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A GRAPH WHICH RECOGNIZES IDEMPOTENTS OF
A COMMUTATIVE RING

H. R. DORBIDI AND S. ALIKHANI∗

Abstract. In this paper we introduce and study a graph on the
set of ideals of a commutative ring R. The vertices of this graph are
non-trivial ideals of R and two distinct ideals I and J are adjacent
if and only IJ = I ∩ J . We obtain some properties of this graph
and study its relation to the structure of R.

1. Introduction

The study of algebraic structures, using the properties of graph the-
ory, tends to exciting research topic in the last years. There are many
papers on assigning a graph to a ring. Also some graph structures on
the set of ideals of a ring R are defined in the last decade. The in-
tersection graph of a ring ([3]) is a graph whose its vertices are non
trivial ideals of R and two distinct vertices I and J are adjacent if and
only if I ∩ J ̸= 0. This graph is denoted by Γ(R). Authors in [3], have
characterized the rings R for which the graph Γ(R) is connected and
obtained several necessary and sufficient conditions on a ring R such
that Γ(R) is a complete graph. Also they determined the values of
n for which the graph of Zn is Eulerian and Hamiltonian. Akbari, et
al. in [1] determined all rings whose clique number of the intersection
graphs of ideals is finite. Also they showed that, if the clique number of
Γ(R) is finite, then its chromatic number is finite and if R is a reduced
ring, then both are equal.
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Annihilating ideal graph ([2]) is a graph which its vertices are ideals
with nonzero annihilators and two distinct vertices I and J are adjacent
if and only if IJ = 0. This graph is denoted by AG(R). It is shown that
([2]) if R is not a domain, then AG(R) has ascending chain condition
(respectively, descending chain condition) on vertices if and only if
R is Noetherian (respectively, Artinian). Also the connectivity, the
diameter and coloring of AG(R) has studied in [2].

Comaximal ideal graph of a ring is defined in [6]. The vertices are
ideals which are not contained in the Jacobson of R and two distinct
vertices I and J are adjacent if and only if I + J = R. Also this graph
has studied in [4].

Intersection graph ([3]) is the complement of a zero divisor graph of
a semigroup and annihilating ideal graph and comaximal ideal graph
are the zero divisor graph of some semigroups. So these graphs share
many properties with zero divisor graphs. In this paper we study a
new graph on the set of non-trivial ideals of a commutative ring. Also
we study the relationship between the primary decomposition of ideals
of a ring R and connectivity of new graph.

First recall some facts and notations related to this paper. Let G =
(V,E) be a graph. The order of G is the number of vertices of G. For
two graphs G1 = (V1, E1) and G2 = (V2, E2), the disjoint union of G1

and G2 denoted by G1∪G2 is the graph with vertex set V1∪V2 and edge
set E1 ∪E2. A graph without edges is called an empty (null) graph. If
every two distinct vertices of a graph of order n are adjacent, the graph
is called a complete graph and is denoted by Kn. A clique of a graph G
is a complete subgraph of G and clique number of G is the number of
vertices in a maximum clique of G. For every vertex v ∈ V , the open
neighborhood of v is the set N(v) = {u ∈ V : uv ∈ E} and the closed
neighborhood is the set N [v] = N(v)∪{v}. For every vertex v ∈ V (G),
the degree of v is |N(v)|, i.e., the number of edges incident with v. Let
G1, . . . , Gk be some graphs. Then we consider G1×· · ·×Gk as a graph
whose vertex set is V (G1) × · · · × V (Gk) and two vertices (v1, . . . , vk)
and (u1, . . . , uk) are adjacent if and only if vi and ui are adjacent in
Gi for each i. As usual we show the distance between two vertices v
and w, by d(v, w). The eccentricity ϵ(v) of a vertex v is the greatest
distance between v and any other vertex. The diameter of a graph G
is denoted by diam(G) and is the maximum eccentricity of any vertex
in the graph.

