
Journal of Algebraic Systems
Vol. 7, No. 2, (2020), pp 105-130

SOME RESULTS ON THE COMPLEMENT OF THE
INTERSECTION GRAPH OF SUBGROUPS OF A

FINITE GROUP

S. VISWESWARAN∗ AND P. VADHEL

Abstract. In this article we consider groups G such that G ad-
mits at least one nontrivial subgroup (recall that a subgroup H
of G is said to be nontrivial if H /∈ {G, {e}}). Let G be a group.
Recall that the intersection graph of subgroups of G, denoted by
Γ(G), is an undirected graph whose vertex set is the set of all non-
trivial subgroups of G and distinct vertices H,K are joined by an
edge in this graph if and only if H ∩K ̸= {e}. Let G be a finite
group. The aim of this article is to investigate the interplay be-
tween the group-theoretic properties of a finite group G and the
graph-theoretic properties of the complement of Γ(G).

1. Introduction

Let G be a group which admits at least one nontrivial subgroup. Re-
call that the intersection graph of G, denoted by Γ(G) is an undirected
simple graph whose vertex set is the set of all nontrivial subgroups
of G and distinct vertices H,K are joined by an edge in this graph
if and only if H ∩ K ̸= {e}. The intersection graphs of groups have
been investigated by several algebraists (for example, refer the articles
[1, 4, 7, 8, 9, 11, 12]). Let G = (V,E) be a simple graph. Recall from
[2, Definition 1.1.13] that the complement of G, denoted by Gc is a
graph whose vertex set is V and distinct vertices u, v are joined by an
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edge in Gc if and only if there is no edge joining u and v in G. Thus
for a group G which admits at least one nontrivial subgroup, (Γ(G))c

is a graph whose vertex set is the set of all nontrivial subgroups of
G and distinct vertices H,K are joined by an edge in (Γ(G))c if and
only if H ∩ K = {e}. The groups considered in this article are finite
which admit at least one nontrivial subgroup. Let G be a finite group.
The purpose of this article is to investigate the effect of certain graph
parameters of (Γ(G))c on the group structure of G.

It is useful to recall the following definitions and results from graph
theory before we give an account of results that are proved on (Γ(G))c,
where G is a finite group which admits at least one nontrivial subgroup.
The graphs considered in this article are undirected and simple. Let
G = (V,E) be a graph. Let a, b ∈ V, a ̸= b. Recall from [2] that the
distance between a and b, denoted by d(a, b) is defined as the length
of a shortest path in G between a and b if such a path exists in G.
Otherwise, we define d(a, b) = ∞. We define d(a, a) = 0. A graph
G = (V,E) is said to be connected if for any distinct a, b ∈ V , there
exists a path in G between a and b. Let G = (V,E) be a connected
graph. Recall from [2, Definition 4.2.1] that the diameter of G, denoted
by diam(G) is defined as diam(G) = sup{d(a, b) : a, b ∈ V }. Let
a ∈ V . The eccentricity of a, denoted by e(a) is defined as e(a) =
sup{d(a, b) : b ∈ V }. The radius of G, denoted by r(G) is defined as
r(G) = min{e(a) : a ∈ V }.

Let G = (V,E) be a graph. Suppose that G contains a cycle. Recall
from [2, p. 159] that the girth of G, denoted by girth(G) is the length
of a shortest cycle in G. If G does not contain any cycle, then we
set girth(G) = ∞. A complete graph on n vertices is denoted by
Kn. Recall from [2, Definition 1.2.2] that a clique of G is a complete
subgraph of G. Let G = (V,E) be a simple graph. Suppose that there
exists k ∈ N such that any clique of G is a clique on at most k vertices.
Then the clique number of G, denoted by ω(G) is defined as the largest
positive integer n such that G contains a clique on n vertices. If G
contains a clique on n vertices for all n ≥ 1, then we set ω(G) = ∞.

Let G = (V,E) be a graph. Recall from [2, p.129] that a vertex
coloring of G is a mapping f : V → S, where S is a set of distinct
colors. A vertex coloring f : V → S is said to be proper if adjacent
vertices of G receive distinct colors of S; that is, if u and v are adjacent
in G, then f(u) ̸= f(v). The chromatic number of G, denoted by χ(G)
is the minimum number of colors needed for a proper vertex coloring
of G. It is clear that for any graph G, ω(G) ≤ χ(G).

Let G be a group. Recall that a nontrivial subgroup H of G is said
to be a minimal subgroup of G if there is no nontrivial subgroup K of
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G such that K is properly contained in H. A nontrivial subgroup H
of G is said to be a maximal subgroup of G if there is no nontrivial
subgroup K of G such that H is properly contained in K. If G is a
finite group with at least one nontrivial subgroup, then it is clear that
G admits at least one minimal (respectively, one maximal) subgroup
of G. Let G be a finite group with at least one nontrivial subgroup.
Let C = {H : H is a minimal subgroup of G}. As in [9], we denote the
subgroup of G generated by ∪H∈CH by NG. In Section 2 of this article,
we discuss some results regarding the connectedness of (Γ(G))c. Let G
be a finite group with at least two nontrivial subgroups. It is shown in
Proposition 2.1 that (Γ(G))c is connected if and only if NG = G. And
in the case (Γ(G))c is connected, it is verified in Proposition 2.1 that
diam((Γ(G))c) ≤ 3. In Lemma 2.5 and Proposition 2.6, we characterize
finite groups G which admit at least two nontrivial subgroups such that
(Γ(G))c is complete. Let G be a finite abelian group which admits at
least two nonrivial subgroups. With the help of fundamental theorem
of finite abelian groups [6, Theorem 2.14.1, p.109] and Proposition 2.1,
we are able to determine the structure of finite abelian groups G such
that (Γ(G))c is connected (see Propositions 2.8 and 2.9). Moreover,
in the case when (Γ(G))c is connected, we characterize finite abelian
groups G such that diam((Γ(G))c) = 1, 2 or 3 (see Propositions 2.8
and 2.11). Furthermore, in the case when (Γ(G))c is connected, we
determine r((Γ(G))c) (see Proposition 2.8 and Remark 2.13).

Let n ≥ 3 and let Sn denote the symmetric group of degree n.
With the help of Proposition 2.1, it is verified in Proposition 2.14 that
(Γ(Sn))

c is connected. Moreover, it is shown that diam((Γ(S3))
c) = 1

and for n ≥ 4, it is proved that diam((Γ(Sn))
c) = r((Γ(Sn))

c) = 2
(see Proposition 2.14 and Remark 2.15). Let n ≥ 4 and let An de-
note the alternating group of degree n. It is shown in Proposition 2.17
that (Γ(An))

c is connected and diam((Γ(An))
c) = 2. It is observed in

Proposition 2.18(i) that r((Γ(A4))
c) = 1 and for any n ≥ 5, it is shown

in Proposition 2.18(ii) that H is any minimal subgroup of An with
either o(H) ∈ {2, 3} or o(H) ≡ 1(mod4), then e(H) ≥ 2 in (Γ(An))

c.
Let n ≥ 3 and let Dn denote the dihedral group of degree n. It is shown
that (Γ(Dn))

c is connected and moreover, the values of n are classified
according as diam((Γ(Dn))

c) is either 1, 2 or 3 (see Remark 2.19 and
Proposition 2.20). Let n ≥ 4 be such that n is not a prime number. It
is proved in Remark 2.21 that r((Γ(Dn))

c) = 2.
In Section 3 of this article, we discuss some results regarding the

girth of (Γ(G))c, where G is a finite group which admits at least one
nontrivial subgroup. It is proved in Proposition 3.1 that ω((Γ(G))c) =
χ((Γ(G))c) = k, where k is the number of minimal subgroups of G.
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It is noted in Proposition 3.2 that girth((Γ(G))c) = 3 if and only if
G has at least three minimal subgroups. It is observed in Remark 3.4
that if o(G) is divisible by at least three distinct prime numbers, then
girth((Γ(G))c) = 3. Let G be a finite abelian group such that o(G)
is divisible by exactly t distinct prime numbers. Then it is shown in
Proposition 3.3 that ω((Γ(G))c) = t if and only if G is cyclic. Let G
be a finite group with o(G) = pn1

1 pn2
2 , where p1, p2 are distinct prime

numbers and ni ≥ 1 for each i ∈ {1, 2}. If ni = 1 for each i ∈ {1, 2},
then it is proved in Proposition 3.5 that girth((Γ(G))c) ∈ {3,∞}. If
G is cyclic and if ni > 1 for each i ∈ {1, 2}, then it is shown in
Proposition 3.7 that girth((Γ(G))c) = 4. If G is cyclic and if n1 > 1
and n2 = 1, then it is verified in Proposition 3.8 that the subgraph of
(Γ(G))c induced on its nonisolated vertices is a star graph and hence,
girth((Γ(G))c) = ∞. If G is abelian but not cyclic, then it is proved
in Proposition 3.9 that girth((Γ(G))c) = 3.

Whenever a set A is a subset of a set B and A ̸= B, we denote it
symbolically by A ⊂ B.

2. main results

Let G be a finite group admitting at least two nontrivial subgroups.
The aim of this section is to characterize G such that (Γ(G))c is con-
nected and also to determine diam((Γ(G))c) in the case when (Γ(G))c

is connected.

Proposition 2.1. Let G be a finite group which admits at least two
nontrivial subgroups. Then the following statements are equivalent:

(i) (Γ(G))c is connected.
(ii) NG = G.
Moreover, if either (i) or (ii) holds, then diam((Γ(G))c) ≤ 3.

Proof. (i) ⇒ (ii) Assume that (Γ(G))c is connected. Let H be a non-
trivial subgroup of G. Since G is finite, there exists a minimal subgroup
K of G such that H ⊇ K. Hence, H ∩NG ⊇ K and so, H ∩NG ̸= {e}.
If NG ̸= G, then we obtain that NG is an isolated vertex of (Γ(G))c.
This is impossible since G has at least two nontrivial subgroups and
(Γ(G))c is connected. Therefore, NG = G.
(ii) ⇒ (i) Assume that NG = G. Let H1, H2 be nontrivial subgroups
of G with H1 ̸= H2. We now verify that there exists a path of length
at most three between H1 and H2 in (Γ(G))c. We can assume that H1

and H2 are not adjacent in (Γ(G))c. If H is any nontrivial subgroup of
G, then as NG = G, it follows that there exists a minimal subgroup K
of G such that K ̸⊆ H.
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Case(1): There exists a minimal subgroup K of G such that K ̸⊆ H1

and K ̸⊆ H2.
Observe that H1 ∩K = H2 ∩K = {e} . Hence, H1 −K − H2 is a

path of length two between H1 and H2 in (Γ(G))c.
Case(2): There exists a minimal subgroup W1 of G such that W1 ̸⊆ H1

but W1 ⊆ H2 and there exists a minimal subgroup W2 of G such that
W2 ̸⊆ H2 but W2 ⊆ H1.

