ H; U Hy and p = (1,7)(2, 7). Let
H; =< p >. As H; = {e, p}, we obtain that H; N Hy = {e} for each
i € {1,2} and so, H; — H3 — H, is a path of length two between H,;
and Hs in (I'(A,,))¢. This proves that diam((I'(A,))¢) < 2 and so, we
obtain that diam((I'(A,))¢) = 2. O

Proposition 2.18. Let n > 4. Then the following hold.

() r((T(A4))%) = 1.

(i1) Letn > 5. Let H be a minimal subgroup of A,,. If o(H) € {2,3}
or o(H) = 1(mod4), then there ezists a nontrivial subgroup W of A,
such that H C W.

Proof. Let n > 4. It is proved in Proposition 2.17 that (I'(A4,))° is
connected and diam((I'(4,))¢) = 2.

(i) We verify that r((I'(A4))¢) = 1. Let 0 = (1,2,3) and let H =< 0 >.
Observe that o(H) = 3. We claim that e(H) = 1 in (I'(A4))¢. Let
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K be any nontrivial subgroup of A; with K # H. We assert that
H N K = {e}. Suppose that H N K # {e}. Then as H is a minimal
subgroup of Ay, it follows that H C K. It follows from Lagrange’s
theorem [0, Theorem 2.4.1, p.41] that o(K) = 3t for some t € N with
t > 2. As o(K) is a divisor of 0o(A) = 12 and K # Ay, it follows that
o(K) = 6. This is impossible since it is well-known that A, has no
subgroup of order 6 [10, Example 3.3.6, p.75] Therefore, H N K = {e}
and so, H and K are adjacent in (I'(A4))¢. This proves that e(H) = 1
in (I'(A4))¢ and therefore, r((I'(A4))¢) = 1.

(77) Let n > 5. Let H be a minimal subgroup of A,,. Note that o(H) =
p, where p is a prime number and H =< ¢ > for any 0 € H\{e}. We
discuss two cases.

Case(l): p=2.

Let 0 € H\{e}. As o € A,, and o(0) = 2, it follows
from [0, Lemma 2.10.1, p.78] that there exist disjoint transpositions
(11,12), (i3,14), - - ., (lox_1, i2) with k > 2 is even and is such that o =
Hizl(igs_l,igs). If £ = 2, then o = (il,ig)(ig,@l). Observe that
W = {e, o, (i1,13)(i2, 14), (i1,44)(i2,43) } is a nontrivial subgroup of A,
such that o(W) = 4 and H C W. As H and W are not adjacent
in (I'(4,))¢, it follows that e(H) > 2 in (I'(A,))°. Suppose that
k Z 4. Let o1 = (il,’ig)(ig,i4) and let 09 = H§:3<i25—17i28)' Note
that 01,09 € Ay, 0o(0;) = 2 for each i € {1,2} and 0109 = 0 = 030,
and Wy = {e, 01, 09,0} is a nontrivial subgroup of A,, with o(WW;) =4
and H C W;. Hence, H and W are not adjacent in (I'(A,,))¢ and so,
e(H) >2in (T'(4,))"

Case(2): p is odd.

Let 0 € H\{e}. Note that 0 € A,, and o(c) = p. Hence, it follows
from [0, Lemma 2.10.1, p.78] that there exists ¢ € N and disjoint cy-
cles C1,...,C; such that C; is of length p for each ¢ € {1,...,¢} and
o= Hﬁzl C;. Suppose that t = 1. Then o = Cy = (i1, l2, 3, ..., 7).
Observe that either p = 3 or p > 5. Assume that p = 3. Let iy €
{17 27 37 s 7n}\{i17 i27 Z3} Let W = {67 (ila i27 Z-3>7 (ila i37 i2)7 (ila 7;27 7;4)7
(i1, iasin), (i1, 3, 0a), (i1, 14, 35), (i2, 35, ia), (i, da, 33), (i1, 32) (35, ia), (i1, i3)
(i2,14), (i1,14)(i2,73) }. Note that W is a nontrivial subgroup of A,, with
o(W) =12, W = A, as groups, and HNW = H. Therefore, H and W
are not adjacent in (I'(A4,))¢ and so, e(H) > 2 in (I'(A,))¢. Suppose
that p > 5. Note that o = (41, 2,43 ..,1%,). Suppose that p = 1(mod4).
Let 7 € S, be given by 7(i;) = 1,7(i;) = 4p—j42 for each j €