Throughout this paper all rings are commutative with unit element.
A Von Neumann regular ring is a ring R such that for every a ∈ R
there exists an x ∈ R such that a = axa. This implies that (ax)2 = ax
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and ⟨a⟩ = ⟨ax⟩. So every principal ideal is generated by an idempotent
element. If for any nonzero ideal J of R, we have I ∩ J ̸= 0 we say
that I is a large ideal. A ring with a unique maximal ideal is called a
local ring. We denote the set of all maximal ideals and all prime ideals
of R by Max(R) and Spec(R), respectively. Also M(R) denotes the
set of minimal ideals of R. The intersection of all maximal ideals of
R is called the Jacobson radical of R and is denoted by J(R). The
intersection of all prime ideals is the set of all nilpotent elements and
is denoted by Nil(R). It is clear that Nil(R) ⊆ J(R). A discrete
valuation ring (DVR) is a principal ideal domain (PID) with exactly
one non-zero maximal ideal.

The radical of an ideal I is denoted by r(I) and is defined as {r ∈ R :
an ∈ I}. It is a standard fact that r(I) =

∩
I⊆P P . An ideal Q ̸= R is

called a primary ideal if ab ∈ Q implies a ∈ Q or b ∈ r(Q). It is easily
seen that if Q is a primary ideal then r(Q) is a prime ideal. Also if
r(Q) is a maximal ideal then Q is a primary ideal. We say that an ideal
I has a primary decomposition if I =

∩n
i=1Qi where Qi are primary

ideals. The set {r(Qi)} is denoted by Ass(I) and is called the set of
associated prime ideals of I. For two ideals I and J of R, we denote
the set {r ∈ R : rJ ⊆ I} by (I : J). Also, we denote the finite field
with q elements by Fq.

In the next section we introduce a new graph on the set of ideals and
study its properties. In Section 3, we study the relationship between
the primary decomposition of ideals of a ring and the connectivity of
the new graph.

2. Introduction to a new graph

In this section, we introduce a new graph on the set of ideals of a
commutative ring R which we denote it by Γ0(R) and study its prop-
erties.

Definition 2.1. Let R be a commutative ring. The vertices of the
graph Γ0(R) are non-trivial ideals of R and two distinct ideals I and J
are adjacent if and only if IJ = I ∩ J .

We also need the following definition in some cases:

Definition 2.2. Let R be a commutative ring. The vertices of the
graph Γ1(R) are all ideals of R and two ideals I and J are adjacent if
and only if IJ = I ∩ J .

By this definition, there is a loop in the vertex I of Γ1(R) if and only
if I2 = I. Also {0} and R adjacent to all vertices in Γ1(R). We denote
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the degrees of a vertex I in Γ0(R) and Γ1(R), by deg0(I) and deg1(I),
respectively. Any loop is counted by multiplicity one in this definition.
Remark 2.3. (i) The graph Γ0(R) is a null graph i.e., the ring R

has only two ideals if and only if R is a field.
(ii) The graph Γ0(R) has only one vertex i.e., the ring R has only

three ideals if and only if R is a local ring with a principal
maximal ideal m = Ra such that a2 = 0. In this case m is also
a minimal ideal.

Note that the graph Γ0(R) contains comaximal graph and the com-
plement of intersection graph. Also if R is a reduced ring, it contains
the annihilating ideal graph. To investigate some properties of Γ0(R),
first we state and prove the following lemma.
Lemma 2.4. Let I and J be two ideals of a ring R.

(i) If I + J = R, then IJ = I ∩ J .
(ii) If I ∩ J = 0, then IJ = 0.
(iii) If R is a reduced ring, then IJ = 0 implies I ∩ J = 0 = IJ .
(iv) If IJ = J , then IJ = I ∩ J .

Proof. (i) It is obvious that IJ ⊆ I ∩ J . If I + J = R, then there
are i ∈ I and j ∈ J such that i + j = 1. If t ∈ I ∩ J, then
t = t(i+ j) = ti+ tj ∈ IJ . So IJ = I ∩ J .

(ii) It follows from IJ ⊆ I ∩ J .
(iii) It is easy to see that (I ∩ J)2 ⊆ IJ . So (I ∩ J)2 = 0. Since R

is a reduced ring, therefore I ∩ J = 0 = IJ .
(iv) If IJ = J then J = IJ ⊆ I. So IJ = J = I ∩ J . □

By Lemma 2.4 and the definition of Γ0(R) we have the fol-
lowing corollary.