It is clear that H1 ∩ W1 = H2 ∩ W2 = W1 ∩ W2 = {e} and so,
H1 − W1 − W2 − H2 is a path of length three between H1 and H2 in
(Γ(G))c.

This proves that (Γ(G))c is connected and diam((Γ(G))c) ≤ 3.
The proof of the moreover part is contained in the proof of (ii) ⇒ (i)

of this Proposition. □
Let G be a finite group which admits at least two nontrivial sub-

groups. We next try to characterize G such that (Γ(G))c is complete.

Remark 2.2. Let G be a group. It is not hard to verify that G has a
unique nontrivial subgroup if and only if G is a finite cyclic group with
o(G) = p2, where p is a prime number.

Lemma 2.3. Let G be a finite group which admits at least one nontriv-
ial subgroup. Then (Γ(G))c is complete if and only if every nontrivial
subgroup of G is minimal.
Proof. Assume that (Γ(G))c is complete. Let H be a nontrivial sub-
group of G. Let K be a nontrivial subgroup of G such that K ⊆ H.
If K ̸= H, then as H,K are adjacent in (Γ(G))c, we obtain that
H ∩ K = {e}. This implies that K = H ∩ K = {e}. This is a
contradiction and so, H is a minimal subgroup of G.

Conversely, assume that any nontrivial subgroup of G is minimal.
Let H1, H2 be nontrivial subgroups of G such that H1 ̸= H2. Then
H1 ∩H2 = {e} and so, H1 and H2 are adjacent in (Γ(G))c. This shows
that (Γ(G))c is complete. □
Remark 2.4. Let G be a finite group which admits at least one nontrivial
subgroup. If K is any minimal subgroup of G, then o(K) is a prime
number.

Proof. Suppose that o(K) is composite. Let p be a prime number such
that p divides o(K). We know from Cauchy’s theorem [6, Theorem
2.11.3, p.87] that there exists a subgroup H of K such that o(H) = p.
It is clear that {e} ⊂ H ⊂ K. This implies that K is not a minimal
subgroup of G. This is a contradiction. Therefore, o(K) is a prime
number. □
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Lemma 2.5. Let G be a finite group with at least two nontrivial sub-
groups. Suppose that o(G) = pn, where p is a prime number and n ≥ 2.
Then the following statements are equivalent:

(i) (Γ(G))c is complete.
(ii) n = 2 and G is not cyclic.

Proof. (i) ⇒ (ii) Assume that (Γ(G))c is complete. Then we know from
Lemma 2.3 that any nontrivial subgroup of G is minimal. Suppose
that n ≥ 3. Note that p2 is a divisor of o(G). Hence, we obtain from
[6, Theorem 2.12.1, p.92] that there exists a subgroup H of G such
that o(H) = p2. We know from Remark 2.4 that H is not a minimal
subgroup of G. This is a contradiction. Therefore, n ≤ 2. Since G has
at least two nontrivial subgroups, we obtain that n ≥ 2 and so, n = 2.
This shows that o(G) = p2. As a cyclic group of order p2 has a unique
nontrivial subgroup, it follows that G is not cyclic.
(ii) ⇒ (i) Assume that o(G) = p2, where p is a prime number and G
is not cyclic. We know from [6, Corollary, p.86] that G is abelian. Let
g ∈ G, g ̸= e. It follows as a consequence of Lagrange’s theorem [6,
Corollary 1, p.41] that o(g) is a divisor of o(G) = p2. Since G is not
cyclic, we obtain that o(g) = p. Hence, it follows from [10, Example 2.5,
p.146] that there exist cyclic subgroups A1, A2 of G such that o(Ai) = p
for each i ∈ {1, 2} and G is the internal direct product of A1 and A2.
It is clear from Lagrange’s theorem [6, Theorem 2.4.1, p.41] that any
nontrivial subgroup of G is of order p and it is well-known that there
are exactly p+1 subgroups of G each of order p. Therefore, (Γ(G))c is
Kp+1. □

Let G be a finite group such that o(G) is divisible by at least two
distinct prime numbers. In Proposition 2.6, we characterize G such
that (Γ(G))c is complete.
Proposition 2.6. Let G be a finite group such that o(G) is divisible
by at least two distinct prime numbers. Then the following statements
are equivalent:

(i) (Γ(G))c is complete.
(ii) o(G) = p1p2, where p1 and p2 are distinct prime numbers.

Proof. (i) ⇒ (ii) Assume that (Γ(G))c is complete. We know from
Lemma 2.3 that each nontrivial subgroup of G is minimal. Let o(G) =∏k

i=1 p
ni
i be the factorization of o(G) into product of prime numbers

(here p1, p2, . . . , pk are distinct prime numbers and ni ∈ N for each
i ∈ {1, 2, . . . , k}). We claim that n1 = n2 = · · · = nk = 1. Suppose
that ni > 1 for some i ∈ {1, 2, . . . , k}. We know from [6, Theorem
2.12.1, p.92] that there exists a subgroup H of G such that o(H) = pni

i .
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We know from Remark 2.4 that H is not a minimal subgroup of G.
This is a contradiction. Therefore, ni = 1 for each i ∈ {1, 2, . . . , k}.

We next verify that k = 2. By hypothesis, k ≥ 2. We know
from Cauchy’s theorem [6, Theorem 2.11.3, p.87] that for each i ∈
{1, 2, . . . , k}, there exists a subgroup Pi of G such that o(Pi) = pi.
We claim that Pi is normal in G for at least one i ∈ {1, 2, . . . , k}.
Suppose that Pi is not normal in G for each i ∈ {1, 2, . . . , k}. Let
i ∈ {1, . . . , k}. Observe that N(Pi) ⊇ Pi, where N(Pi) is the normal-
izer of Pi in G. Since Pi is not normal in G, it follows that N(Pi) ̸= G.
Hence, N(Pi) is a nontrivial subgroup of G. As any nontrivial sub-
group of G is minimal, we obtain that N(Pi) = Pi. Note that Pi is a
pi-Sylow subgroup of G. We know from [6, Lemma 2.12.6, p.99] that
the number of pi-Sylow subgroups in G equals o(G)

o(N(Pi))
= o(G)

o(Pi)
= o(G)

pi
.

Let {Pi = Pi1, Pi2, . . . , Pi
o(G)
pi

} be the set of all pi-Sylow subgroups of
G. As any element g of a pi-Sylow subgroup with g ̸= e is of order pi,
it follows that G has exactly o(G)

pi
(pi − 1) elements of order pi. As any

nontrivial subgroup of G is minimal, it follows that if x ∈ G with x ̸= e,
then o(x) = pi for some i ∈ {1, 2, . . . , k}. It is now clear from the above
discussion that o(G) = o(G)

p1
(p1−1)+ o(G)

p2
(p2−1)+ · · ·+ o(G)

pk
(pk−1)+1.

This implies that 1 = k − ( 1
p1

+ 1
p2

+ · · · + 1
pk
) + 1

o(G)
. We can assume

that 2 ≤ p1 < p2 < · · · < pk. Hence, we obtain that k − 1 + 1
o(G)

< k
2
.

This is a contradiction. Therefore, Pi is normal in G for at least one
i ∈ {1, 2, . . . , k}. Fix i ∈ {1, 2, . . . , k} such that Pi is normal in G.
Suppose that k ≥ 3. Let j ∈ {1, 2, . . . , k}\{i}. Observe that PiPj is a
subgroup of G and as Pi ∩Pj = {e}, it follows from [6, Theorem 2.5.1,
p.45] that o(PiPj) = pipj. Note that PiPj is a nontrivial subgroup of
G and is not minimal. This is in contradiction to the assumption that
(Γ(G))c is complete. Therefore, k = 2. Hence, o(G) = p1p2, where
p1, p2 are distinct prime numbers.
(ii) ⇒ (i) Assume that o(G) = p1p2, where p1 and p2 are distinct
prime numbers. It follows from Lagrange’s theorem that any nontrivial
subgroup of G is of order either p1 or p2. Hence, any nontrivial subgroup
of G is minimal and so, we obtain from Lemma 2.3 that (Γ(G))c is
complete. □
Remark 2.7. Let G be a finite group with o(G) = p1p2, where p1, p2
are distinct primes. In this remark, we mention some well-known facts
about the structure of G. If G is abelian, then G is necessarily cyclic
and in such a case, (Γ(G))c is K2. Suppose that G is not abelian. We
can assume that p1 < p2. We know from [6, Theorem 2.12.3 and Lemma
2.12.6, p.100, p.99] that G has a unique subgroup H with o(H) = p2
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and has exactly p2 subgroups of G each of order p1. Hence, (Γ(G))c is
Kp2+1.

Let G be a finite abelian group which admits at least two nontrivial
subgroups. We next proceed to discuss regarding the characterization
of G such that (Γ(G))c is connected and determine its diameter when it
is connected. First, we consider finite abelian groups with o(G) = pn,
where p is prime number and n ≥ 2.
Proposition 2.8. Let G be a finite abelian group with o(G) = pn,
where p is a prime number and n ≥ 2. Then the following statements
are equivalent:

(i) (Γ(G))c is connected.
(ii) G is the internal direct product of cyclic subgroups A1, A2, . . . , An

with o(Ai) = p for each i ∈ {1, 2, . . . , n}.
Moreover, in the case when (Γ(G))c is connected, diam((Γ(G))c) = 1

if n = 2 and diam((Γ(G))c) = r((Γ(G))c) = 2 if n ≥ 3.
Proof. (i) ⇒ (ii) Assume that (Γ(G))c is connected. We know from
Proposition 2.1 that NG = G. Since o(G) = pn where p is a prime
number, we obtain that any minimal subgroup of G is of order p. As G
is the subgroup of G generated by all its minimal subgroups, it follows
that each element g ∈ G with g ̸= e is of order p. We know from [10, Ex-
ample 2.5, p.146] that there exist cyclic subgroups A1, A2, . . . , An of G
satisfying the following properties: o(Ai) = p for each i ∈ {1, 2, . . . , n}
and G is the internal direct product of A1, A2, . . . , An. This shows that
G is the internal direct product of cyclic subgroups A1, A2, . . . , An with
o(Ai) = p for each i ∈ {1, 2, . . . , n}.
(ii) ⇒ (i) Assume that there exist cyclic subgroups A1, A2 . . . , An with
o(Ai) = p for each i ∈ {1, 2, . . . , n} and G is the internal direct product
of A1, A2, . . . , An.