Pt

{2,3,...,p}. Observe that 7 = [],2,(ij, ip—js2) is the product of £+
disjoint transpositions. As ;%1 is even, we obtain that 7 € A,, . Observe
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that o? = e,72 = e,0P '7 = 70. Let W be the subgroup of A, gener-
ated by {0, 7}. Note that W = {e,0,0%,..., 0P  7,01,0%r,..., 0" 1
= 1o} and W = D, as groups, where D, is the dihedral group of degree
p. It is clear that W is a nontrivial subgroup of A,, and H C W. Hence,
HNW = H # {e} and so, H and W are not adjacent in (I'(A4,))°.
Therefore, e(H) > 2 in (I'(A,))°.

Suppose that p is an odd prime number and o is the product of ¢
(t > 2) disjoint cycles Cy,Cy,...,C; such that C; is of length p for
each i € {1,2,...,t}. Let 0y = C} and let 0y = H§'=2 C;. Note that
o; € A, for each i € {1,2}, o(o1) = o(02) = p, and 0 = 0109 = 0907.
Let W be the subgroup of A,, generated by {01, 02}. Let H} =< 01 >
and let Hy =< oy >. It is clear that o(Hy) = o(Hy) = p, Hi N Hy =
{e}, and W = H H,. It follows from [0, Theorem 2.5.1, p.45] that
o(W) = o(Hy)o(Hs) = p*. Observe that H =< ¢ >C W and so,
HNW = H # {e}. Hence, H and W are not adjacent in (I'(A,))".
Therefore, e(H) > 2 in (I'(A4,))°".

Thus for any n > 5, it is shown that if H is any minimal subgroup
of A, with o(H) € {2,3} or o(H) = 1(mod4), then there exists a
nontrivial subgroup W of A, such that H C W and so, e(H) > 2 in
(D(Au)" 0

Remark 2.19. Let n > 3. Recall from [3, Theorem 5.2, p.87 and p.88]
that the dihedral group of degree n denoted by D,, is the subgroup of S,
generated by o and 7, where o is the cycle given by o = (1,2,3,...,n)
and 7 is given by 7(1) = 1,7(i) = n — i+ 2 for each i € {2,3,...,n}.
Note that o(c) = n, o(7) = 2, 0" '7 = 70, 0o(D,) = 2n and indeed,
D, = {e,0,0% ...,0" 7,01,0%7,...,0"'7 = 70}. Observe that
D3 = S3 and it is already shown in Proposition 2.14 that (I'(S3))° is
connected and diam((I'(S3))¢) = 1. Hence, in discussing the connected-
ness of (I'(D,,))¢, we can assume that n > 4. Suppose that n is a prime
number. Then n is odd and o(D,,) = 2n is the product of two distinct
prime numbers. As D,, is not abelian, it follows from Remark 2.7 that
(I'(D,,))¢ is a complete graph on n + 1 vertices. Therefore, in our dis-
cussion regarding the connectedness of (I'(D,,))¢, we can assume that
n > 4 and n is not a prime number. We prove in Proposition 2.20 that
(I'(D,))¢ is connected and moreover, we determine diam((I'(D,,))°).

Proposition 2.20. Let n > 4 and suppose that n is not a prime
number. Then (I'(D,,))¢ is connected. Moreover, the following hold.
(i) diam((I'(Dy))¢) = 2 if either n is odd or n = 2m, where m > 3
is odd.
(ii) diam((T(D,))¢) = 3 if n = 2%t, where k > 2 and t > 1 is odd.
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Proof. We know that D,, is the subgroup of S,, generated by ¢ and
7, where ¢ and 7 are mentioned as above in Remark 2.19. Note that
o(c) =n,o(t) = o(c'r) = 2foreachi € {1,2,...,n—1}. Tt is clear that
D,, has at least two nontrivial subgroups and as D,, is generated by o1
and 7, it follows that Np, = D,,. Therefore, we obtain from (ii) = (7)
of Proposition 2.1 that (I'(D,,))¢ is connected. Moreover, we know from
the proof of (i) = (i) of Proposition 2.1 that diam((I'(D,))¢) < 3.

