Journal of Algebraic Systems Vol. 7, No. 2, (2020), pp 131-141

THE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS $K_w \bigtriangledown C$ WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA

A. Z. ABDIAN*, G. H. FATH-TABAR, AND M. R. MOGHADDAM

ABSTRACT. The main aim of this study is to characterize new classes of multicone graphs which are determined by their signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let C and K_w denote the Clebsch graph and a complete graph on w vertices, respectively. In this paper, we show that the multicone graphs $K_w \bigtriangledown C$ are determined by their signless Laplacian spectrum.

1. INTRODUCTION

In the past decades, graphs that are determined by their spectrum have received much more and more attention, since they have been applied to several fields, such as randomized algorithms, combinatorial optimization problems and machine learning. An important part of spectral graph theory is devoted to determining whether given graphs or classes of graphs are determined by their spectra or not. So, finding and introducing any class of graphs which are determined by their spectra can be an interesting and important problem. Let G = (V, E) be a simple graph with vertex set $V = V(G) = \{v_1, \ldots, v_n\}$ and edge set $E = E(G) = \{e_1, \ldots, e_m\}$. Denote by d(v) the degree of vertex v. All graphs considered here are simple and undirected. All notions on graphs that are not defined here can be found in [10, 11, 14, 23, 28, 32]. A graph consisting of k disjoint copies of an

Received: 16 June 2017, Accepted: 26 December 2018.

MSC(2010): 05C50.

Keywords: Clebsch graph; DS graph; signless Laplacian spectra; multicone graph.

^{*}Corresponding author.

arbitrary graph Γ will be denoted by $k\Gamma$. The join of two graphs Gand H is a graph formed from disjoint copies of G and H by connecting each vertex of G to each vertex of H. We denote the join of two graphs G and H by $G \bigtriangledown H$. The complement of a graph G is denoted by \overline{G} . Let A(G) be the (0, 1)-adjacency matrix of graph G. The matrices L(G) = D(G) - A(G) and Q(G) = SL(G) = D(G) + A(G) are called the Laplacian matrix and the signless Laplacian matrix of G, respectively, where D(G) denotes the degree matrix. Note that D(G)is diagonal. Let $q_1 \ge q_2 \ge \cdots \ge q_n$ be the distinct eigenvalues of G with multiplicities m_1, m_2, \cdots, m_n , respectively. The multi-set $\operatorname{Spec}_Q(G) = \{[q_1]^{m_1}, q_2]^{m_2}, \cdots, [q_n]^{m_n}\}$ of eigenvalues of Q(G) is called the signless Laplacian spectrum of G. We say two graphs G and H are Q-cospectral if $\operatorname{Spec}_Q(G) = \operatorname{Spec}_Q(H)$. Up to now, only some graphs

with special structures are shown to be *determined by their spectra* (DS, for short) (see [1-9, 12, 15-17, 20, 23, 25-27, 30, 31] and the references cited in them). Van Dam and Haemers [29] conjectured that almost all graphs are determined by their spectra. Nevertheless, the set of graphs that are known to be detrmined by their spectra is too small. So, discovering infinite classes of graphs that are determined by their spectra can be an interesting problem. About the background of the question "Which graphs are determined by their spectrum?", we refer to [29]. In [23, 24] the authors characterized new classes of multicone graphs which are determined by their signless Laplacian spectra. Abdian and Mirafzal [7] characterized new classes of multicone graphs which were DS with respect to their spectra. Abdian [1] characterized new classes of multicone graphs with respect to their adjacency spectra as well as their Laplacian spectra. Abdian also proposed four conjectures about adjacency spectrum of complement and signless Laplacian spectrum of these multicone graphs. In [2], the author shown that multicone graphs $K_w \bigtriangledown P_{17}$ and $K_w \bigtriangledown S$ are determined by their adjacency and their Laplacian spectra, where P_{17} and S denote the Paley graph of order 17 and the Schläfli graph, respectively. Also, this author conjectured that these multicone graphs are determined by their signless Laplacian spectra. In [3], the author proved that multicone graphs $K_w \bigtriangledown L(P)$ are determined by both their adjacency and Laplacian spectra, where L(P) denotes the line graph of the Petersen graph. He also proposed three conjectures about the signless Laplacian spectrum and the complement spectrum of these multicone graphs. Abdian [?] characterized multicone graphs $K_w \bigtriangledown P$ with respect to adjacency spectra, Laplacian spectra and signless Laplacian spectra, where P denotes the Petersen graph. The authors [25] characterized another new classes of multicone graphs which are determined by their adjacency and Laplacian spectra as well as their complement with respect to adjacency spectra. For seeing some multicone graphs which have been characterized so far refer to [4,6,9,25–27]. In the papers [1–4,6,7,9,25,26] graphs have not been characterized with respect to their signless Laplacian spectra. In this work, we present some techniques for characterizing these graphs with respect to the signless Laplacian spectra and we show that the multicone graphs $K_w \bigtriangledown C$ are determined by their signless Laplacian spectrum.