Suppose that n = 2. Then we know from the proof of (ii) ⇒ (i) of
Lemma 2.5 that (Γ(G))c is Kp+1. Therefore, diam((Γ(G))c) = 1.

Let us next suppose that n ≥ 3. Let H1, H2 be two distinct nontrivial
subgroups of G with H1 ̸= H2. We show that there exists a path of
length at most two between H1 and H2 in (Γ(G))c. We can assume that
H1 and H2 are not adjacent in (Γ(G))c. If H1, H2 are not comparable
under the inclusion relation, then it is clear that H1 ∪ H2 is not a
subgroup of G and therefore, H1 ∪ H2 ̸= G. Let g ∈ G be such that
g /∈ H! ∪ H2. Let K =< g >. Note that o(K) = p and Hi ∩ K =
{e} for each i ∈ {1, 2}. Hence, H1 − K − H2 is a path of length
two between H1 and H2 in (Γ(G))c. Suppose that H1 and H2 are
comparable under the inclusion relation. We can assume without loss
of generality that H1 ⊂ H2. Since H2 ̸= G, it follows that Ai ̸⊆ H2
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for some i ∈ {1, 2, . . . , n}. As o(Ai) = p, it follows that H2 ∩ Ai = {e}
and so, H1 ∩ Ai = {e}. Hence, H1 − Ai − H2 is a path of length two
between H1 and H2 in (Γ(G))c. This shows that (Γ(G))c is connected
and diam((Γ(G))c) ≤ 2. We next verify that e(S) ≥ 2 in (Γ(G))c

for any nontrivial subgroup S of G. Note that o(S) = pi for some i
with 1 ≤ i < n. Observe that there exists a subgroup W of S with
o(W ) = p. If i > 1, then W ̸= S and S and W are not adjacent in
(Γ(G))c and so, d(S,W ) ≥ 2 in (Γ(G))c. Suppose that i = 1. Now,
Ak ̸⊆ S for some k ∈ {1, 2, . . . , n}. Hence, Ak ∩S = {e}. Observe that
SAk is a subgroup of G and it follows from [6, Theorem 2.5.1, p.45]
that o(SAk) = p2. As o(G) = pn with n ≥ 3, it is clear that SAk is
a nontrivial subgroup of G. Since S ∩ SAk ̸= {e}, we get that S and
SAk are not adjacent in (Γ(G))c. Therefore, d(S, SAk) ≥ 2 in (Γ(G))c.
This proves that e(S) ≥ 2 in (Γ(G))c for each nontrivial subgroup S of
G. This proves that diam((Γ(G))c) = r((Γ(G))c) = 2.

The proof of the moreover part is contained in the proof of (ii) ⇒ (i)
of this Proposition. □

Let G be a finite abelian group with o(G) =
∏k

i=1 p
ni
i , where k ≥ 2

and p1, p2, . . . , pk are distinct prime numbers and ni ≥ 1 for each i ∈
{1, 2, . . . , k}. We next proceed to characterize G such that (Γ(G))c is
connected and determine its diameter when it is connected.

Proposition 2.9. Let G be a finite abelian group such that o(G) =∏k
i=1 p

ni
i , where k ≥ 2 and p1, p2, . . . , pk are distinct prime numbers

and ni ≥ 1 for each i ∈ {1, 2, . . . , k}. For each i ∈ {1, 2, . . . , k},
let Pi denote the unique pi-Sylow subgroup of G. Then the following
statements are equivalent:

(i) (Γ(G))c is connected.
(ii) Given i ∈ {1, 2, . . . , k}, either o(Pi) = pi or (Γ(Pi))

c is connected.

Proof. (i) ⇒ (ii) Assume that (Γ(G))c is connected. Since k ≥ 2,
G has at least two nontrivial subgroups. Indeed, Pi is a nontrivial
subgroup of G for each i ∈ {1, 2, . . . , k} and o(Pi) = pni

i for each
i ∈ {1, 2, . . . , k}. It is well-known that G is the internal direct product
of P1, P2, . . . , Pk. As (Γ(G))c is connected, we obtain from (i) ⇒ (ii) of
Proposition 2.1 that NG = G. Let g ∈ G, g ̸= e. It follows from NG =
G that o(g) =

∏
j∈A pj for some nonempty subset A of {1, 2, . . . , k}.

Let i ∈ {1, 2, . . . , k}. Suppose that o(Pi) ̸= pi. Hence, ni ≥ 2. As
any element x of Pi with x ̸= e is of order pi, it follows from [10,
Example 2.5, p.146] that there exist cyclic subgroups Ai1, Ai2, . . . , Aini

of Pi such that o(Aij) = pi for each j ∈ {1, 2, . . . , ni} and Pi is the
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internal direct product of Ai1, Ai2, . . . , Aini
. Now, it follows from (ii) ⇒

(i) of Proposition 2.8 that (Γ(Pi))
c is connected.

(ii) ⇒ (i) It is well-known that G is the internal direct product of
P1, P2, . . . , Pk. Let g ∈ G, g ̸= e. Now, there exist unique ele-
ments x1, x2, . . . xk with xi ∈ Pi for each i ∈ {1, 2, . . . , k} such that
g =

∏k
i=1 xi. As g ̸= e, it follows that xi ̸= e for at least one

i ∈ {1, 2, . . . , k}. Let i ∈ {1, 2, . . . .k} be such that xi ̸= e. By as-
sumption, either o(Pi) = pi or (Γ(Pi))

c is connected. If o(Pi) = pi,
then o(xi) = pi. Suppose that (Γ(Pi))

c is connected. Then it follows
from (i) ⇒ (ii) of Proposition 2.8 that o(xi) = pi. Hence, in any case
o(xi) = pi. Now, it follows from g =

∏k
i=1 xi that g ∈ NG and so,

NG = G. Therefore, we obtain from (ii) ⇒ (i) of Proposition 2.1 that
(Γ(G))c is connected. □

Let G be a finite abelian group and let o(G) be as in the statement
of Proposition 2.9. Suppose that (Γ(G))c is connected. In Proposition
2.11, we determine diam((Γ(G))c). We use Lemma 2.10 in the proof of
Proposition 2.11.

Lemma 2.10. Let G be a finite abelian group such that G has at least
two nontrivial subgroups. Suppose that (Γ(G))c is connected. Then the
following hold:

(i) diam((Γ(G))c) = 2 if and only if G admits a nontrivial subgroup
which is not a minimal subgroup of G and if H1, H2 are distinct maximal
subgroups of G with H1 ∩H2 ̸= {e}, then H1 and H2 are isomorphic.
(ii) diam((Γ(G))c) = 3 if and only if there exist nonisomorphic

maximal subgroups H1, H2 of G such that H1 ∩H2 ̸= {e}.

Proof. Since (Γ(G))c is connected, we know from the proof of (ii) ⇒ (i)
of Proposition 2.1 that diam((Γ(G))c) ≤ 3.
(i) Assume that diam((Γ(G))c) = 2. We know from Lemma 2.3 that
G admits at least one nontrivial subgroup which is not a minimal sub-
group of G. Let H1, H2 be distinct maximal subgroups of G such that
H1 ∩H2 ̸= {e}. Note that H1 and H2 are not adjacent in (Γ(G))c. As
diam((Γ(G))c) = 2, there exists a nontrivial subgroup K of G such that
H1 −K −H2 is a path of length two between H1 and H2 in (Γ(G))c.
Hence, Hi ∩ K = {e} for each i ∈ {1, 2}. Let i ∈ {1, 2}. As Hi is
a maximal subgroup of G, we obtain that HiK = G. Therefore, we
obtain from the second isomorphism theorem of groups [3, Theorem
2.3, p.98] that G

K
= HiK

K
∼= Hi

Hi∩K = Hi for each i ∈ {1, 2}.
Conversely, assume that G admits at least one nontrivial subgroup

which is not a minimal subgroup and any two distinct maximal sub-
groups of G which are not adjacent in (Γ(G))c are isomorphic. As
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there exists at least one nontrivial subgroup of G which is not a mini-
mal subgroup of G, it follows from Lemma 2.3 that diam((Γ(G))c) ≥ 2.
Let W1,W2 be nontrivial subgroups of G. We prove that there exists
a path of length at most two between W1 and W2 in (Γ(G))c. We
can assume that W1 and W2 are not adjacent in (Γ(G))c. That is,
W1∩W2 ̸= {e}. Let Hi be a maximal subgroup of G such that Wi ⊆ Hi

for each i ∈ {1, 2}. Observe that H1 ∩H2 ̸= {e}. It can happen that
H1 = H2. And in the case, H1 ̸= H2, we know from the assumption that
H1 and H2 are isomorphic. Thus in any case, o(H1) = o(H2). Hence,
we obtain that o( G