Let n > 4 and suppose that n is not a prime number. Then < o >

is not a minimal subgroup of D,,. Let H be a nontrivial subgroup of
< o > such that H C< o >. Observe that H and < o > are not
adjacent in (I'(D,,))¢. Hence, d(H,< o >) > 2 in (I'(D,,))¢ and so, we
obtain that diam((I'(D,,))¢) > 2. Let Hy, Hy be nontrivial subgroups of
D,, with Hy; # H,. Suppose that 7 ¢ H; U Hy. Note that K =< 7 > is
a subgroup of D,, with o(K) =2 and H; N K = {e} for each i € {1,2}.
Hence, H, — K — H, is a path of length two between H; and H,
in (I'(Dy))¢. As o(o7) = 2, it follows that if o7 ¢ H; U Hs, then
H,— < o1 > —H, is a path of length two between H; and H, in
(I'(Dy,))¢. Hence, in finding d(H,, Hy) in (I'(D,,))¢, we can assume that
7,07 € Hi U Hy. Since D, is generated by o7 and 7, both 7 and o1
cannot be in H; for each i € {1,2}. Without loss of generality, we can
assume that 7 € Hy\Hy and o7 € Hy\ H;. Since D, is generated by 7
and 7o and as 7 € Hy, it follows that 7o ¢ H;.
(i) Suppose that n > 4 and n is odd. We claim that 7o ¢ H,. For, if
70 € Hy, then (07)(10) = 0? € Hy. As n is odd, o(c) = o(c?) = n.
This implies that ¢ € H, and so, Hy, = D,,. This is a contradiction.
Therefore, 7o ¢ Hs. It is now clear that Hi— < 70 > —H, is a path
of length two between H; and H, in (I'(D,))¢. This proves that for
any nontrivial subgroups Hi, Hy of D, with Hy # H, d(Hy, Hy) <
2 in (I'(D,))¢. Therefore, we get that diam((I'(D,))¢) < 2 and so,
diam((I'(D,))°) = 2.

Suppose that n = 2m, where m > 3 and m is odd. If 70 ¢ Hs,
then Hi— < 70 > —H, is a path of length two between H; and H,
in (I'(D,,))¢. Suppose that 7o € Hy. Then it follows that (o7)(70) =
0% € Hy. Thus 0%, 07 € Hy and so, < 0%,07 >C Hy. As 0 ¢ Hy,
02 € Hy, and m is odd we obtain that ¢™ ¢ H,. Suppose that ™ ¢ H;.
Let K =< ¢™ >. Note that o(K) = 2 and H; N K = {e} for each
i € {1,2}. Hence, Hy — K — H; is a path of length two between H,
and Hy in (I'(D,))¢. Suppose that ¢™ € Hy. As o ¢ Hy, it follows
that 02 ¢ H,. Since 7 € H;, we obtain that 0?7 ¢ H,. As 0? € H,
and 7 ¢ H,, we obtain that 0?7 ¢ H,. Thus 0?7 ¢ H, U Hy. As
o(< o*1 >) = 2, we obtain that H;N < 0?7 >= {e} for each i € {1,2}.
Therefore, H,— < o*r > —H, is a path of length two between H;
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and Hy in (I'(D,,))¢. It follows from the above given arguments that
diam((I'(D,))¢) < 2 and so, diam((I'(D,,))°) = 2.

(i) Suppose that n = 2F¢ | where k > 2 and ¢t > 1 is odd. Let
H, be the subgroup of D,, generated by 0% and 7 and let Hy be the
subgroup of D, generated by o2 and or. Observe that < o2 > is

a characteristic subgroup of < ¢ >. Since [D, < ¢ >] = 2, it
follows that < ¢ > is a normal subgroup of D,,. Therefore, we ob-
tain from [0, Problem 9, p.70] that < ¢? > is a normal subgroup

of D,. Therefore, H; =< 02 >< 7 > and Hy =< 0% >< o7 >.
Note that o(< ¢? >) = 2871t and o(< 7 >) = o(o7 >) = 2 and
<o?>N<71>=<0*>N < or >= {e}. Therefore, we obtain
from [0, Theorem 2.5.1, p.45] that o(H,) = o(H,) = (2871)(2) = 2*t.
Hence, H; and Hs are maximal subgroups of D,, and they are also nor-
mal subgroups of D,,. Since 02 € H;NH,, it follows that H; and H, are
not adjacent in (I'(D,,))¢. We claim that there exists no path of length
two between H; and Hs in (I'(D,,))¢. Suppose that there exists a path
of length two between H; and Hs in (I'(D,,))¢. Let H3 be a nontrivial
subgroup of D,, such that Hy — H3 — H, is a path of length two in
(I'(Dy,))¢. Then H; N Hy = {e} for each i € {1,2}. Note that Hy ¢ H;
and H; is a maximal and a normal subgroup of D,,. Therefore, we ob-
tain that HyHs = D,,. Hence, o(H;)o(H3) = o(D,,) and so, o(H3) = 2.