Corollary 2.5. (i) The set of all maximal ideals of R, Max(R) is
a clique in Γ0(R).

(ii) The set of all minimal ideals of R, M(R) is a clique in Γ0(R).
We need the following well-known theorem.

Theorem 2.6. (Nakayama’s Lemma) Let M be a finitely generated R-
module and I be an ideal of R. If IM = M , then ann(M)

∩
(1+I) ̸= ∅.

A set S ⊆ V is an independent set of a graph G, if no two vertices of
S are adjacent. The following corollary which is an immediate conse-
quence of Nakayama’s Lemma, is useful for determining of independent
sets of Γ0(R) (Corollary 2.8).
Corollary 2.7. Let I and J be two ideals of R such that J is a finitely
generated ideal and IJ = J .
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(i) If I ⊆ J(R), then J = 0.
(ii) If ann(J) = 0, i.e., J contains a non zero divisor, then I = R.

Corollary 2.8. (i) If {Iα} is a chain of finitely generated proper
ideals in J(R), then {Iα} is an independent set of Γ0(R).

(ii) If {Iα} is a chain of finitely generated proper ideals in an integral
domain R then {Iα} is an independent set of Γ0(R).

Proof. (i) If Iα ⫋ Iβ and IαIβ = Iα
∩
Iβ then Iα = IαIβ which is a

contradiction by part (i) of Corollary 2.7 (Nakayama’s Lemma).
(ii) If Iα ⫋ Iβ and IαIβ = Iα

∩
Iβ then Iα = IαIβ which is a contra-

diction by part (ii) of Corollary 2.7. □
The following lemma is well known and let us give a proof for it.

Lemma 2.9. Let I be a finitely generated idempotent ideal of a ring
R. Then I = Re is generated by an idempotent element.
Proof. Since I = I2, so ann(I)

∩
(1 − I) ̸= ∅ by Theorem 2.6. Hence,

there is s = 1− e ∈ ann(I) such that sI = 0. This implies that I = Ie
and (1− e)e = 0. Therefore e = e2 and I = Re. □

Now we state and prove the following theorem, which is one of the
main result of this section:
Theorem 2.10. Let R be a ring such that Γ0(R) has order at least
two. The vertex I is adjacent to any other vertices if and only if for
every a ∈ I, a ∈ Ia and I = I2.
Proof. First assume that vertex I is adjacent to any other vertices. We
consider two cases:

Case 1) I
∩

Ann(I) = 0. We have 0 ̸= I2. If Ra ⫋ I, then Ra =
I
∩
Ra = Ia ⊆ I2. So a ∈ Ia. If I is not a principal ideal, then

I = I2. So assume I = Rb is a principal ideal. If 0 ̸= I2 ⫋ I,
then I3 = I2. Hence by Lemma 2.9, we have I2 = Re. This
implies that I(1− e) ⊆ Ann(I)

∩
I = 0. Thus I = Ie ⊆ I2 and

so I = I2. Therefore b ∈ I2 = Ib.
Case 2) I

∩
Ann(I) ̸= 0. Since 0 = IAnn(I) ̸= I

∩
Ann(I), so I =

Ann(I). If 0 ̸= J ⫋ I, then 0 = IJ = I
∩
J = J which is

a contradiction. So I is a minimal ideal. Hence Ann(I) is a
maximal ideal and so I is both a maximal and minimal ideal of
R. If R has another maximal ideal m ̸= I, then 0 = IAnn(I) =
I2 ⊆ m. So I ⊆ m which is a contradiction. Since every ideal
of R sits in a maximal ideal, so I is the the only nontrivial ideal
of R which is a contradiction.