H1
) = o( G

H2
). Since G

Hi
is an abelian simple group, we

get that G
Hi

is a cyclic group for each i ∈ {1, 2} with o( G
H1

) = o( G
H2

) = p,
where p is a prime number. As (Γ(G))c is connected, we know from
(i) ⇒ (ii) of Proposition 2.1 that NG = G. Let i ∈ {1, 2}. As Hi ̸= G,
there exists a minimal subgroup Mi of G such that Mi ̸⊆ Hi. We
know from Remark 2.4 that o(Mi) is a prime number. Since Hi is a
maximal subgroup of G, we obtain that HiMi = G. It follows from
Hi ∩Mi = {e} and [6, Theorem 2.5.1, p.45] that o(G) = o(Hi)o(Mi).
Therefore, we obtain that o(Mi) = o(G)

o(Hi)
= o( G

Hi
) = p. If M2 ̸⊆ H1,

then it follows from H1 ∩M2 = H2 ∩M2 = {e} that Wi ∩M2 = {e} for
each i ∈ {1, 2} and so, W1 −M2 −W2 is a path of length two between
W1 and W2 in (Γ(G))c. Similarly, if H2 ∩ M1 = {e}, then it follows
that W1 − M1 − W2 is a path of length two between W1 and W2 in
(Γ(G))c. Suppose that M2 ⊆ H1 and M1 ⊆ H2. Note that Mi is a
cyclic group with o(Mi) = p for each i ∈ {1, 2}. Let g1 ∈ M1\M2 and
let g2 ∈ M2\M1. Observe that o(g1g2) = p and let us denote < g1g2 >
by M . It is clear that M is a minimal subgroup of G and M ̸⊆ Hi for
each i ∈ {1, 2}. Therefore, Wi∩M ⊆ Hi∩M = {e} for each i ∈ {1, 2}.
Hence, we obtain that W1 −M −W2 is a path of length two between
W1 and W2 in (Γ(G))c. Therefore, we get that diam((Γ(G))c) = 2.
(ii) Assume that diam((Γ(G))c) = 3. Let W1,W2 be distinct nontrivial
subgroups of G such that d(W1,W2) = 3 in (Γ(G))c. Let i ∈ {1, 2}. Let
Hi be a maximal subgroup of G such that Wi ⊆ Hi. From W1 ∩W2 ̸=
{e}, it follows that H1 ∩ H2 ̸= {e}. If H1

∼= H2 as groups, then
it follows from the proof of the if part of (i) that d(W1,W2) = 2 in
(Γ(G))c. This is in contradiction to the assumption that d(W1,W2) = 3
in (Γ(G))c. Therefore, H1 and H2 are nonisomorphic. This proves that
there exist nonisomorphic maximal subgroups H1, H2 of G such that
H1 ∩H2 ̸= {e}.

Conversely, assume that there exist nonisomorphic maximal sub-
groups H1, H2 of G such that H1 ∩ H2 ̸= {e}. It follows from the
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proof of the only if part of (i) that d(H1, H2) ≥ 3 in (Γ(G))c and so,
diam((Γ(G))c) ≥ 3. Therefore, we obtain that diam((Γ(G))c) = 3. □
Proposition 2.11. Let G be a finite abelian group. Let
o(G) =

∏k
i=1 p

ni
i , where k ≥ 2 and p1, p2, . . . , pk are distinct prime

numbers, and ni ≥ 1 for each i ∈ {1, 2, . . . , k}. Suppose that (Γ(G))c

is connected. Then the following hold.
If k = 2, then diam((Γ(G))c) = 1 if and only if n1 = n2 = 1. If

ni ≥ 2 for some i ∈ {1, 2}, then diam((Γ(G))c) = 3.
If k ≥ 3, then diam((Γ(G))c) = 3.

Proof. Suppose that (Γ(G))c is connected. For each i ∈ {1, 2, . . . , k},
let Pi denote the unique pi-Sylow subgroup of G. We know that G is
the internal direct product of P1, P2, . . . , Pk.

Suppose that k = 2. If n1 = n2 = 1, then P1, P2 are the only
nontrivial subgroups of G and (Γ(G))c is K2 and so, diam((Γ(G))c) = 1.
Suppose that ni ≥ 2 for some i ∈ {1, 2}. Without loss of generality, we
can assume that n1 ≥ 2. Let Wi be a subgroup of Pi with o(Wi) = pni−1

i

for each i ∈ {1, 2}. Let H1 be the internal direct product of W1 and
P2 and H2 be the internal direct product of P1 and W2. Observe that
o(H1) = pn1−1

1 pn2
2 and o(H2) = pn1

1 pn2−1
2 . It is clear that H1 and H2 are

nonisomorphic maximal subgroups of G with H1 ∩ H2 ̸= {e}. Hence,
it follows from Lemma 2.10(ii) that diam((Γ(G))c) = 3.

Suppose that k ≥ 3. Let W1 be the internal direct product of
P1, P2, . . . , Pk−1. Let W2 be the internal direct product of P2, . . . , Pk.
Let U be a subgroup of P1 with o(U) = pn1−1

1 and let W be a subgroup
of Pk with o(W ) = pnk−1

k . Let H1 be the internal direct product of W1

and W and let H2 be the internal direct product of W2 and U . It is
clear that o(H1) = (

∏k−1
i=1 p

ni
i )pnk−1

k , o(H2) = pn1−1
1 (

∏k
j=2 p

nj

j ), H1 and
H2 are nonisomorphic maximal subgroups of G with H1 ∩ H2 ̸= {e}.
Therefore, we obtain from Lemma 2.10(ii) that diam((Γ(G))c) = 3. □
Remark 2.12. Let G be a finite group which admits at least two non-
trivial subgroups. If (Γ(G))c is connected, then e(H) ≤ 2 in (Γ(G))c

for any minimal subgroup H of G.
Proof. Let H be a minimal subgroup of G. Let W be any nontrivial
subgroup of G with W ̸= H. We claim that d(H,W ) ≤ 2 in (Γ(G))c.
We can assume that H and W are not adjacent in (Γ(G))c. Hence,
H ∩ W ̸= {e}. As H is a minimal subgroup of G, it follows that
H ⊂ W . Since (Γ(G))c is connected, we know from (i) ⇒ (ii) of
Proposition 2.1 that NG = G. It follows from W ̸= G that there
exists a minimal subgroup S of G such that S ̸⊆ W . Observe that
H ∩ S = W ∩ S = {e}. Therefore, H − S − W is a path of length
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two between H and W in (Γ(G))c. This proves that d(H,W ) ≤ 2
in (Γ(G))c for any nontrivial subgroup W of G and so, e(H) ≤ 2 in
(Γ(G))c for any minimal subgroup H of G. □

Remark 2.13. Let G be a finite abelian group and let o(G) =
∏k

i=1 p
ni
i ,

where k ≥ 2 and p1, p2, . . . , pk are distinct prime numbers and ni ≥ 1for
each i ∈ {1, 2, . . . , k}. Suppose that (Γ(G))c is connected and in the
case k = 2, either n1 > 1 or n2 > 1. Then r((Γ(G))c) = 2.
Proof. Let H be any minimal subgroup of G. We know from Remark
2.12 that e(H) ≤ 2 in (Γ(G))c.

In the case k ≥ 3, it is clear that if H is a minimal subgroup of G,
then there exists at least one nontrivial subgroup W of G such that
H ⊂ W and so, H and W are not adjacent in (Γ(G))c. In the case
k = 2, we are assuming that either n1 > 1 or n2 > 1. Hence, in this
case also, given a minimal subgroup H of G, there exists a nontrivial
subgroup W of G such that H ⊂ W and so, H and W are not adjacent
in (Γ(G))c. Therefore, d(H,W ) ≥ 2 in (Γ(G))c. It is already shown
that e(H) ≤ 2 in (Γ(G))c for any minimal subgroup H of G. This
proves that e(H) = 2 in (Γ(G))c for any minimal subgroup H of G.
As for a given nontrivial subgroup W of G, there exists a minimal
subgroup H of G such that H ⊆ W , it follows that e(W ) ≥ 2 in
(Γ(G))c. Therefore, we obtain that r((Γ(G))c) = 2. □

Let n ≥ 3. Let Sn denote the symmetric group of degree n. We
know from [6, Lemma 2.10.2, p.78] that any σ ∈ Sn is a product of
transpositions. If τ = (i, j) is any transposition, then o(τ) = 2 in Sn.
Therefore, NSn = Sn and so, we obtain from (ii) ⇒ (i) of Proposi-
tion 2.1 that (Γ(Sn))

c is connected. In Proposition 2.14, we determine
diam((Γ(Sn))

c).

Proposition 2.14. Let n ≥ 3. Then (Γ(Sn))
c is connected and

diam((Γ(S3))
c) = 1, whereas diam((Γ(Sn))

c) = 2 for all n ≥ 4.
Proof. It is already noted above that (Γ(Sn))

c is connected. Observe
that o(S3) = 6 = 2 × 3 and S3 is not abelian. We know from Remark
2.7 that (Γ(S3))

c is a complete graph on four vertices. Therefore, we
obtain that diam((Γ(S3))

c) = 1. Let n ≥ 4. Let σ = (1, 2, 3, 4).
Let H =< σ > and let K =< σ2 >. Observe that o(H) = 4 and
o(K) = 2 and H ∩ K = K is nontrivial. Hence, H and K are not
adjacent in (Γ(Sn))

c. Therefore, diam((Γ(Sn))
c) ≥ 2. We next verify

that diam((Γ(Sn))
c) ≤ 2. Let H1, H2 be any nontrivial subgroups of

Sn with H1 ̸= H2. We claim that there exists a path of length at most
two between H1 and H2 in (Γ(Sn))

c. We can assume that H1 and H2
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are not adjacent in (Γ(Sn))
c. It is well-known that Sn is generated

by the set of 2-cycles {(1, i) : i ∈ {2, 3, . . . , n}}. Since H1 ̸= Sn, it
follows that (1, i) /∈ H1 for some i ∈ {2, 3, . . . , n}. If (1, i) /∈ H2, then
with H =< (1, i) >, we get that Hi ∩ H = {e} for each i ∈ {1, 2}.
Hence, H1 − H − H2 is a path of length two between H1 and H2 in
(Γ(Sn))

c. Suppose that (1, i) ∈ H2. As H2 ̸= Sn, we obtain that
there exists j ∈ {2, 3, . . . , n} such that (1, j) /∈ H2. It is clear that
i ̸= j. If (1, j) /∈ H1, then H1− < (1, j) > −H2 is a path of length
two between H1 and H2 in (Γ(Sn))

c. Suppose that (1, j) ∈ H1. Thus
(1, j) ∈ H1\H2 and (1, i) ∈ H2\H1. Let ρ = (1, i)(1, j). Note that
ρ = (1, j, i) is a cycle of length 3 and let H3 =< (1, j, i) >. It is clear
that H3 = {e, ρ, ρ2} and ρ /∈ H1∪H2. Hence, we get that Hi∩H3 = {e}
for each i ∈ {1, 2}. Therefore, H1 − H3 − H2 is a path of length two
between H1 and H2 in (Γ(Sn))

c. From the above discussion, it is clear
that diam((Γ(Sn))

c) ≤ 2 and so, diam((Γ(Sn))
c) = 2. □

Remark 2.15. Let n ≥ 4. Then r((Γ(Sn))
c) = 2.