Observe that S = {02 ', 7,07,0%r,...,0" 7} is the set of all ele-
ments of order 2 in D,,. Hence, H3 =< s > for some s € S. Note that
{0 't 7, 0%, ... 0" %7} C Hy and {oT,0%7,...,0" 7} C H,. This

implies that S C H; U Hy and so, either H3 C H; or H3 C H,. This is
a contradiction. Therefore, there exists no path of length two between
H, and H, in (I'(D,))¢. Hence, we obtain that diam((I'(D,))) > 3
and as diam((I'(D,))¢) < 3, it follows that diam((I'(D,))¢) =3. O

Remark 2.21. Let n > 4 be such that n is not a prime number. Then
r((T'(Dn))) = 2.
Proof. It is already noted in Remark 2.19 that (I'(D,,))¢ is connected
and diam((I'(D,,))¢) is determined in Proposition 2.20. Let 0,7 be as
mentioned in Remark 2.19. Let H be any minimal subgroup of D,,. We
know from Remark 2.12 that e(H) < 2 in (I'(D,))°. We next verify
that e(H) > 2 in (I'(D,,))¢. We consider the following cases.
Case(l): H C< o >.

Note that H =< o» > for some prime number p such that p is
a divisor of n. Observe that o(H) = p. Since H is a characteristic
subgroup of < ¢ > and < ¢ > is a normal subgroup of D,,, we obtain
from [0, Problem 9, p.70] that H is a normal subgroup of D,,. Let K
be the subgroup of D,, generated by o7 and 7. Observe that K = H <
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T >. Aso(r) = 2 and HN < 7 >= {e}, it follows from [0, Theorem
2.5.1, p.45] that o(K) = 2p < 2n = o(D,,). Hence, K is a nontrivial
subgroup of D,,. Since HN K = H # {e}, we get that H and K are
not adjacent in (I'(D,,))°. Therefore, d(H, K) > 2 in (I'(D,,))¢ and so,
e(H) > 2in (I'(Dy))".
Case(2): H €< 0 >.

In this case H =< o't > for some i € {0,1,...,n — 1}. Note that
o(H) = 2. Let p be a prime number such that p is a divisor of n. Let
K be the subgroup of D,, generated by or and o'r. Using the same
arguments as in Case(1), we obtain that o(K) = 2p < 2n = o(D,,).
Hence, K is a nontrivial subgroup of D,,. It is clear that H and K are
not adjacent in (I'(D,,))¢. Therefore, d(H, K) > 2 in (I'(D,,))¢. This
proves that e(H) > 2 in (I'(D,))°.

Therefore, e(H) = 2 in (I'(D,,))¢ for any minimal subgroup H of
D,. It is clear that if K is any nontrivial subgroup of D, which is
not minimal, then e(K) > 2 in (I'(D,,))¢. Therefore, we obtain that
H(T(DW)) = 2 0

Proposition 2.22. Let G, G be finite groups such that both of them
admit at least two nontrivial subgroups. Let ¢ - G — G be a surjective
homomorphism of groups. If (D(G))¢ is connected, then (I'(G))¢ is also
connected. Moreover, if diam((I'(G))¢) < 2, then diam((T'(G))°) < 2.

Proof. Let e denote the identity element of G and let us denote the
identity element of G by €. Let us denote Ker¢ by N. It is clear
that N # G. If N = {e}, then G = G as groups. Hence, the graphs
(T(@))° and (I'(G))¢ are isomorphic. Therefore, there is nothing to
prove in this case. So, we can assume that N # {e}. Let y € G,
y # €. Since ¢ is a surjective homomorphism from G onto G, there
exists © € G\{e} such that y = ¢(x). We are assuming that (I'(G))° is
connected. Therefore, we obtain from (i) = (i7) of Proposition 2.1 that
N¢g = G. Note that there exist £ > 1 and elements g1, ..., gr € G such
that o(g;) is a prime number for each ¢ € {1,...,k} and z = Hle gi-
Hence, y = ¢(z) = Hle ¢(gi). Since y # e, it follows that ¢(g;) # €
for at least one ¢ € {1,...,k} and for such an i, o(¢(g;)) = o(g;) is a
prime number. The above discussion implies that Ng = G. Therefore,
we obtain from (ii) = (i) of Proposition 2.1 that (I'(G))¢ is connected.