Conversely, assume that for each a ∈ I, a ∈ Ia. If a ∈ I
∩
J , then

a ∈ Ia ⊆ IJ . So a ∈ IJ and therefore IJ = I
∩
J . □
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Remark 2.11. Theorem 2.10 states that a vertex I is adjacent to all
other vertices in Γ0(R) if and only if the vertex I is adjacent to all
principal ideals contained in I in graph Γ1(R). Also in this case we
have a loop in the graph Γ1(R)

Theorem 2.12. Let I be a finitely generated ideal of R. Then I is
adjacent to all other vertices if and only if I = Re is generated by an
idempotent
Proof. Let J be an ideal of R and t ∈ J∩Re, so t = re and t = te ∈ Je.
Thus I is adjacent to all other vertices. Conversely, If I is adjacent to all
other vertices then by Theorem 2.10, I = I2. So the proof is complete
by Lemma 2.9. □
Corollary 2.13. If R has a non trivial idempotent, then Γ0(R) is a
connected graph and diam(Γ0(R)) ≤ 2.

The following theorem gives the structure of Γ0-graph of Von Neu-
mann regular ring.
Theorem 2.14. Assume that Γ0(R) has at least two vertices. The
ring R is a Von Neumann regular ring if and only if Γ0(R)(Γ1(R)) is
a complete graph.
Proof. If every two vertices are adjacent, then every principal ideal is
generated by an idempotent by Theorem 2.12. So ⟨a⟩ = ⟨e⟩ where e
is an idempotent element and so a = re. Thus ae = re2 = re = a
and a = ae2 = eae. So R is a Von Neumann regular ring. Conversely,
assume that R is a Von Neumann regular ring. If t ∈ I

∩
J then,

Rt = Re for some idempotent e. Therefore t = te ∈ It ⊆ IJ and we
have the result. □

The following theorem gives an upper bound for the diameter of
Γ0(R) while the Jacobson radical of the ring is zero.
Theorem 2.15. If J(R) = 0, then diam(Γ0(R)) ≤ 2.
Proof. Let I, J be two distinct ideal of R. If I

∩
J = 0 then I and J

are adjacent by Part (ii) of Lemma 2.4. So assume that I
∩
I ̸= 0.

Since J(R) = 0, there is a maximal ideal m such that I
∩

J ⊈ m. This
implies that I + m = R = J + m. So m is adjacent to both ideals I
and J by part (i) of Lemma 2.4. □

As an application of Theorem 2.15, consider the ring of real contin-
uous functions on a topological space X, i.e., C(X). Since the ideals
Mx0 = {f ∈ C(X) : f(x0) = 0} are maximal ideals of C(X), so
J(C(X)) = 0 and diam(Γ0(C(X))) ≤ 2.

The following theorem is stated in [5, p. 15] as an exercise.
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Theorem 2.16. Let R be a commutative ring and f(x) = anx
n+ · · ·+

a0 ∈ R[x].
(i) f(x) is a nilpotent element of R[x] if and only if ai is a nilpotent

element of R for each i.
(ii) f(x) is an invertible element of R[x] if and only if a0 is an

invertible element and ai is nilpotent for each i ≥ 1.
(iii) J(R[x]) = Nil(R[x]) = Nil(R)[x].
Now we state and prove the following corollary:

Corollary 2.17. Let R be a reduced ring. Then diam(R[x]) ≤ 2.
Proof. Since Nil(R) = 0, so J(R[x]) = Nil(R[x]) = Nil(R)[x] = 0. So
we have the result by Theorem 2.15. □

The following result state a necessary condition for an ideal to be an
isolated vertex of Γ0(R).
Theorem 2.18. Let R be a ring. If I is an isolated vertex of Γ0(R),
then I ⊆ J(R) and I is a large ideal.
Proof. Let m be a maximal ideal of R. If I ⊈ m, then I + m = R.
Hence Im = I ∩m which is a contradiction. So I ⊆ J(R). If I ∩J = 0,
then I is adjacent to J which is a contradiction. So I is a large ideal
and hence J(R) is a large ideal. □