Proof. Let n ≥ 4. We know from Proposition 2.14 that (Γ(Sn))
c is

connected and diam((Γ(Sn))
c) = 2. Therefore, e(H) ≤ 2 in (Γ(Sn))

c

for each nontrivial subgroup H of Sn. Hence, to prove this remark, it is
enough to show that e(H) ≥ 2 in (Γ(Sn))

c for any nontrivial subgroup
H of Sn. Let H be any nontrivial subgroup of Sn. If H is not a minimal
subgroup of Sn, then it is clear that e(H) ≥ 2 in (Γ(Sn))

c. Hence, we
can assume that H is a minimal subgroup of Sn. Note that either
H ⊆ An or H ̸⊆ An, where An is the alternating group of degree n.
It is known that o(An) =

o(Sn)
2

[6, Lemma 2.10.3, p.80] Thus, An is a
maximal subgroup of Sn and is a normal subgroup of Sn. If H ⊆ An,
then as An is not a minimal subgroup of Sn, it follows that H ̸= An.
Therefore, it follows from H ∩ An = H ̸= {e} that H and An are not
adjacent in (Γ(Sn))

c. Hence, e(H) ≥ 2 in (Γ(Sn))
c. Suppose that H ̸⊆

An. Then AnH = Sn and H ∩ An = {e}. We know from [6, Theorem
2.5.1, p.45] that o(Sn) = o(An)o(H) and so, o(H) = 2. Let σ ∈ Sn be
such that H = {e, σ}. Note that o(σ) = 2. It follows from [6, Lemma
2.10.1, p.78] that there exist disjoint transpositions τ1, . . . , τk such that
σ =

∏k
i=1 τi. As σ is an odd permutation, k must be odd. Suppose that

k = 1. Let σ = τ1 = (i1, i2). As n ≥ 4, there exist distinct symbols i3, i4
such that i3, i4 ∈ {1, 2, . . . , n}\{i1, i2}. Let K be the subgroup of Sn

generated by {σ, (i1, i3)}. It is clear that (i1, i4) /∈ K and so, K ̸= Sn.
Since (i1, i3) /∈ H, it follows that H ⊂ K. Hence, H and K are not
adjacent in (Γ(Sn))

c and so, e(H) ≥ 2 in (Γ(Sn))
c. Suppose that k

is odd and k ≥ 3. Let τ1 = (i1, i2), τ2 = (i3, i4), . . . , τk = (i2k−1, i2k).
Let K be the subgroup of Sn generated by {σ, (i1, i2)}. It is clear that
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(i1, i3) /∈ K and so, K ̸= Sn. Since (i1, i2) ∈ K\H, it follows that
H ⊂ K. Hence, H and K are not adjacent in (Γ(Sn))

c. Therefore, we
get that e(H) ≥ 2 in (Γ(Sn))

c. This proves that r((Γ(Sn))
c) = 2. □

Remark 2.16. Let n ≥ 4. It is well-known that An is generated by the
set of 3-cycles {(1, 2, i) : i ∈ {3, 4, . . . , n}} [10, Proposition 4.5.1, p.55].
If σ ∈ Sn is any 3-cycle, then o(σ) = 3 and so, < σ >= {e, σ, σ2}.
It follows from the above given arguments that NAn = An and so, we
obtain from (ii) ⇒ (i) of Proposition 2.1 that (Γ(An))

c is connected.
We prove in Proposition 2.17 that diam((Γ(An))

c) = 2.
Proposition 2.17. Let n ≥ 4. Then (Γ(An))

c is connected and
diam((Γ(An))

c) = 2.
Proof. It is noted in Remark 2.16 that (Γ(An))

c is connected. Let
H = {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} and K = {e, (1, 2)(3, 4)}.
It is clear that H,K are subgroups of An and H ∩ K = K is non-
trivial. Hence, H and K are not adjacent in (Γ(An))

c. Therefore,
d(H,K) ≥ 2 in (Γ(An))

c and so, diam((Γ(An))
c) ≥ 2. We next verify

that diam((Γ(An))
c)) ≤ 2. Let H1, H2 be nontrivial subgroups of An

with H1 ̸= H2. We show that there exists a path of length at most
two between H1 and H2 in (Γ(An))

c. We can assume that H1 and
H2 are not adjacent in (Γ(An))

c. Since H1 ̸= An, (1, 2, i) /∈ H1 for
some i ∈ {3, 4, . . . , n}. If (1, 2, i) /∈ H2, then H1− < (1, 2, i) > −H2

is a path of length two between H1 and H2 in (Γ(An))
c. Suppose

that (1, 2, i) ∈ H2. As H2 ̸= An, there exists j ∈ {3, 4, . . . , n} such
that (1, 2, j) /∈ H2. If (1, 2, j) /∈ H1, then H1− < (1, 2, j) > −H2 is
a path of length two between H1 and H2 in (Γ(An))

c. Suppose that
(1, 2, j) ∈ H1. Now, (1, 2, j) ∈ H1\H2 and (1, 2, i) ∈ H2\H1. Let
ρ = (1, 2, i)(1, 2, j). Observe that ρ /∈ H1 ∪H2 and ρ = (1, i)(2, j). Let
H3 =< ρ >. As H3 = {e, ρ}, we obtain that Hi ∩ H3 = {e} for each
i ∈ {1, 2} and so, H1 − H3 − H2 is a path of length two between H1

and H2 in (Γ(An))
c. This proves that diam((Γ(An))

c) ≤ 2 and so, we
obtain that diam((Γ(An))

c) = 2. □
Proposition 2.18. Let n ≥ 4. Then the following hold.

(i) r((Γ(A4))
c) = 1.

(ii) Let n ≥ 5. Let H be a minimal subgroup of An. If o(H) ∈ {2, 3}
or o(H) ≡ 1(mod4), then there exists a nontrivial subgroup W of An

such that H ⊂ W .
Proof. Let n ≥ 4. It is proved in Proposition 2.17 that (Γ(An))

c is
connected and diam((Γ(An))

c) = 2.
(i) We verify that r((Γ(A4))

c) = 1. Let σ = (1, 2, 3) and let H =< σ >.
Observe that o(H) = 3. We claim that e(H) = 1 in (Γ(A4))

c. Let
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K be any nontrivial subgroup of A4 with K ̸= H. We assert that
H ∩ K = {e}. Suppose that H ∩ K ̸= {e}. Then as H is a minimal
subgroup of A4, it follows that H ⊂ K. It follows from Lagrange’s
theorem [6, Theorem 2.4.1, p.41] that o(K) = 3t for some t ∈ N with
t ≥ 2. As o(K) is a divisor of o(A4) = 12 and K ̸= A4, it follows that
o(K) = 6. This is impossible since it is well-known that A4 has no
subgroup of order 6 [10, Example 3.3.6, p.75] Therefore, H ∩K = {e}
and so, H and K are adjacent in (Γ(A4))

c. This proves that e(H) = 1
in (Γ(A4))

c and therefore, r((Γ(A4))
c) = 1.

(ii) Let n ≥ 5. Let H be a minimal subgroup of An. Note that o(H) =
p, where p is a prime number and H =< σ > for any σ ∈ H\{e}. We
discuss two cases.
Case(1): p = 2.

Let σ ∈ H\{e}. As σ ∈ An and o(σ) = 2, it follows
from [6, Lemma 2.10.1, p.78] that there exist disjoint transpositions
(i1, i2), (i3, i4), . . . , (i2k−1, i2k) with k ≥ 2 is even and is such that σ =∏k

s=1(i2s−1, i2s). If k = 2, then σ = (i1, i2)(i3, i4). Observe that
W = {e, σ, (i1, i3)(i2, i4), (i1, i4)(i2, i3)} is a nontrivial subgroup of An

such that o(W ) = 4 and H ⊂ W . As H and W are not adjacent
in (Γ(An))

c, it follows that e(H) ≥ 2 in (Γ(An))
c. Suppose that

k ≥ 4. Let σ1 = (i1, i2)(i3, i4) and let σ2 =
∏k

s=3(i2s−1, i2s). Note
that σ1, σ2 ∈ An, o(σi) = 2 for each i ∈ {1, 2} and σ1σ2 = σ = σ2σ1

and W1 = {e, σ1, σ2, σ} is a nontrivial subgroup of An with o(W1) = 4
and H ⊂ W1. Hence, H and W1 are not adjacent in (Γ(An))

c and so,
e(H) ≥ 2 in (Γ(An))

c.
Case(2): p is odd.

Let σ ∈ H\{e}. Note that σ ∈ An and o(σ) = p. Hence, it follows
from [6, Lemma 2.10.1, p.78] that there exists t ∈ N and disjoint cy-
cles C1, . . . , Ct such that Ci is of length p for each i ∈ {1, . . . , t} and
σ =

∏t
i=1Ci. Suppose that t = 1. Then σ = C1 = (i1, i2, i3, . . . , ip).