We next prove the moreover part. Suppose that diam((I'(G))¢) < 2.
We show that diam((I'(G))¢) < 2. Let Wy, Wy be nontrivial subgroups
of G with W, # W,. We now show that there exists a path of length at
most two between W; and Ws in (I'(G))¢. We can assume that W, and

Wy are not adjacent in (I'(G))¢. We know from [0, Lemma 2.7.5, p.63]
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that there exist nontrivial subgroups Hy, H, of G with N C H; for each
i€ {1,2} and W; = ¢(H,;) for each i € {1,2}. It is clear that H; # Ho
and as Hy N Hy # {e}, we obtain that H; and H, are not adjacent
in (I'(G))¢. We are assuming that diam((I'(G))¢) < 2. Hence, there
exists a nontrivial subgroup K of G such that H; — K — H, is a path of
length two between H; and Hs in (I'(G))¢. We assert that W;N¢(K) =
{e}. for each i € {1,2}. Let ¢ € {1,2}. Let z € W; N ¢(K). Then
z = ¢(h;) = ¢(k) for some h; € H; and k € K. Hence, kh;' € N C H,
and so, k € H; N K = {e}. Therefore, z = ¢(k) = ¢(e) = €. This
shows that W; N ¢(K) = {€} for each i € {1,2}. From H; N K = {e}
and N C Hy, it follows that ¢(K) # {e}. Hence, W) — ¢(K) — Wy is
a path of length two between W, and W, in (I(G))¢. This proves that
diam/((T(G))°) < 2. O
Remark 2.23. Let G, G be finite groups such that both G' and G admit
at least two nontrivial subgroups. Let ¢ : G — G be a surjective
homomorphism of groups. Suppose that (I'(G))¢ is connected. Then
(T(G))¢ is connected. If diam((I'(G))¢) = 3, then diam((T'(G))¢) = 3.

Proof. We know from Proposition 2.22 that (I'(G))¢ is connected. If
diam((T'(G))¢) = 3, then it follows from Proposition 2.22 that

diam((I'(G))°) > 3. We know from the proof of (ii) = (i) of Proposi-
tion 2.1 that diam((I'(G))¢) < 3 and so, we get that diam((I'(G))¢) =
3. UJ

3. SOME MORE RESULTS

Let G be a finite group which admits at least one nontrivial subgroup.
The aim of this section is to determine w((I'(G))°) and girth((I'(G))°).

Proposition 3.1. Let G be a finite group. Then w((I'(G))°) =
X((I'(GQ))¢) = k, where k is the number of minimal subgroups of G.

Proof. Since (G is a finite group with at least one nontrivial subgroup,
G has at least one minimal subgroup and G has only a finite number
of minimal subgroups. Let k& be the number of minimal subgroups of
G. Let {Wy,..., Wy} be the set of all minimal subgroups of G. Since
W; N W, = {e} for all distinct i,j € {1,2,...,k}, it follows that the
subgraph of (I'(G))¢ induced on {W7, ..., Wy} is a clique on k vertices.
Therefore, we get that w((I'(G))¢) > k. We next verify that the vertices
of (I'(G))¢ can be properly colored using a set of k distinct colors. Let
{c1,...,cx} be aset of k distinct colors. Now, color W; with ¢; for each
i €{l,...,k}. Let H be any nontrivial subgroup of G. It is clear that
H contains a minimal subgroup of G. Let i € {1,...,k} be least with
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the property that H O W,;. Then color H using ¢;. We claim that the
above assignment of colors is a proper vertex coloring of (I'(G))¢. Let
Hy, Hy be nontrivial subgroups of G such that H; and Hs are adjacent
in (I'(G))°. Hence, HiN Hy = {e}. Let i € {1,...,k} be least with the
property that H; 2O W, and let j € {1,...,k} be least with the property
that Hy O W;. Note that H; receives color ¢; and Hj receives color c;.
As Hy N Hy = {e}, it is clear that ¢ # j and so, ¢; # ¢;. This shows
that (I'(G))¢ can be properly colored using a set of k distinct colors.
Therefore, we obtain that x((I'(G))¢) < k < w((['(G))°) < x((T'(G))).
This proves that w((I'(G))°) = x((I'(G))°) = k. O

Proposition 3.2. Let G be a finite group. Then girth((I'(G))°) = 3 if
and only if G has at least three minimal subgroups.