The following corollary is an immediate consequence of Theorem
2.18.
Corollary 2.19. If Γ0(R) is the empty graph, then R is a local ring
and every ideal of R is large.
Theorem 2.20. If (R,m) is a Noetherian local ring, then m is an
isolated vertex of Γ0(R).
Proof. If I ⊆ m, then by Nakayama’s Lemma Im ⫋ I = I ∩m. Hence
m is an isolated vertex. □
Corollary 2.21. Let R be an Artinian ring such that Γ0(R) has at
least two vertices. Then Γ0(R) is a connected graph if and only if R is
not a local ring.
Proof. First assume that Γ0(R) is a connected graph. Since every Ar-
tinian ring is Noetherian, so the proof is complete by Theorem 2.20.
Conversely, assume that R is not a local ring. So R ∼= R1 × · · · × Rk

where k ≥ 2 by [5, Theorem 8.7]. Hence R has a non trivial idempotent.
Thus Γ0(R) is a connected graph by Corollary 2.13. □

Now, we consider a specific ring and investigate the structure of its
Γ0-graph.
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Example 2.22. Let R = Fq [X,Y ]

⟨X,Y ⟩2 . It is clear that R is an Artinian local
ring with m = ⟨x, y⟩ as maximal ideal. Since m2 = 0, so every non
maximal ideal of R correspond to a one dimensional vector subspace of
two dimensional vector space m. So R has q+1 = q2−1

q−1
ideal of dimen-

sion one and a maximal ideal of dimension two. Also one dimensional
ideals are minimal ideals. Since for every two distinct minimal ideals
I and J we have I

∩
J = 0, so every two distinct minimal ideals I and

J are adjacent in Γ0(R). So Γ0(R) is union of a complete graph Kq+1

and K1, i.e., Γ0

(Fq [X,Y ]

⟨X,Y ⟩2
)
= Kq+1 ∪K1.

The following theorem describes the Γ0-graph for discrete valuation
ring.
Theorem 2.23. If R is a discrete valuation ring(DVR), then Γ0(R) is
the empty graph.
Proof. Suppose that R is a discrete valuation ring(DVR). It is well
known that R is a local ring such that its maximal ideal m is principal
and only ideals of R are mi. If mi and mj(j > i) are adjacent then
mimj = mi ∩mj = mj. So Nakayama’s Lemma implies that mj = 0
which is a contradiction. Hence Γ0(R) is the empty graph. □

To study the structure of Γ0(Zn), we need the following result.
Theorem 2.24. Let R ∼= R1×· · ·×Rk. Then Γ1(R) ∼= Γ1(R1)×· · ·×
Γ1(Rk).

Proof. It is well known that every ideal I of R is equal to I1 × · · · × Ik
for some ideals Ii of Ri. Also the vertices I = I1 × · · · × Ik and J =
J1× · · ·×Jk are adjacent if and only if IiJi = Ii

∩
Ji for each i. So the

proof is complete. □
Remark 2.25. If R = Zp

γ1
1
×· · ·×Zp

γk
k

(pi’s are not necessarily distinct),
then ideals of R are ⟨(pα1

1 , . . . , pαk
k )⟩ where 0 ≤ αi ≤ γi. Also two ideals

I = ⟨(pα1
1 , . . . , pαk

k )⟩ and J = ⟨(pβ1

1 , . . . , pβk

k )⟩ are adjacent if and only if
max{αi, βi} = min{αi+βi, γi}. So we can construct Γ1(R) as follows:

The vertex set is {(α1, . . . , αk) : 0 ≤ αi ≤ γi} and two vertices
(α1, . . . , αk) and (β1, . . . , βk) are adjacent if and only if max{αi, βi} =
min{αi + βi, γi}.
Example 2.26. Consider R = Z20. We have Z20 = Z22 × Z5. We
shall draw Γ0(Z20). The vertex set of this graph is V (Γ0(Z20)) =
{(1, 0), (2, 0), (0, 1), (1, 1)}. By Remark 2.25 we have the Figure 1 for
this graph:

The following theorem gives the degree of the vertices of Γ0(Zn).
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(1, 0)

(2, 0)

(0, 1)

(1, 1)

Figure 1. The graph Γ0(Z20).

Theorem 2.27. Let n = pγ11 · · · pγkk and a = pα1
1 . . . pαk

k where 0 ≤
αi ≤ γi be a divisor of n. Set R = Zn and I = ⟨a⟩. Suppose that
A(I) = {i : 1 ≤ i ≤ k, 0 ≤ αi ≤ γi}. The degree of ideal I in Γ0(R) is

deg0(I) =
(
2|A(I)|

∏
i/∈A(I)

(γi + 1)
)
− 2−

⌊ 1

|A(I)|+ 1

⌋
.