Observe that either p = 3 or p ≥ 5. Assume that p = 3. Let i4 ∈
{1, 2, 3, . . . , n}\{i1, i2, i3}. Let W = {e, (i1, i2, i3), (i1, i3, i2), (i1, i2, i4),
(i1, i4, i2), (i1, i3, i4), (i1, i4, i3), (i2, i3, i4), (i2, i4, i3), (i1, i2)(i3, i4), (i1, i3)
(i2, i4), (i1, i4)(i2, i3)}. Note that W is a nontrivial subgroup of An with
o(W ) = 12, W ∼= A4 as groups, and H ∩W = H. Therefore, H and W
are not adjacent in (Γ(An))

c and so, e(H) ≥ 2 in (Γ(An))
c. Suppose

that p ≥ 5. Note that σ = (i1, i2, i3 . . . , ip). Suppose that p ≡ 1(mod4).
Let τ ∈ Sn be given by τ(i1) = i1, τ(ij) = ip−j+2 for each j ∈
{2, 3, . . . , p}. Observe that τ =

∏ p+1
2

j=2(ij, ip−j+2) is the product of p−1
2

disjoint transpositions. As p−1
2

is even, we obtain that τ ∈ An . Observe
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that σp = e, τ 2 = e, σp−1τ = τσ. Let W be the subgroup of An gener-
ated by {σ, τ}. Note that W = {e, σ, σ2, . . . , σp−1, τ, στ, σ2τ, . . . , σp−1τ
= τσ} and W ∼= Dp as groups, where Dp is the dihedral group of degree
p. It is clear that W is a nontrivial subgroup of An and H ⊂ W . Hence,
H ∩ W = H ̸= {e} and so, H and W are not adjacent in (Γ(An))

c.
Therefore, e(H) ≥ 2 in (Γ(An))

c.
Suppose that p is an odd prime number and σ is the product of t

(t ≥ 2) disjoint cycles C1, C2, . . . , Ct such that Ci is of length p for
each i ∈ {1, 2, . . . , t}. Let σ1 = C1 and let σ2 =

∏t
j=2Cj. Note that

σi ∈ An for each i ∈ {1, 2}, o(σ1) = o(σ2) = p, and σ = σ1σ2 = σ2σ1.
Let W be the subgroup of An generated by {σ1, σ2}. Let H1 =< σ1 >
and let H2 =< σ2 >. It is clear that o(H1) = o(H2) = p, H1 ∩ H2 =
{e}, and W = H1H2. It follows from [6, Theorem 2.5.1, p.45] that
o(W ) = o(H1)o(H2) = p2. Observe that H =< σ >⊂ W and so,
H ∩ W = H ̸= {e}. Hence, H and W are not adjacent in (Γ(An))

c.
Therefore, e(H) ≥ 2 in (Γ(An))

c.
Thus for any n ≥ 5, it is shown that if H is any minimal subgroup

of An with o(H) ∈ {2, 3} or o(H) ≡ 1(mod4), then there exists a
nontrivial subgroup W of An such that H ⊂ W and so, e(H) ≥ 2 in
(Γ(An))

c. □

Remark 2.19. Let n ≥ 3. Recall from [3, Theorem 5.2, p.87 and p.88]
that the dihedral group of degree n denoted by Dn is the subgroup of Sn

generated by σ and τ , where σ is the cycle given by σ = (1, 2, 3, . . . , n)
and τ is given by τ(1) = 1, τ(i) = n − i + 2 for each i ∈ {2, 3, . . . , n}.
Note that o(σ) = n, o(τ) = 2, σn−1τ = τσ, o(Dn) = 2n and indeed,
Dn = {e, σ, σ2, . . . , σn−1, τ, στ, σ2τ, . . . , σn−1τ = τσ}. Observe that
D3 = S3 and it is already shown in Proposition 2.14 that (Γ(S3))

c is
connected and diam((Γ(S3))

c) = 1. Hence, in discussing the connected-
ness of (Γ(Dn))

c, we can assume that n ≥ 4. Suppose that n is a prime
number. Then n is odd and o(Dn) = 2n is the product of two distinct
prime numbers. As Dn is not abelian, it follows from Remark 2.7 that
(Γ(Dn))

c is a complete graph on n + 1 vertices. Therefore, in our dis-
cussion regarding the connectedness of (Γ(Dn))

c, we can assume that
n ≥ 4 and n is not a prime number. We prove in Proposition 2.20 that
(Γ(Dn))

c is connected and moreover, we determine diam((Γ(Dn))
c).

Proposition 2.20. Let n ≥ 4 and suppose that n is not a prime
number. Then (Γ(Dn))

c is connected. Moreover, the following hold.
(i) diam((Γ(Dn))

c) = 2 if either n is odd or n = 2m, where m ≥ 3
is odd.

(ii) diam((Γ(Dn))
c) = 3 if n = 2kt, where k ≥ 2 and t ≥ 1 is odd.
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Proof. We know that Dn is the subgroup of Sn generated by σ and
τ , where σ and τ are mentioned as above in Remark 2.19. Note that
o(σ) = n, o(τ) = o(σiτ) = 2 for each i ∈ {1, 2, . . . , n−1}. It is clear that
Dn has at least two nontrivial subgroups and as Dn is generated by στ
and τ , it follows that NDn = Dn. Therefore, we obtain from (ii) ⇒ (i)
of Proposition 2.1 that (Γ(Dn))

c is connected. Moreover, we know from
the proof of (ii) ⇒ (i) of Proposition 2.1 that diam((Γ(Dn))

c) ≤ 3.
Let n ≥ 4 and suppose that n is not a prime number. Then < σ >

is not a minimal subgroup of Dn. Let H be a nontrivial subgroup of
< σ > such that H ⊂< σ >. Observe that H and < σ > are not
adjacent in (Γ(Dn))

c. Hence, d(H,< σ >) ≥ 2 in (Γ(Dn))
c and so, we

obtain that diam((Γ(Dn))
c) ≥ 2. Let H1, H2 be nontrivial subgroups of

Dn with H1 ̸= H2. Suppose that τ /∈ H1 ∪H2. Note that K =< τ > is
a subgroup of Dn with o(K) = 2 and Hi ∩K = {e} for each i ∈ {1, 2}.
Hence, H1 − K − H2 is a path of length two between H1 and H2

in (Γ(Dn))
c. As o(στ) = 2, it follows that if στ /∈ H1 ∪ H2, then

H1− < στ > −H2 is a path of length two between H1 and H2 in
(Γ(Dn))

c. Hence, in finding d(H1, H2) in (Γ(Dn))
c, we can assume that

τ, στ ∈ H1 ∪ H2. Since Dn is generated by στ and τ , both τ and στ
cannot be in Hi for each i ∈ {1, 2}. Without loss of generality, we can
assume that τ ∈ H1\H2 and στ ∈ H2\H1. Since Dn is generated by τ
and τσ and as τ ∈ H1, it follows that τσ /∈ H1.
(i) Suppose that n ≥ 4 and n is odd. We claim that τσ /∈ H2. For, if
τσ ∈ H2, then (στ)(τσ) = σ2 ∈ H2. As n is odd, o(σ) = o(σ2) = n.
This implies that σ ∈ H2 and so, H2 = Dn. This is a contradiction.
Therefore, τσ /∈ H2. It is now clear that H1− < τσ > −H2 is a path
of length two between H1 and H2 in (Γ(Dn))

c. This proves that for
any nontrivial subgroups H1, H2 of Dn with H1 ̸= H2, d(H1, H2) ≤
2 in (Γ(Dn))

c. Therefore, we get that diam((Γ(Dn))
c) ≤ 2 and so,

diam((Γ(Dn))
c) = 2.

Suppose that n = 2m, where m ≥ 3 and m is odd. If τσ /∈ H2,
then H1− < τσ > −H2 is a path of length two between H1 and H2

in (Γ(Dn))
c. Suppose that τσ ∈ H2. Then it follows that (στ)(τσ) =

σ2 ∈ H2. Thus σ2, στ ∈ H2 and so, < σ2, στ >⊆ H2. As σ /∈ H2,
σ2 ∈ H2, and m is odd we obtain that σm /∈ H2. Suppose that σm /∈ H1.
Let K =< σm >. Note that o(K) = 2 and Hi ∩ K = {e} for each
i ∈ {1, 2}. Hence, H1 − K − H2 is a path of length two between H1

and H2 in (Γ(Dn))
c. Suppose that σm ∈ H1. As σ /∈ H1, it follows

that σ2 /∈ H1. Since τ ∈ H1, we obtain that σ2τ /∈ H1. As σ2 ∈ H2

and τ /∈ H2, we obtain that σ2τ /∈ H2. Thus σ2τ /∈ H1 ∪ H2. As
o(< σ2τ >) = 2, we obtain that Hi∩ < σ2τ >= {e} for each i ∈ {1, 2}.
Therefore, H1− < σ2τ > −H2 is a path of length two between H1



COMPLEMENT OF THE INTERSECTION GRAPH OF A FINITE GROUP 123

and H2 in (Γ(Dn))
c. It follows from the above given arguments that

diam((Γ(Dn))
c) ≤ 2 and so, diam((Γ(Dn))

c) = 2.
(ii) Suppose that n = 2kt , where k ≥ 2 and t ≥ 1 is odd. Let
H1 be the subgroup of Dn generated by σ2 and τ and let H2 be the
subgroup of Dn generated by σ2 and στ . Observe that < σ2 > is
a characteristic subgroup of < σ >. Since [Dn :< σ >] = 2, it
follows that < σ > is a normal subgroup of Dn. Therefore, we ob-
tain from [6, Problem 9, p.70] that < σ2 > is a normal subgroup
of Dn. Therefore, H1 =< σ2 >< τ > and H2 =< σ2 >< στ >.
Note that o(< σ2 >) = 2k−1t and o(< τ >) = o(στ >) = 2 and
< σ2 > ∩ < τ >=< σ2 > ∩ < στ >= {e}. Therefore, we obtain
from [6, Theorem 2.5.1, p.45] that o(H1) = o(H2) = (2k−1t)(2) = 2kt.
Hence, H1 and H2 are maximal subgroups of Dn and they are also nor-
mal subgroups of Dn. Since σ2 ∈ H1∩H2, it follows that H1 and H2 are
not adjacent in (Γ(Dn))

c. We claim that there exists no path of length
two between H1 and H2 in (Γ(Dn))

c. Suppose that there exists a path
of length two between H1 and H2 in (Γ(Dn))

c. Let H3 be a nontrivial
subgroup of Dn such that H1 − H3 − H2 is a path of length two in
(Γ(Dn))

c. Then Hi ∩H3 = {e} for each i ∈ {1, 2}. Note that H3 ̸⊆ H1

and H1 is a maximal and a normal subgroup of Dn. Therefore, we ob-
tain that H1H3 = Dn. Hence, o(H1)o(H3) = o(Dn) and so, o(H3) = 2.
Observe that S = {σ2k−1t, τ, στ, σ2τ, . . . , σn−1τ} is the set of all ele-
ments of order 2 in Dn. Hence, H3 =< s > for some s ∈ S. Note that
{σ2k−1t, τ, σ2τ, . . . , σn−2τ} ⊆ H1 and {στ, σ3τ, . . . , σn−1τ} ⊆ H2. This
implies that S ⊆ H1 ∪H2 and so, either H3 ⊆ H1 or H3 ⊆ H2. This is
a contradiction. Therefore, there exists no path of length two between
H1 and H2 in (Γ(Dn))

c. Hence, we obtain that diam((Γ(Dn))
c) ≥ 3

and as diam((Γ(Dn))
c) ≤ 3, it follows that diam((Γ(Dn))

c) = 3. □
Remark 2.21. Let n ≥ 4 be such that n is not a prime number. Then
r((Γ(Dn))

c) = 2.
Proof. It is already noted in Remark 2.19 that (Γ(Dn))

c is connected
and diam((Γ(Dn))

c) is determined in Proposition 2.20. Let σ, τ be as
mentioned in Remark 2.19. Let H be any minimal subgroup of Dn. We
know from Remark 2.12 that e(H) ≤ 2 in (Γ(Dn))

c. We next verify
that e(H) ≥ 2 in (Γ(Dn))

c. We consider the following cases.
Case(1): H ⊆< σ >.