Proof. Assume that girth((I'(G))¢) = 3. Then there exist nontrivial
subgroups Hy, Ho, H3 such that Hy — H, — H3 — H; is a cycle of length
three in (I'(G))¢. Note that Hy N Hy = HyN Hy = HyN Hy = {e}. Let
i € {1,2,3}. Let W; be a minimal subgroup of G such that W; C H; for
each i € {1,2,3}. Observe that Wi NWy = Won W3 = WysNW; = {e}.
Hence, W; # W, for all distinct ¢,5 € {1,2,3}. Therefore, G has at
least three minimal subgroups.

Conversely, assume that G has at least three minimal subgroups. We
know from Proposition 3.1 that w((I'(G))¢) = k, where k is the number
of minimal subgroups of G. As k > 3, it follows that girth((I'(G))¢) =

3. O
Proposition 3.3. Let G be a finite group. Let o(G) = H§:1 p;* be the
factorization of o(G) into product of prime numbers (here, py,..., D
are distinct prime numbers and n; > 1 for each i € {1,...,t} and in

the case t =1, ny > 1). Then w((I'(G))¢) =t if and only if for each
i€ {l,...,t}, G has only one subgroup W; with o(W;) = p;. Moreover,
if G is abelian, then w((I'(G))¢) =t if and only if G is cyclic.

Proof. We know from Proposition 3.1 that w((I'(G))¢) = k, where k is
the number of minimal subgroups of G. Therefore, w((I'(G))¢) =t if
and only if G has exactly ¢ minimal subgroups. Let i € {1,...,t}. Since
p; is a divisor of o(G), we know from Cauchy’s theorem [6, Theorem
2.11.3, p.87| that there exists a subgroup W; of G with o(W;) = p;.
It is clear that W; is a minimal subgroup of G for each i € {1,...,t}.
Observe that if W is any minimal subgroup of G, then o(W) = p; for
some i € {1,...,t}. Hence, w((I'(G))¢) = t if and only if {Wy,..., W,}
is the set of all minimal subgroups of GG. Therefore, we obtain that
w((I'(G))¢) = t if and only if for each i € {1,...,t}, there exists only
one subgroup W; of G with o(W;) = p;.
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We next verify the moreover part of this Proposition. If G is cyclic,
then for each divisor d of o(G), there exists a unique subgroup H of G
with o(H) = d. Hence, for each i € {1,...,t}, W; is the only subgroup
of G with o(W;) = p;. Therefore, w((I'(G))¢) = t. Conversely, assume
that G is abelian and w((I'(G))¢) = t. For each i € {1,...,t}, let P,
be the unique p;-Sylow subgroup of G. Note that o(P;) = p;" for each
i € {l,...,t} and G is the internal direct product of Pi,..., P,. It is
clear that W; is the only subgroup of P; with o(W;) = p;. We assert
P, is cyclic for each i € {1,...,t}. Suppose that P; is not cyclic for
some i € {1,...,t}. Then n; > 1 and we know from the proof of the
fundamental theorem of finite abelian groups [0, Theorem 2.14.1, p.109]
that there exist s > 2 and cyclic subgroups A;, As, ..., As of P; such
that o(Ay) = p",0(A2) = pi'™2,...,0(As) = pi™ with n;; > ng--- >
n;s > 1 and P; is the internal direct product of Ay, As, ..., A;. We know
from [3, Problem 6, p.154] that the number of minimal subgroups of P;
equals % = 14p;i+--+pi~t > 2, since s > 2. This is impossible as W;
is the only minimal subgroup of P;. This proves that P; is cyclic for each
ie{l,...,t}. As (o(P;),0(P;)) =1 for all distinct 4,5 € {1,...,t}, it
follows from [0, Problem 6, p.108] that G is cyclic. O

Remark 3.4. Let G be a finite group such that o(G) is divisible by
at least three distinct prime numbers pi, ps, and p3. We know from
Cauchy’s theorem [, Theorem 2.11.3, p.87] that for each i € {1,2, 3},
there exists a subgroup W; of G such that o(W;) = p; . It is clear that
W; is a minimal subgroup of G for each i € {1,2,3} and hence, we
obtain from Proposition 3.2 that girth((I'(G))¢) = 3.

Proposition 3.5. Let G be a finite group such that o(G) = p1ps, where
p1 and py are distinct prime numbers. Then girth((T'(G))¢) € {3, 00}.