2. Some definitions and preliminaries

Some useful established results about the spectrum are presented in this section, will play an important role throughout the paper.

Lemma 2.1 ([12]). Let G be a graph with n vertices, m edges, t triangles and vertex degrees d_1, d_2, \dots, d_n . Let $T_k = \sum_{i=1}^n (q_i(G))^k$, then $T_0 = n, T_1 = \sum_{i=1}^n d_i = 2m, T_2 = 2m + \sum_{i=1}^n d_i^2$ and $T_3 = 6t + 3\sum_{i=1}^n d_i^2 + \sum_{i=1}^n d_i^3$.

Lemma 2.2 ([15]). In any graph the multiplicity of the eigenvalue 0 of the signless Laplacian is equal to the number of bipartite components.

Lemma 2.3 ([23]). Let G be an r-regular graph on n vertices and G is determined by its signless Laplacian spectrum. Let H be a graph Qcospectral with $G \bigtriangledown K_m$. If $d_1(H) = d_2(H) = \cdots = d_m(H) = n+m-1$, then $H \cong K_m \bigtriangledown G$.

Lemma 2.4 ([12,23]). Let G be a connected graph of order n(n > 1), and the minimum degree of G is δ . Then $q_n < \delta$.

Lemma 2.5 ([23]). For i = 1, 2, let G_i be an r_i -regular graph on n_i vertices. Then

$$P_{Q(G_1 \bigtriangledown G_2)}(x) = \frac{P_{Q(G_1)}(x - n_2)P_{Q(G_2)}(x - n_1)}{(x - 2r_1 - n_2)(x - 2r_2 - n_1)}f(x),$$

where $f(x) = x^2 - (2(r_1 + r_2) + (n_1 + n_2))x + 2(2r_1r_2 + r_1n_1 + r_2n_2).$

Lemma 2.6 ([12]). Let G be a graph on n vertices with vertex degrees d_1, d_2, \dots, d_n . Then $\min \{d_i + d_j\} \leq q_1 \leq \max \{d_i + d_j\}$, where (i, j) runs over all pairs of adjacent vertices of G.

Lemma 2.7 ([21]). Let G be a graph of order n > 2 and $q_1(G) \ge q_2(G) \ge ... \ge q_n(G)$. Then $q_2(G) \le n-2$. Moreover, $q_{k+1}(G) = n-2$ $(1 \le k < n)$ if and only if \overline{G} has either k balanced bipartite components or k+1 bipartite components.

Lemma 2.8 ([12]). Let G be a graph with maximum degree d_1 and second maximum degree d_2 . Then $q_2(G) \ge d_2 - 1$. If $q_2(G) = d_2 - 1$, then $d_1 = d_2$.

Remark 2.9. For further information about the Clebsch graph, one can refer to [13, 19]. Also, $\operatorname{Spec}_A(C) = \{ [10]^1, [2]^5, [-2]^{10} \}.$

3. MAIN RESULTS

In the following we always suppose that $\Delta = d_1 \ge d_2 \ge \cdots \ge d_n = \delta$ and $q_1 \ge q_2 \ge \cdots \ge q_n$.

Proposition 3.1. The signless Laplacian spectrum of the multicone graph $K_1 \bigtriangledown C$ is:

$$\left\{ \left[\frac{37 \pm \sqrt{89}}{2} \right]^1, \, [13]^5, \, [9]^{10} \right\}.$$

Proof By Lemma 2.5 the result follows (see also Theorem 3.1 of [12]). \Box

Theorem 3.2. The multicone graph $K_1 \bigtriangledown C$ is DS with respect to its signless Laplacian spectra.