Note that H =< σ
n
p > for some prime number p such that p is

a divisor of n. Observe that o(H) = p. Since H is a characteristic
subgroup of < σ > and < σ > is a normal subgroup of Dn, we obtain
from [6, Problem 9, p.70] that H is a normal subgroup of Dn. Let K

be the subgroup of Dn generated by σ
n
p and τ . Observe that K = H <
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τ >. As o(τ) = 2 and H∩ < τ >= {e}, it follows from [6, Theorem
2.5.1, p.45] that o(K) = 2p < 2n = o(Dn). Hence, K is a nontrivial
subgroup of Dn. Since H ∩K = H ̸= {e}, we get that H and K are
not adjacent in (Γ(Dn))

c. Therefore, d(H,K) ≥ 2 in (Γ(Dn))
c and so,

e(H) ≥ 2 in (Γ(Dn))
c.

Case(2): H ̸⊆< σ >.
In this case H =< σiτ > for some i ∈ {0, 1, . . . , n − 1}. Note that

o(H) = 2. Let p be a prime number such that p is a divisor of n. Let
K be the subgroup of Dn generated by σ

n
p and σiτ . Using the same

arguments as in Case(1), we obtain that o(K) = 2p < 2n = o(Dn).
Hence, K is a nontrivial subgroup of Dn. It is clear that H and K are
not adjacent in (Γ(Dn))

c. Therefore, d(H,K) ≥ 2 in (Γ(Dn))
c. This

proves that e(H) ≥ 2 in (Γ(Dn))
c.

Therefore, e(H) = 2 in (Γ(Dn))
c for any minimal subgroup H of

Dn. It is clear that if K is any nontrivial subgroup of Dn which is
not minimal, then e(K) ≥ 2 in (Γ(Dn))

c. Therefore, we obtain that
r((Γ(Dn))

c) = 2. □

Proposition 2.22. Let G,G be finite groups such that both of them
admit at least two nontrivial subgroups. Let ϕ : G → G be a surjective
homomorphism of groups. If (Γ(G))c is connected, then (Γ(G))c is also
connected. Moreover, if diam((Γ(G))c) ≤ 2, then diam((Γ(G))c) ≤ 2.

Proof. Let e denote the identity element of G and let us denote the
identity element of G by e. Let us denote Kerϕ by N . It is clear
that N ̸= G. If N = {e}, then G ∼= G as groups. Hence, the graphs
(Γ(G))c and (Γ(G))c are isomorphic. Therefore, there is nothing to
prove in this case. So, we can assume that N ̸= {e}. Let y ∈ G,
y ̸= e. Since ϕ is a surjective homomorphism from G onto G, there
exists x ∈ G\{e} such that y = ϕ(x). We are assuming that (Γ(G))c is
connected. Therefore, we obtain from (i) ⇒ (ii) of Proposition 2.1 that
NG = G. Note that there exist k ≥ 1 and elements g1, . . . , gk ∈ G such
that o(gi) is a prime number for each i ∈ {1, . . . , k} and x =

∏k
i=1 gi.

Hence, y = ϕ(x) =
∏k

i=1 ϕ(gi). Since y ̸= e, it follows that ϕ(gi) ̸= e
for at least one i ∈ {1, . . . , k} and for such an i, o(ϕ(gi)) = o(gi) is a
prime number. The above discussion implies that NG = G. Therefore,
we obtain from (ii) ⇒ (i) of Proposition 2.1 that (Γ(G))c is connected.

We next prove the moreover part. Suppose that diam((Γ(G))c) ≤ 2.
We show that diam((Γ(G))c) ≤ 2. Let W1,W2 be nontrivial subgroups
of G with W1 ̸= W2. We now show that there exists a path of length at
most two between W1 and W2 in (Γ(G))c. We can assume that W1 and
W2 are not adjacent in (Γ(G))c. We know from [6, Lemma 2.7.5, p.63]
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that there exist nontrivial subgroups H1, H2 of G with N ⊂ Hi for each
i ∈ {1, 2} and Wi = ϕ(Hi) for each i ∈ {1, 2}. It is clear that H1 ̸= H2

and as H1 ∩ H2 ̸= {e}, we obtain that H1 and H2 are not adjacent
in (Γ(G))c. We are assuming that diam((Γ(G))c) ≤ 2. Hence, there
exists a nontrivial subgroup K of G such that H1−K−H2 is a path of
length two between H1 and H2 in (Γ(G))c. We assert that Wi∩ϕ(K) =
{e}. for each i ∈ {1, 2}. Let i ∈ {1, 2}. Let z ∈ Wi ∩ ϕ(K). Then
z = ϕ(hi) = ϕ(k) for some hi ∈ Hi and k ∈ K. Hence, kh−1

i ∈ N ⊂ Hi

and so, k ∈ Hi ∩ K = {e}. Therefore, z = ϕ(k) = ϕ(e) = e. This
shows that Wi ∩ ϕ(K) = {e} for each i ∈ {1, 2}. From H1 ∩K = {e}
and N ⊂ H1, it follows that ϕ(K) ̸= {e}. Hence, W1 − ϕ(K) −W2 is
a path of length two between W1 and W2 in (Γ(G))c. This proves that
diam((Γ(G))c) ≤ 2. □
Remark 2.23. Let G,G be finite groups such that both G and G admit
at least two nontrivial subgroups. Let ϕ : G → G be a surjective
homomorphism of groups. Suppose that (Γ(G))c is connected. Then
(Γ(G))c is connected. If diam((Γ(G))c) = 3, then diam((Γ(G))c) = 3.

Proof. We know from Proposition 2.22 that (Γ(G))c is connected. If
diam((Γ(G))c) = 3, then it follows from Proposition 2.22 that
diam((Γ(G))c) ≥ 3. We know from the proof of (ii) ⇒ (i) of Proposi-
tion 2.1 that diam((Γ(G))c) ≤ 3 and so, we get that diam((Γ(G))c) =
3. □

3. some more results

Let G be a finite group which admits at least one nontrivial subgroup.
The aim of this section is to determine ω((Γ(G))c) and girth((Γ(G))c).

Proposition 3.1. Let G be a finite group. Then ω((Γ(G))c) =
χ((Γ(G))c) = k, where k is the number of minimal subgroups of G.
Proof. Since G is a finite group with at least one nontrivial subgroup,
G has at least one minimal subgroup and G has only a finite number
of minimal subgroups. Let k be the number of minimal subgroups of
G. Let {W1, . . . ,Wk} be the set of all minimal subgroups of G. Since
Wi ∩ Wj = {e} for all distinct i, j ∈ {1, 2, . . . , k}, it follows that the
subgraph of (Γ(G))c induced on {W1, . . . ,Wk} is a clique on k vertices.
Therefore, we get that ω((Γ(G))c) ≥ k. We next verify that the vertices
of (Γ(G))c can be properly colored using a set of k distinct colors. Let
{c1, . . . , ck} be a set of k distinct colors. Now, color Wi with ci for each
i ∈ {1, . . . , k}. Let H be any nontrivial subgroup of G. It is clear that
H contains a minimal subgroup of G. Let i ∈ {1, . . . , k} be least with
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the property that H ⊇ Wi. Then color H using ci. We claim that the
above assignment of colors is a proper vertex coloring of (Γ(G))c. Let
H1, H2 be nontrivial subgroups of G such that H1 and H2 are adjacent
in (Γ(G))c. Hence, H1∩H2 = {e}. Let i ∈ {1, . . . , k} be least with the
property that H1 ⊇ Wi and let j ∈ {1, . . . , k} be least with the property
that H2 ⊇ Wj. Note that H1 receives color ci and H2 receives color cj.
As H1 ∩ H2 = {e}, it is clear that i ̸= j and so, ci ̸= cj. This shows
that (Γ(G))c can be properly colored using a set of k distinct colors.
Therefore, we obtain that χ((Γ(G))c) ≤ k ≤ ω((Γ(G))c) ≤ χ((Γ(G))c).
This proves that ω((Γ(G))c) = χ((Γ(G))c) = k. □
Proposition 3.2. Let G be a finite group. Then girth((Γ(G))c) = 3 if
and only if G has at least three minimal subgroups.
Proof. Assume that girth((Γ(G))c) = 3. Then there exist nontrivial
subgroups H1, H2, H3 such that H1−H2−H3−H1 is a cycle of length
three in (Γ(G))c. Note that H1 ∩H2 = H2 ∩H3 = H3 ∩H1 = {e}. Let
i ∈ {1, 2, 3}. Let Wi be a minimal subgroup of G such that Wi ⊆ Hi for
each i ∈ {1, 2, 3}. Observe that W1∩W2 = W2∩W3 = W3∩W1 = {e}.
Hence, Wi ̸= Wj for all distinct i, j ∈ {1, 2, 3}. Therefore, G has at
least three minimal subgroups.