Proof. According to Remark 2.25, we do computations with (α1, . . . , αk).
Let B = NΓ1(I) be the open neighborhood of the vertex I. So NΓ0(I) =
B \ {1, I, n}. Assume b = (β1, · · · , βk) ∈ B. Hence max{αi, βi} =
min{αi+βi, γi}. This implies that if i /∈ A(I), then we have the result.
If i ∈ A(I) then βi = 0 or βi = γi. So in the first case βi can be any
number of the set {0, · · · , γi}. In the last case βi = 0 or βi = γi. So we
can choose b in 2|A(I)| ∏

i/∈A(I)(γi + 1) ways. Two of these b correspond
to (0, . . . , 0) and (γ1, . . . , γk). If I ∈ B then min{2αi, γi} = αi. So
αi = 0 or αi = γi. Thus A(I) = ∅. Conversely, if A(I) = ∅ then for
each i, min{2αi, γi} = αi. Hence I ∈ B. So we must exclude I from B

in this case. So deg0(I) =
(
2|A(I)| ∏

i/∈A(I)(γi + 1)
)
− 2− ⌊ 1

|A(I)+1
⌋. □

Example 2.28. Let n = 36 = 2232. So Z36
∼= Z4×Z9 and γ1 = γ2 = 2.

If I = 6 = 2× 3 then A(6) = {1, 2} and |A(6)| = 2. So deg0(6) = 22 −
2 = 2. The neighbors of the vertex 6 are 4 and 9. If I = 4 then A(4) = ∅
and |A(4)| = 0. So deg0(4) = 3× 3− 2− 1 = 6. Note that ⟨4⟩ = ⟨16⟩
i.e. ⟨4⟩ is an idempotent ideal. So NΓ0(4) = {2, 3, 6, 9, 12, 18}. We
have shown Γ0(Z36) in Figure 2.
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(1, 0) (0, 1)

(2, 0)

(1, 1)

(0, 2)

(2, 1)

(1, 2)

Figure 2. The graph Γ0(Z36).

3. Primary decomposition of ideals of R and connectivity
of Γ0(R)

In this section we shall study the relationship between the primary
decomposition of ideals of a ring R and the connectivity of Γ0(R). We
begin with the following result.

Lemma 3.1. (Prime avoidance lemma[5]) Suppose that I ⊆ ∪n
i=1Pi,

where Pi’s are prime ideals. Then I ⊆ Pi for some 1 ≤ i ≤ n.

Theorem 3.2. Let I be an ideal of the ring R. Then I
∩
Ra = Ia if

and only if (I : a) = I + ann(a). In particular, if (I : a) = I then
I
∩

Ra = Ia.

Proof. Assume that x = ra ∈ Ra
∩
I. So r ∈ (I : a). Hence r = i + s

where i ∈ I and s ∈ ann(a). Thus x = ra = ia + sa = ia ∈ Ia.
Conversely, assume that r ∈ (I : a). So x = ra ∈ I

∩
Ra = Ia. hence

there is an i ∈ I such that ra = ia. This implies that r − i ∈ ann(a).
So r = i+ (r − i) ∈ I + ann(a). □
Theorem 3.3. (i) Let Q be a primary ideal and a /∈ r(Q) = P .

Then (Q : a) = Q.
(ii) Suppose that I has a primary decomposition. If a /∈

∪
P∈Ass(I) P ,

then (I : a) = I.

Proof. (i) Let b ∈ (Q : a). So ba ∈ Q. If b /∈ Q then a ∈ r(Q)
which is a contradiction.

(ii) Let I =
∩n

i=1 Qi. Then (I : a) = (
∩n

i=1Qi : a) =
∩n

i=1(Qi : a) =∩n
i=1Qi = I. □

Since every prime ideal is a primary ideal, we have the following
corollary.
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Corollary 3.4. Let P be a prime ideal of a ring R. If a /∈ P , then
Ra

∩
P = Pa = PRa, i.e., P and Ra are adjacent.