Proof First, it is easy and straightforward to see that there is no disconnected graph Q-cospectral with the multicone graph $K_1 \bigtriangledown C$. Otherwise, let $\operatorname{Spec}_Q(G) = \operatorname{Spec}_Q(K_1 \bigtriangledown C)$ and $G = H_1 \cup H_2$, where H_i (i = 1, 2) are the subgraph of G. It is easy to check that any of H_i must have three signless Laplacian eigenvalues. It is well-known that a graph has one or two signless Laplacian eigenvalue(s) if and only if it is either isomorphic to a disjoint union of isolated vertices or a disjoint union of complete graphs on the same vertices, respectively. But, by the spectrum of G and $\operatorname{Spec}_Q(K_w) = \{[2w-2]^1, [w-2]^{w-1}\}$ this case (having three distinct signless Laplacian eigenvalues for any of subgraphs H_1 and H_2) cannot happen. So, any graph Q-cospectral with the multicone graph $K_1 \bigtriangledown C$, the cone of the C graph, is connected. By Lemma 2.6 it is clear that $2d_1 \ge q_1 \approx 23.21$. So, $d_1 = \Delta \ge 12$. Also, it follows from Lemma 2.4 that $\delta > q_{17} = 9$. This means that $\delta \ge 10$. By Lemma 2.8 $d_2 \le \frac{37 - \sqrt{89}}{2} + 1 \approx 14.78$. Hence we can conclude that

 $\delta = d_{17} \le 10 \le d_2 \le 14.$

We consider the following cases:

Case 1. $d_2 = 10$.

So, $d_2 = d_3 = \cdots = d_{17} = \delta = 10$. Therefore, by Lemma 2.1 $d_1 + 160 = 192$. So, $d_1 = 30$, a contradiction, since $10 \le d_1 \le \Delta = 16$.

Case 2. $d_2 = 11$.

Let we have a vertices of degree 10 and 16 - a vertices of degree 11 between d_i for $2 \leq i \leq 17$. Therefore, $d_1 + 10a + (16 - a)11 = 192$. This implies that $d_1 - a = 16$ and so $a + 16 = d_1$. But $16 \geq d_1 \geq 10$ and so $a + 16 = d_1 \in \{10, 11, \ldots, 16\}$. It is clear that a can only be 0. This means that we have 16 vertices of degree 11 and so $d_1 = 16$. In this case, it follows from Lemma 2.3 that $G \cong K_1 \bigtriangledown C$.

Case 3. $d_2 = 12$.

Let we have a vertices of degree 10, b vertices of degree 11 and $c \ge 1$ vertices of degree 12 between d_i for $2 \le i \le 17$. So, by Lemma 2.1 we get:

 $\begin{cases} a+b+c = 16, \\ 4a+5b+6c+d_1 = 192, \\ 16a+25b+36c+d_1^2 = 2192. \end{cases}$

By a simple calculating we get $a = \frac{-d_1^2 + 23d_1}{2} - 56$, $b = 112 + d_1^2 - 22d_1$ and $c = \frac{21d_1 - d_1^2}{2} - 40$. It is clear that $d_1 \in \{12, 13, 14, 15, 16\}$, $0 \le a, b, c \le 16$ and $0 \le a + b + c = 16$. Now, by replacing d_1 in a, b or c we will have a contradiction.

Case 4. $d_2 = 13$.

Let we have a vertices of degree 10, b vertices of degree 11, c vertices of degree 12 and $d \ge 1$ vertices of degree 13 between d_i for $2 \le i \le 17$.

$$a + b + c + d = 16,$$

$$10a + 11b + 12c + 13d + d_1 = 192,$$

$$100a + 121b + 144c + 169d + d_1^2 = 2192.$$

By a simple calculating we get $a = \frac{-d_1^2 + 23d_1}{2} - 56 - d$, $b = 112 + d_1^2 - 22d_1 + 3d$ and $c = \frac{21d_1 - d_1^2}{2} - 40 - 3d$. In a similar manner of case 4 we have a contradiction.