Proof. We can assume without loss of generality that p; < py. It
is already noted in Remark 2.7 that (I'(G))° is either K5 or Kjp,41.
Therefore, we obtain that girth((I'(G))°) € {3,00}. O

Lemma 3.6. Let G be a finite group such that o(G) = p*py?, where
p1 and ps are distinct prime numbers and n; > 1 for each i € {1,2}.
Then girth((I'(G))©) < 4.

Proof. Let i € {1,2} . Let k € N be such that k < n;. We know from
[0, Theorem 2.12.1, p.92] that there exists a subgroup H of G such that
o(H) = pF. Let V; denote the set of all subgroups H of G such that
o(H) = pk for some k € N with k < n; for each i € {1,2}. It is clear
that each member of V; is a nontrivial subgroup of G and V; contains
at least n; elements for each i € {1,2}. As n; > 2, it follows that V;
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contains at least two elements for each ¢ € {1,2}. Since (p1,p2) = 1,
it follows from Lagrange’s theorem that H N W = {e} for any H € V;
and W € V;. If there exist Hy, Hy € V) such that H; N Hy = {e},
then for any W € V5, we obtain that H; — W — Hy — H; is a cycle of
length three in (I'(G))°. Similarly, if there exist Wy, W, € V5 such that
WiNW, = {e}, then for any H € V;, we get that W, — H — Wy — W7 is
a cycle of length three in (I'(G))°. Hence, we can assume that no two
distinct members of V; are adjacent in (I'(G))¢ for each ¢ € {1,2}. Let
Hy, Hy, € V] with Hy # H, and let Wy, Wy € V, with Wy # W,. Note
that H; — W, — Hy — W5 — H, is a cycle of length four in (I'(G))¢. This
proves that girth((I'(G))°) < 4. O

Proposition 3.7. Let G be a finite cyclic group with o(G) = p|*ps?,
where py, py are distinct prime numbers and n; > 1 for each i € {1,2}.
Then girth((I'(G))¢) = 4.

Proof. We know from Lemma 3.6 that girth((I'(G))¢) < 4. Since G
is a cyclic group with o(G) = p|'psy?, it follows that G has exactly
two minimal subgroups. Hence, we obtain from Proposition 3.2 that
girth((I'(G))¢) # 3 and therefore, girth((I'(G))¢) = 4. O

Proposition 3.8. Let G be a finite cyclic group with o(G) = p'ps,
where p1 and ps are distinct prime numbers and n > 1. Then
girth((I'(G))¢) = co.

Proof. Let Py be the subgroup of G with o(P;) = p and let P, be the
subgroup of G with o(P,) = ps. Let V; denote the set of all subgroups
H of P, with H # {e} and let Vo = {P»}. Since P, is cyclic, it is
clear that V; contains exactly n elements. As is noted in the proof
of Lemma 3.6, H N P, = {e} for any H € V; and hence, H and P,
are adjacent in (I'(G))°. Let Wi, W; be any two distinct nontrivial
subgroups of G such that W; ¢ V; U V,. Observe that W; = H; P for
some subgroup H; € Vi such that H; # P, for each i € {1,2}. It
is clear that W; N H # {e}, W, N P, # {e}, W1 N Wy # {e} for each
i € {1,2} and for any subgroup H € V;. From the above discussion,
we obtain that V3 U V4 is the set of all nonisolated vertices of (I'(G))°
and the subgraph of (I'(G))¢ induced on V; UV4; is a star graph. Indeed,
it is K ,,. Therefore, we get that girth((I'(G))¢) = oo. O

Proposition 3.9. Let G be a finite abelian group with o(G) = p|*ps?,
where p1 and py are distinct prime numbers. Suppose that G is not
cyclic. Then girth((I'(G))°) = 3.

Proof. We know from Proposition 3.1 that w((I'(G))¢) = k, where k
is the number of minimal subgroups of G. It is clear that £ > 2.
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Since G is abelian but not cyclic, we obtain from Proposition 3.3 that
w((I'(G))°) > 3 and therefore, girth((I'(G))¢) = 3. O

We mention an example in Example 3.10 to illustrate that the hy-
pothesis that the group G is abelian cannot be omitted in Proposition
3.9. For any n > 2, we denote the additive group of integers modulo n
by Z,.