Conversely, assume that G has at least three minimal subgroups. We
know from Proposition 3.1 that ω((Γ(G))c) = k, where k is the number
of minimal subgroups of G. As k ≥ 3, it follows that girth((Γ(G))c) =
3. □
Proposition 3.3. Let G be a finite group. Let o(G) =

∏t
i=1 p

ni
i be the

factorization of o(G) into product of prime numbers (here, p1, . . . , pt
are distinct prime numbers and ni ≥ 1 for each i ∈ {1, . . . , t} and in
the case t = 1, n1 > 1). Then ω((Γ(G))c) = t if and only if for each
i ∈ {1, . . . , t}, G has only one subgroup Wi with o(Wi) = pi. Moreover,
if G is abelian, then ω((Γ(G))c) = t if and only if G is cyclic.
Proof. We know from Proposition 3.1 that ω((Γ(G))c) = k, where k is
the number of minimal subgroups of G. Therefore, ω((Γ(G))c) = t if
and only if G has exactly t minimal subgroups. Let i ∈ {1, . . . , t}. Since
pi is a divisor of o(G), we know from Cauchy’s theorem [6, Theorem
2.11.3, p.87] that there exists a subgroup Wi of G with o(Wi) = pi.
It is clear that Wi is a minimal subgroup of G for each i ∈ {1, . . . , t}.
Observe that if W is any minimal subgroup of G, then o(W ) = pi for
some i ∈ {1, . . . , t}. Hence, ω((Γ(G))c) = t if and only if {W1, . . . ,Wt}
is the set of all minimal subgroups of G. Therefore, we obtain that
ω((Γ(G))c) = t if and only if for each i ∈ {1, . . . , t}, there exists only
one subgroup Wi of G with o(Wi) = pi.
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We next verify the moreover part of this Proposition. If G is cyclic,
then for each divisor d of o(G), there exists a unique subgroup H of G
with o(H) = d. Hence, for each i ∈ {1, . . . , t}, Wi is the only subgroup
of G with o(Wi) = pi. Therefore, ω((Γ(G))c) = t. Conversely, assume
that G is abelian and ω((Γ(G))c) = t. For each i ∈ {1, . . . , t}, let Pi

be the unique pi-Sylow subgroup of G. Note that o(Pi) = pni
i for each

i ∈ {1, . . . , t} and G is the internal direct product of P1, . . . , Pt. It is
clear that Wi is the only subgroup of Pi with o(Wi) = pi. We assert
Pi is cyclic for each i ∈ {1, . . . , t}. Suppose that Pi is not cyclic for
some i ∈ {1, . . . , t}. Then ni > 1 and we know from the proof of the
fundamental theorem of finite abelian groups [6, Theorem 2.14.1, p.109]
that there exist s ≥ 2 and cyclic subgroups A1, A2, . . . , As of Pi such
that o(A1) = pni1

i , o(A2) = pni2
i , . . . , o(As) = pnis

i with ni1 ≥ ni2 · · · ≥
nis ≥ 1 and Pi is the internal direct product of A1, A2, . . . , As. We know
from [3, Problem 6, p.154] that the number of minimal subgroups of Pi

equals psi−1

pi−1
= 1+pi+· · ·+ps−1

i ≥ 2, since s ≥ 2. This is impossible as Wi

is the only minimal subgroup of Pi. This proves that Pi is cyclic for each
i ∈ {1, . . . , t}. As (o(Pi), o(Pj)) = 1 for all distinct i, j ∈ {1, . . . , t}, it
follows from [6, Problem 6, p.108] that G is cyclic. □
Remark 3.4. Let G be a finite group such that o(G) is divisible by
at least three distinct prime numbers p1, p2, and p3. We know from
Cauchy’s theorem [6, Theorem 2.11.3, p.87] that for each i ∈ {1, 2, 3},
there exists a subgroup Wi of G such that o(Wi) = pi . It is clear that
Wi is a minimal subgroup of G for each i ∈ {1, 2, 3} and hence, we
obtain from Proposition 3.2 that girth((Γ(G))c) = 3.

Proposition 3.5. Let G be a finite group such that o(G) = p1p2, where
p1 and p2 are distinct prime numbers. Then girth((Γ(G))c) ∈ {3,∞}.

Proof. We can assume without loss of generality that p1 < p2. It
is already noted in Remark 2.7 that (Γ(G))c is either K2 or Kp2+1.
Therefore, we obtain that girth((Γ(G))c) ∈ {3,∞}. □
Lemma 3.6. Let G be a finite group such that o(G) = pn1

1 pn2
2 , where

p1 and p2 are distinct prime numbers and ni > 1 for each i ∈ {1, 2}.
Then girth((Γ(G))c) ≤ 4.

Proof. Let i ∈ {1, 2} . Let k ∈ N be such that k ≤ ni. We know from
[6, Theorem 2.12.1, p.92] that there exists a subgroup H of G such that
o(H) = pki . Let Vi denote the set of all subgroups H of G such that
o(H) = pki for some k ∈ N with k ≤ ni for each i ∈ {1, 2}. It is clear
that each member of Vi is a nontrivial subgroup of G and Vi contains
at least ni elements for each i ∈ {1, 2}. As ni ≥ 2, it follows that Vi
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contains at least two elements for each i ∈ {1, 2}. Since (p1, p2) = 1,
it follows from Lagrange’s theorem that H ∩W = {e} for any H ∈ V1

and W ∈ V2. If there exist H1, H2 ∈ V1 such that H1 ∩ H2 = {e},
then for any W ∈ V2, we obtain that H1 −W −H2 −H1 is a cycle of
length three in (Γ(G))c. Similarly, if there exist W1,W2 ∈ V2 such that
W1∩W2 = {e}, then for any H ∈ V1, we get that W1−H−W2−W1 is
a cycle of length three in (Γ(G))c. Hence, we can assume that no two
distinct members of Vi are adjacent in (Γ(G))c for each i ∈ {1, 2}. Let
H1, H2 ∈ V1 with H1 ̸= H2 and let W1,W2 ∈ V2 with W1 ̸= W2. Note
that H1−W1−H2−W2−H1 is a cycle of length four in (Γ(G))c. This
proves that girth((Γ(G))c) ≤ 4. □
Proposition 3.7. Let G be a finite cyclic group with o(G) = pn1

1 pn2
2 ,

where p1, p2 are distinct prime numbers and ni > 1 for each i ∈ {1, 2}.
Then girth((Γ(G))c) = 4.
Proof. We know from Lemma 3.6 that girth((Γ(G))c) ≤ 4. Since G
is a cyclic group with o(G) = pn1

1 pn2
2 , it follows that G has exactly

two minimal subgroups. Hence, we obtain from Proposition 3.2 that
girth((Γ(G))c) ̸= 3 and therefore, girth((Γ(G))c) = 4. □
Proposition 3.8. Let G be a finite cyclic group with o(G) = pn1p2,
where p1 and p2 are distinct prime numbers and n > 1. Then
girth((Γ(G))c) = ∞.
Proof. Let P1 be the subgroup of G with o(P1) = pn1 and let P2 be the
subgroup of G with o(P2) = p2. Let V1 denote the set of all subgroups
H of P1 with H ̸= {e} and let V2 = {P2}. Since P1 is cyclic, it is
clear that V1 contains exactly n elements. As is noted in the proof
of Lemma 3.6, H ∩ P2 = {e} for any H ∈ V1 and hence, H and P2

are adjacent in (Γ(G))c. Let W1,W2 be any two distinct nontrivial
subgroups of G such that Wi /∈ V1 ∪ V2. Observe that Wi = HiP2 for
some subgroup Hi ∈ V1 such that Hi ̸= P1 for each i ∈ {1, 2}. It
is clear that Wi ∩ H ̸= {e},Wi ∩ P2 ̸= {e},W1 ∩ W2 ̸= {e} for each
i ∈ {1, 2} and for any subgroup H ∈ V1. From the above discussion,
we obtain that V1 ∪ V2 is the set of all nonisolated vertices of (Γ(G))c

and the subgraph of (Γ(G))c induced on V1∪V2 is a star graph. Indeed,
it is K1,n. Therefore, we get that girth((Γ(G))c) = ∞. □
Proposition 3.9. Let G be a finite abelian group with o(G) = pn1

1 pn2
2 ,

where p1 and p2 are distinct prime numbers. Suppose that G is not
cyclic. Then girth((Γ(G))c) = 3.
Proof. We know from Proposition 3.1 that ω((Γ(G))c) = k, where k
is the number of minimal subgroups of G. It is clear that k ≥ 2.



COMPLEMENT OF THE INTERSECTION GRAPH OF A FINITE GROUP 129

Since G is abelian but not cyclic, we obtain from Proposition 3.3 that
ω((Γ(G))c) ≥ 3 and therefore, girth((Γ(G))c) = 3. □

We mention an example in Example 3.10 to illustrate that the hy-
pothesis that the group G is abelian cannot be omitted in Proposition
3.9. For any n ≥ 2, we denote the additive group of integers modulo n
by Zn.

Example 3.10. Let Q8 be the quaternion group of order 8 given in [5,
Exercise 44, p.187]. Let G = Q8 × Z9 be the external direct product
of Q8 and Z9. Observe that o(G) = 2332. Note that {1,−1}× {0} and
{1}× {0, 3, 6} are the only minimal subgroups of G. Hence, we obtain
from Proposition 3.2 that girth((Γ(G)))c) ̸= 3. We know from Lemma
3.6 that girth((Γ(G))c) ≤ 4 and therefore, girth((Γ(G))c) = 4.

Remark 3.11. Let G be a finite group with o(G) = pn, where p is a
prime number and n ≥ 2. If G is cyclic, then G has only one minimal
subgroup and so, girth((Γ(G))c) = ∞. If G is abelian but not cyclic,
then it is already noted in the proof of Proposition 3.3 that G has at
least three minimal subgroups and so, we obtain from Proposition 3.2
that girth((Γ(G))c) = 3.
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متناهی گروه یک زیرگرو های اشتراکی گراف مکمل درباره نتایجی

وادهل٢ پراوین و ویسوزواران١ سابرامانیان

هندوستان راجکوت، ساوراشترا، دانشگاه ریاضی، گروه ١,٢

غیربدیهی می باشند زیرگروه یک حداقل دارای که می گیریم نظر در را G مانند گروه هایی مقاله این در
کنیم فرض .(H /∈ {G, e} هرگاه می شود نامیده غیربدیهی G گروه از H زیرگروه که می کنیم (یادآوری
می شود، داده نمایش Γ(G) نماد با که ،G زیرگروه های اشتراکی گراف صورت این در باشد. گروه یک G
و بوده G غیربدیهی زیرگروه های تمام مجموعه ی آن راسی مجموعه ی که می باشد جهت بدون گراف یک
.H ∩K ̸= {e} اگر تنها و اگر می باشند مجاور گراف این در یال یک توسط K و H متمایز رئوس
و G گروهی خواص بین ارتباط بررسی مقاله این اصلی هدف باشد. متناهی گروه یک G کنیم فرض

می باشد. Γ(G) گراف مکمل گرافی خواص

همبند، گراف متناهی، آبلی گروه متناهی، گروه یک زیرگروه های اشتراکی گراف مکمل کلیدی: کلمات
گراف. کمر
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