Case 5. $d_2 = 14$.

Let we have a vertices of degree 10, b vertices of degree 11, c vertices of degree 12, d vertices of degree 13 and $e \ge 1$ vertices of degree 14 between d_i for $2 \le i \le 17$.

$$a + b + c + d + e = 16,$$

$$10a + 11b + 12c + 13d + 14e + d_1 = 192,$$

$$100a + 121b + 144c + 169d + 196e + d_1^2 = 2192.$$

By a simple calculating we get $a = \frac{-d_1^2 + 23d_1}{2} - 56 - d - 3e$, $b = 112 + d_1^2 - 22d_1 + 8e + 3d$ and $c = \frac{21d_1 - d_1^2}{2} - 40 - 3d - 6e$. In a similar manner of case 3 or 4 we receive to a contradiction.

Proposition 3.3. The signless Laplacian spectrum of the multicone graph $K_2 \bigtriangledown C$ is:

$$\{[26]^1, [14]^6, [10]^{10}, [16]^1\}.$$

Proof By Lemma 2.5 the result follows (see also Corollary 3.1 of [24]). \Box

Theorem 3.4. The multicone graph $K_2 \bigtriangledown C$ is DS with respect to its signless Laplacian spectra.

Proof Let G be Q-cospectral with a multicone graph $K_2 \bigtriangledown C$. By Lemma 2.6 we can conclude that $q_1(G) = 26$. So, $2d_1 \ge 26$. This means that $d_1 \ge 13$. On the other hand, it follows from Lemma 2.4 $\delta > q_{18} = \delta \ge 11$ (it is straightforward to see that any graph Qcospectral with the multicone graph $K_2 \bigtriangledown C$ is connected). By Lemma 2.7 of [18] $d_3 \le 14 + \sqrt{2} \approx 15.2$ and so $11 \le \delta \le d_3 \le 15$. Now, we consider the following cases: Case 1. $d_3 = 11$.

Take $d_1 + d_2 = x$ and $d_1^2 + d_2^2 = y$ and note that $d_1 \ge 13$ and so $24 \le x \le 34$.

In this case $d_3 = d_4 = d_5 = \cdots = d_{18} = \delta = 11$. Therefore, x + 176 = 226 and so x = 50, a contradiction.

Case 2. $d_3 = 12$.

Assume that there are a vertices of degree 11 and 16 - a vertices of degree 12 between d_i for $3 \le i \le 18$. So, x + 11a + (16 - a)12 = 226 and so x = a + 34. So, we must have $24 \le x = a + 34 \le 34$ or $-10 \le a \le 0$. It is clear that a can be only 0. This means that G has 12 vertices of degree 16 and $x = d_1 + d_2 = 34$. Therefore, $d_1 = d_2 = 17$ and by Lemma 2.3 the result follows.

Case 3. $d_3 = 13$.

Assume that there are a vertices of degree 11, b vertices of degree 12 and $c \ge 1$ vertices of degree 13 between d_i for $3 \le i \le 18$. So

$$\begin{cases} a+b+c = 16, \\ 11a+12b+13c = 226 - x, \\ 121a+144b+169c = 2882 - y \end{cases}$$

One can easily check that $a = -102 + \frac{23x - y}{2}$, b = 170 - 22x + yand $c = -52 + \frac{21x - y}{2}$. So, the summation of the x and y must be even. To put that another way,

$$\begin{cases} x = 26(d_1 = d_2 = 13), \\ y = 338. \end{cases}, \begin{cases} x = 30(d_1 = d_2 = 15), \\ y = 450. \end{cases}, \\ x = 34(d_1 = d_2 = 17), \\ y = 578. \end{cases}, \begin{cases} x = 28(d_1 = d_2 = 14), \\ y = 392. \end{cases}, \\ x = 32(d_1 = d_2 = 16), \\ y = 512. \end{cases}, \begin{cases} x = 28(d_1 = 15, d_2 = 13), \\ y = 394. \end{cases}, \\ x = 30(d_1 = 17, d_2 = 13), \\ y = 458. \end{cases}, \begin{cases} x = 32(d_1 = 17, d_2 = 15), \\ y = 514. \end{cases}, \end{cases}$$

$$\begin{cases} x = 30(d_1 = 16, d_2 = 14), \\ y = 452. \end{cases}$$

It is clear that $0 \le a, b, c = 16$. Now, by replacing any of the above cases we will have a contradiction.