Example 3.10. Let Qg be the quaternion group of order 8 given in [5,
Exercise 44, p.187]. Let G = Qg X Zg be the external direct product
of Qg and Zg. Observe that o(G) = 2332, Note that {1, —1} x {0} and
{1} x {0, 3,6} are the only minimal subgroups of G. Hence, we obtain
from Proposition 3.2 that girth((I'(G)))¢) # 3. We know from Lemma
3.6 that girth((I'(G))¢) < 4 and therefore, girth((I'(G))°) = 4.

Remark 3.11. Let G be a finite group with o(G) = p", where p is a
prime number and n > 2. If GG is cyclic, then GG has only one minimal
subgroup and so, girth((I'(G))¢) = oco. If G is abelian but not cyclic,
then it is already noted in the proof of Proposition 3.3 that G has at
least three minimal subgroups and so, we obtain from Proposition 3.2
that girth((I'(G))¢) = 3.

Acknowledgments

We are very much thankful to the referee and the Editorial Board Mem-
bers of JAS for their support.

REFERENCES

1. S. Akbari, F. Heydari and M. Maghasedi, The intersection graph of a group, J.
Algebra Appl., 5 (2015), Article ID: 1550665, 9 pages.

2. R. Balakrishnan and K. Ranganathan, A Teztbook of Graph Theory, Universi-
text, Springer, New York, 2000.

3. P. B. Bhattacharya, S. K. Jain and R. Nagpaul, Basic Abstract Algebra, Cam-
bridge University Press, 1994.

4. B. Csakany and G. Pollak, The graph of subgroups of a finite group (Russian),
Czech. Math. J., 19 (1969), 241-247.

5. J. A. Gallian, Contemporary Abstract Algebra, Fourth Edition, Narosa Publish-
ing House, New Delhi, 1999.

6. 1. N. Herstein, Topics in Algebra, Second Edition, Wiley India Private Limited,
New Delhi, 2010.

7. S. H. Jafari and N. Jafari Rad, Intersection graphs of normal subgroups of a
groups, Quasigroups and related systems, 18 (2010), 137-142.

8. S. Kayacan, K3 s-free intersection graphs of finite groups, Comm. Algebra, 45(6)
(2017), 2466-2477.



130 S. VISWESWARAN AND P. VADHEL

9. S. Kayacan, Dominating sets in intersection graphs of finite groups, Rocky Moun-
tain J. Math., 48(7) (2018), 2311-2335.

10. I. S. Luthar and 1. B. S. Passi, Algebra Volume 1: Groups, Narosa Publishing
House, New Delhi, 1999.

11. R. Rajkumar and P. Devi, Intersection graphs of cyclic subgroups of groups,
FElectronic Notes in Discrete Math., 5 (2016), 15-24.

12. R. Rajkumar and P. Devi, Intersection graph of subgroups of some non-abelian
groups, Malaya J. Math., 4(2) (2016), 239-242.

Subramanian Visweswaran
Department of Mathematics, Saurashtra University P.O.Box 360 005, Rajkot, In-
dia.

Email: s_visweswaran2006@yahoo.co.in

Pravin Vadhel
Department of Mathematics, Saurashtra University P.O.Box 360 005, Rajkot, In-
dia.
Email: pravin_2727Q@yahoo.com



Journal of Algebraic Systems

SOME RESULTS ON THE COMPLEMENT OF THE INTERSECTION GRAPH
OF SUBGROUPS OF A FINITE GROUP

S. VISWESWARAN AND P. VADHEL

2L 05,8 S slag S5 (SIsl BILS JaSa 5l (ol

Tdesls sl 5 '0blsises olsbel sl
Qt'maj..\}.b cg:)jg.?‘) C‘J:.j:‘)jl.a DK&S‘J ‘Lf‘étf) 03;\’Y

KBl ity 23,525 S S5l (5Ll & S i3y G le plans S i )
oS G2 (H & {Ge} s 555 saal g et Gog S50 H 3,555 & 2500 53315L)
b en ol ol I'(G) sk b AScGLngjJ%ﬁj Uﬂf:“““"‘ J‘;Qj}é RABTRERAT 09,5 S G
9035 G o b lons S5 (\43 St 3020 O (guily G302 S il Sz s SIS
HNK #{e} 315 5 31 wdlion pslos SIS 00l 5o JU G bs Ky H b g,
5 G 255 oles o bLayl oy dlie ol ol Gue ail alin 03 S S G =S oA
atln T(G) BUS Lo 315 ol

et B8 ( alie Ll sg S e alin sy 8 K by S5 Snsl B1S JoSo gulS LIS
RE{K Y



	1. Introduction
	2. main results
	3. some more results
	References