Corollary 3.5. Suppose that R is not an integral domain. If ab /∈
Nil(R) then the distance between Ra and Rb is not more than two, i.e,
d(Ra,Rb) ≤ 2.

Proof. Since Nil(R) is the intersection of all prime ideals, so there is
a prime ideal P such that ab /∈ P . Hence a, b /∈ P . So Ra and Rb are
adjacent to P by Corollary 3.4. □
Theorem 3.6. Suppose that two ideals I and J have primary decom-
position. If Max(R) ⊈ (Ass(I)

∪
Ass(J)), then d(I, J) ≤ 2.

Proof. Let m ∈ Max(R)\(Ass(I)
∪

Ass(J)). So there is an element
a ∈ m\

∪
P∈Ass(I)

∪
Ass(J) P by prime avoidance lemma. So I and J are

adjacent to Ra by Theorem 3.3(ii) and the proof is complete. □
Corollary 3.7. (i) Let P,Q ∈ Spec(R) be two prime ideals. If

Max(R) ⊈ {P,Q} then d(P,Q) ≤ 2.
(ii) Suppose that R has at least three maximal ideal. Then for every

two prime ideals P and Q, d(P,Q) ≤ 2.

Theorem 3.8. Let R be a Noetherian ring with infinitely many maxi-
mal ideals. Then diam(Γ0(R)) ≤ 2.

Proof. Let I and J be two ideals of R. It is well known that every ideal
in a Noetherian ring has a primary decomposition ([5]). So the proof
is complete by Theorem 3.6. □

The following example shows that the condition |Max(R)| = ∞ is
necessary in the Theorem 3.8.

Example 3.9. Let p1, . . . , pk be distinct prime numbers. Set S =
Z\

∪k
i=1 piZ and R = S−1Z. Then R is a PID with k distinct prime

p1, . . . , pk. If I = ⟨a⟩ and J = ⟨b⟩ are adjacent then ⟨a, b⟩ = R. So if
I ⊆ J(R) = p1 · · · pkR then I is an isolated vertex.

Here, we state and prove the following lemma to obtain the diameter
of Γ0-graph of the polynomial ring.

Lemma 3.10. Let R be a commutative ring. The polynomial ring R[x]
has infinitely many maximal ideals.

Proof. Let M be a maximal ideal of R and F = R
M

be its residue field.
Since F [x] ∼= R[x]

M [x]
, it suffices to prove the lemma for F [x]. Every max-

imal ideal of F [x] is generated by an irreducible polynomial, because,
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F [x] is a PID. If F is an infinite field, the set {⟨x − a⟩ : a ∈ F} is
an infinite set of maximal ideals. Now suppose that F is a finite field,
then by a well-known result, for every n ∈ N, there is an irreducible
polynomial of degree n. Therefore we have the result. □

By Theorem 3.8 and Lemma 3.10, we have the following corollary.
Corollary 3.11. If R is a Noetherian ring, then diam(Γ0(R[x])) ≤ 2.

By checking the Γ0-graph for well-known rings, we think that the
diameter of every connected component of Γ0(R) is not more than two.
So, we end the paper by the following conjecture:
Conjecture 3.12. The diameter of every connected component of
Γ0(R) is not more than two.
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A GRAPH WHICH RECOGNIZES IDEMPOTENTS OF A COMMUTATIVE RINGS
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می کند مشخص را جابه جایی حلقه یک خودتوان عنصر که گرافی

علیخانی٢ سعید و دربیدی١ حمیدرضا
ایران جیرفت، جیرفت، دانشگاه علوم، ١دانشکده

ایران یزد، یزد، دانشگاه ریاضی، علوم ٢دانشکده

خواهیم مطالعه آن را و نموده معرفی R جابه جایی حلقه ایده آل های مجموعه روی را گرافی مقاله این در
اگر فقط و اگر مجاورند آن در J و I ایده آل دو و بوده R غیربدیهی ایده آل های گراف، این رئوس کرد.
مطالعه را R حلقه ساختار با ارتباطش و آورده به دست را گراف این خواص از برخی .IJ = I ∩ J

کرد. خواهیم

خودتوان. حلقه، قطر، گراف، کلیدی: کلمات
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