Case 4. $d_3 = 14$.

Suppose that there are a vertices of degree 11, b vertices of degree 12, c vertices of degree 13 and $d \ge 1$ vertices of degree 14 between d_i for $4 \le i \le 11$. So

$$a + b + c + d = 16,$$

$$11a + 12b + 13c + 14d = 226 - x,$$

$$121a + 144b + 169c + 196d = 2882 - y.$$

It is easy to see that $a = -102 - 3d + \frac{23x - y}{2}$, b = 170 + 8d - 22x + yand $c = -52 - 6d + \frac{21x - y}{2}$. So, the summation of the x and y must be even, since a is a non-negative integer number. So,

$$\begin{cases} x = 30(d_1 = d_2 = 15), \\ y = 450. \end{cases}, \begin{cases} x = 34(d_1 = d_2 = 17), \\ y = 578. \end{cases}, \\ y = 578. \end{cases}, \\ x = 28(d_1 = d_2 = 14), \\ y = 392. \end{cases}, \begin{cases} x = 32(d_1 = d_2 = 16), \\ y = 512. \end{cases}, \\ x = 32(d_1 = 17, d_2 = 15), \\ y = 514. \end{cases}, \begin{cases} x = 30(d_1 = 16, d_2 = 14), \\ y = 452. \end{cases}$$

It is clear that $0 \le a, b, c, d = 16$ and $d \ge 1$. Now, by replacing any of the above cases we will have a contradiction.

Case 5. $d_3 = 15$.

Let there are *a* vertices of degree 11, *b* vertices of degree 12, *c* vertices of degree 13, *d* vertices of degree 14 and $e \ge 1$ vertices of degree 15 between d_i for $3 \le i \le 18$. So,

$$a + b + c + d + e = 16,$$

$$11a + 12b + 13c + 14d + 15e = 226 - x,$$

$$121a + 144b + 169c + 196d + 225e = 2882 - y.$$

we get $a = -102 - 3d - 6e + \frac{23x - y}{2}$, b = 170 + 8d + 15e - 22x + yand $c = -52 - 6d - 10e + \frac{21x - y}{2}$. Put simply,

$$\begin{cases} x = 30(d_1 = d_2 = 15), \\ y = 450. \end{cases}, \begin{cases} x = 34(d_1 = d_2 = 17), \\ y = 578. \end{cases}, \\ x = 32(d_1 = d_2 = 16), \\ y = 512. \end{cases}, \begin{cases} x = 32(d_1 = 17, d_2 = 15), \\ y = 514. \end{cases}$$

In a similar manner of Case 3 or 4 we will have a contradiction. \Box

Now, we show that multicone graphs $K_w \bigtriangledown C$ are DS with respect to their signless Laplacian spectra. For proving this fact we need one lemma.

Lemma 3.5. Let G be a graph of order n. If n - 2 is one of the signless Laplacian eigenvalues of G with the multiplicity of at least 2 and $q_1(G) > n - 2$, then G is the join of two graphs.

Proof By Lemma 2.7 \overline{G} has either at least 2 balanced bipartite components or at least 3 bipartite components. In other words, \overline{G} is disconnected. Thus G is connected and it is the join of two graphs. \Box

Remark 3.6. Note that in Lemma 3.5 the condition $q_1(G) > n-2$ is critical. For instance, consider the graph which is the disjoint union of two triangles. It is easy to see that the signless Laplacian spectrum of this graph is $\{[4]^2, [1]^4\}$, whereas this graph is not the join of any two graphs.

Theorem 3.7. Multicone graphs $K_w \bigtriangledown C$ are DS with respect to their signless Laplacian spectra.

Proof We solve the theorem by the mathematical induction on w. For w = 1, 2 this theorem was proved (see Theorems 3.2 and 3.4). Let the theorem be true for w; that is, if $\operatorname{Spec}_Q(H) = \operatorname{Spec}_Q(K_w \bigtriangledown C)$, then $H \cong K_w \bigtriangledown C$, where H is an arbitrary graph Q-spectral with a multicone graph $K_w \bigtriangledown C$ (the inductive hypothesis). We show that it follows from $\operatorname{Spec}_Q(G) = \operatorname{Spec}_Q(K_{w+1} \bigtriangledown C)$ that $G \cong K_{w+1} \bigtriangledown C$. It is clear that G has one vertex and 16 + w edges more than H and $\operatorname{Spec}_Q(G) = \operatorname{Spec}_Q(K_1 \bigtriangledown H)$ (by the inductive hypothesis $H \cong K_w \bigtriangledown C$). On the other hand, by Lemma 3.5 G and H are the join of two graphs. So, we must have $G \cong K_1 \bigtriangledown H$. Now, the inductive hypothesis follows the result. \Box

Acknowledgement

This work was supported by the university of Kashan under grant no. 785158/17.

References

- A. Z. Abdian, Graphs which are determined by their spectrum, Konuralp J. Math., 4 (2016), 34–41.
- A. Z. Abdian, Two classes of multicone graphs determined by their spectra, J. Math. Ext., 10 (2016), 111–121.
- 3. A. Z. Abdian, Graphs cospectral with multicone graphs $K_w \bigtriangledown L(P)$, TWMS. J. Appl. Eng. Math., 7 (2017), 181–187.
- 4. A. Z. Abdian, The spectral determinations of the multicone graphs $K_w \bigtriangledown mC_n$, arXiv preprint arXiv:1703.08728.
- A. Z. Abdian, A. Behmaram and G. H. Fath-Tabar, Graphs determined by signless Laplacian spectra, AKCE Int. J. Graphs Combin., http://dx.doi.org/10.1016/j.akcej.2018.06.009.
- 6. A. Z. Abdian, L. W. Beineke, M. R. Oboudi, A. Behmaram, K. Thulasiraman, S. Alikhani and K. Zhao, On the spectral determinations of the connected multicone graphs $K_r \bigtriangledown sK_t$, AKCE Int. J. Graphs Combin., 10.1016/j.akcej.2018.11.002.
- A. Z. Abdian, and S. M. Mirafzal, On new classes of multicone graph determined by their spectrums, *Alg. Struc. Appl.*, 2 (2015), 23–34.
- 8. A. Z. Abdian and S. M. Mirafzal, The spectral characterizations of the connected multicone graphs $K_w \bigtriangledown LHS$ and $K_w \bigtriangledown LGQ(3,9)$, Discrete Math. Algorithms Appl., **10**(2) (2018), Article ID: 1850019, 16 pp.
- 9. A. Z. Abdian and S. M. Mirafzal, The spectral determinations of the connected multicone graphs $K_w \bigtriangledown mP_{17}$ and $K_w \bigtriangledown mS$, Czech. Math. J., (2018), 1–14, DOI 10.21136/CMJ.2018.0098-17.
- 10. R. B. Bapat, Graphs and Matrices, Springer-Verlag, New York, 2010.
- N. L. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1933.
- C. Bu, and J. Zhou, Signless Laplacian spectral characterization of the cones over some regular graphs, *Linear Algebra Appl.*, 436(9) (2012), 3634–3641.
- P. J. Cameron, Strongly regular graphs, Topics in Algebraic Graph Theory, 102 (2004), 203–221.
- D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra, London Mathematical Society Student Texts, 75, Cambridge University Press, Cambridge, 2010.
- D. Cvetković, P. Rowlinson and S. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl., 423(1) (2007), 155–171.
- D. Cvetkovi ć and S. Simić, Towards a spectral theory of graphs based on the signless Laplacian, II, *Linear Algebra Appl.*, 432(99) (2010), 2257–2272.
- K. C. Das, On conjectures involving second largest signless Laplacian eigenvalue of graphs, *Linear Algebra Appl.*, 432(11) (2010), 3018–3029.
- K. C. Das, and M. Liu, Complete split graph determined by its (signless) Laplacian spectrum, *Discrete Appl. Math.*, **205** (2016), 45–51.

- 19. C. Godsil, and G. Royle, *Strongly Regular Graphs. In: Algebraic Graph Theory*, Graduate Texts in Mathematics, vol 207. Springer, New York, NY, 2001.
- W. H. Haemers, X. G. Liu and Y. P. Zhang, Spectral characterizations of lollipop graphs, *Linear Algebra Appl.*, 428 (2008), 2415–2423.
- S. Huang, J. Zhou, and C. Bu, Signless Laplacian spectral characterization of graphs with isolated vertices, *Filomat*, **30**(14) (2017), 3689–3696.
- HS. H. Günthard and H. Primas, Zusammenhang von Graph theory und Mo-Theorie von Molekeln mit Systemen konjugierter Bindungen, *Helv. Chim. Acta*, 39(6) (1925), 1645–1653.
- X. Liu and L. Pengli, Signless Laplacian spectral characterization of some joins, Electron. J. Linear Algebra, 30 (2015), 443–454.
- X. Lizhen, and C. He, On the signless Laplacian spectral determination of the join of regular graphs, *Discrete Math. Algorithms Appl.*, 6(4) (2014), Article ID: 1450050, 8 pp.
- S. M. Mirafzal and A. Z. Abdian, Spectral characterization of new classes of multicone graphs, *Stud. Univ. Babe's-Bolyai Math.*, 62(3) (2017), 275–286.
- S. M. Mirafzal and A. Z. Abdian, The spectral determinations of some classes of multicone graphs, J. Discrete Math. Sci. Crypt., 21(1) (2018), 179–189.
- R. Sharafdini and A. Z. Abdian, The spectral determinations of some classes of multicone graphs, *Carpathian Math. Publ.*, 10(1) (2018), 185–196.
- 28. K. Thulasiraman, S. Arumugam, A. Brandstädt and T. Nishizeki, Handbook of Graph Theory, Combinatorial Optimization and Algorithms, CRC Press, 2016.
- 29. E. R. Van Dam and W. H. Haemers, Which graphs are determined by their spectrum?, *Linear Algebra. Appl.*, **373** (2003), 241–272.
- W. Yi, F. Yizheng and T. Yingying, On graphs with three distinct Laplacian eigenvalues, Appl. Math., A Journal of Chinese Universities, 22(4) (2007), 478– 484.
- J. Wang, H. Zhao and Q. Huang, Spectral charactrization of multicone graphs, *Czech. Math. J.*, 62(1) (2012), 117–126.
- D. B. West, Introduction to Graph Theory, Upper Saddle River: Prentice hall, 2001.

Ali Zeydi Abdian

Department of Mathematical Sciences, Lorestan University, Lorestan, Khoramabad, Iran.

Email: aabdian67@gmail.com; azeydiabdi@gmail.com; abdian.al@fs.lu.ac.ir.

Gholam Hossein Fath-Tabar

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-53153, Iran. Email: fathtabar@kashanu.ac.ir

Maryam Rahmani Moghaddam

Department of Mathematics, Bu-Ali Sina University, Hamadan, Iran. Email: maryam.rahmanimoghadam@gmail.com Journal of Algebraic Systems

THE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS $K_w \bigtriangledown C$ WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA

A. Z. ABDIAN, G. H. FATH-TABAR AND M. R. MOGHADDAM

مشخصهسازی گرافهای چندمخروطی $K_w \bigtriangledown V$ نسبت به طیف لاپلاسین بدون علامت آنها

علی زیدی عبدیان^۱، غلامحسین فتحتبار^۲ و مریم رحمانیمقدم^۳ ^۱گروه ریاضی، دانشگاه لرستان، لرستان، ایران ۲دانشکده ریاضی، دانشگاه کاشان، کاشان، ایران ۳گروه ریاضی، دانشگاه بوعلیسینا، همدان، ایران

هدف این مقاله مشخصهسازی گرافهای چندمخروطی است که به وسیله طیف لاپلاسین بدون علامت خود تعیین میشوند. یک گراف چندمخروطی از پیوند یک گراف منظم با یک گراف کامل بهدست میآید. در این مقاله نشان میدهیم که گرافهای چند مخروطی C سر K_w به وسیله طیف لاپلاسین بدون علامت خود بهطور یکتا مشخص میشوند، جاییکه K_w گراف کامل w راسی و C بیانگر گراف کلبسچ میباشد.

كلمات كليدي: گراف چندمخروطي، طيف لاپلاسين بدونعلامت، گراف كلبسچ.