Journal of Algebraic Systems
Vol. 7, No. 2, (2020), pp 179-187

A CHARACTERIZATION FOR METRIC
TWO-DIMENSIONAL GRAPHS AND THEIR
ENUMERATION
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ABSTRACT. The metric dimension of a connected graph G is the
minimum number of vertices in a subset B of G such that all
other vertices are uniquely determined by their distances to the
vertices in B. In this case, B is called a metric basis for G. The
basic distance of a metric two-dimensional graph G is the distance
between the elements of B. Giving a characterization for those
graphs whose metric dimensions are two, we enumerate the number
of n vertex metric two-dimensional graphs with the basic distance
1.

1. INTRODUCTION

Let G = (V, E) be a connected simple graph. For two vertices u and
v of G, the distance dg(x,y) or d(z,y) of  and y is the length of a
minimum path connecting = to y. For a subset R = {ry,...,rx} of V
and a vertex v, the representation of v with respect to R is the k-tuple
(v|R) = (d(v,71),...,d(v,71)). The subset R is called a resolving set
for G if any vertex has a unique representation with respect to R. A
resolving set B of V' is called a metric basis for G if it has the minimum
possible number of elements for a resolving set. The metric dimension
G, denoted by dimy(G) is then equal to this minimum number. For a
study about these notions, we refer the reader to [1] and [3].
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As a simple known fact, dimy(G) = 1 if and only if G is a path.
The metric dimension of an n vertex graph G is n — 1 if and only if GG
is the complete graph K,,; see [3].

The concept of a resolving set has various applications in differ-
ent areas including network discovery and verification [I], problems
of pattern recognition and image processing [(], robot navigation [5],
mastermind game [2], and combinatorial search and optimization [7].

2. A CHARACTERIZATION FOR dimy(G) = 2

In this section, we aim to characterize all two metric dimensional
graphs, but prior to this we need to extend the notion of a path.

Definition 2.1. Let x and d be two positive integers with x > d and let
y be a nonnegative integer. An extended path P(x,y,d) of the length
x, width y, and height 2d + 1 is a simple graph with the following
properties:

1. V(P) = :Z-EZOPZ', where Pl = {Ui,|i—d\, Ui,|ifd|+17 e ,Um'_;,_d} for 0 <
i <yand Py = {v;ji—d|, Viji—d|+1 - - - > Viitd—1} for y +1 <i < a;
ii. neighbors of v; ; are vy, with [i — k| <1 and |j — ¢ < 1.

Example 2.2. As an example, the generalized path P(7,4,1) has ver-
tices of the form

77
66 76
45 55 65
34 44 54
23 33 43
12 22 32
01 11 21
10

and there is an edge between any two vertices, which are horizontally,
vertically, or diagonally adjacent. Whence any horizontal, vertical, or
diagonal line is a path. Here, P;’s are vertical lines numbered from left
to right by Py, Pi,..., P;. The length of the first diagonal path from
top is y = 4, the left coordinate of any vertex in the last pathis z = 7,
and the left coordinate of the only vertex in the first horizontal path
from down is d = 1.

As another example, the generalized path P(6,3,4) has vertices of
the form
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69
28 68
37 47 57 67
26 36 46 56 66
15 25 35 45 55 65
04 14 24 34 44 54 64
13 23 33 43 53 63
22 32 42 52 62

31 41 51

40

and there is an edge between any two vertices which are horizontally,
vertically, or diagonally adjacent.

Definition 2.3. Let G be a metric two-dimensional graph with the
metric basis B = {a,b}. Then d(a,b) is called the basic distance of G
with respect to B and is denoted by BDg(G).

Proposition 2.4. Let x and d be two positive integers with x > d
and let y be a nonnegative integer. If (x,y,d) # (1,0,1), then the
generalized path P(x,y,d) is a metric two-dimensional graph with the
metric basis B = {vo 4,va0} and the basic distance d with respect to B.
Moreover, (v; ;|B) = (i,7) for each v; j € P.

Proof. At first we note that if (z,y,d) # (1,0, 1), then P(z,y, d) is not
a path. We can therefore deduce that dimy (P (z,y,d)) > 2. We show
that B = {a := vo4,b := vgo} is a metric basis for P(z,y,d). In fact,
we use induction on i+ j to show that (v; ;|B) = (4, j) for each v; ; € P.

The minimum possible value for ¢ + j is d. There are d + 1 vertices

Vij; = Vo,d; V1,d—1y---5Ud-1,1,Vd0

with ¢ + j = d. Consider the shortest path

a = V9,4, V1,d—1,- - -, Vd—1,1, V4,0 = D

to see that (v; ;|B) = (4, ) for these vertices. In particular note that
d(a,b) = d. Thus BDg(P(z,y,d)) = d.

Now let (v; ;|B) = (i,7j) for each vertex v;; with i + 5 < N. Let
ve be a vertex with k +¢ = N. Any path from v, ; to a should pass
from one of the vertices v;_1 ;_1,vi—1;,vi—1j4+1. The distance between
each of these vertices to a is ¢ — 1, by the induction hypothesis. Thus
d(v;;,a) =14. A similar argument shows that d(v; ;,b) = j. O

Lemma 2.5. Let x and d be two positive integers with x > d and let y
be a nonnegative integer. Then P(x,y,d) = P(z,y,1) UP(xz,z,d — 1)
and P(z,y,1) N P(x,z,d— 1) is a path.
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Proof. Let V(P) = U, P;, where P; = {v; ji—d|, Vi ji—d|+1 - - - » Visi+d } fOT
0<i<yand P = {Vi—ds Viji-d|+1, - - - Viird—1} for y +1 <@ < o
Put

F)i/ = {U;J—(dfl) 15 € Pand j >i+d— 2},

Pi” = {U’;/—Lj : Ui,j c PZ and j < /L + d - 2}

Now if P’ is the subgraph of P induced by U7_ P/ and P” is the sub-
graph of P induced by U%_, P/, then P’ = P(x,y,1),P" = P(x,x,d —
1), P(x,y,d) = P'UP"” and P'NP” is the path {vi 41,24, ., Vs ztd—2}

[

Theorem 2.6. A simple graph G is a metric two-dimensional graph
with the basic distance d if and only if it is a subgraph of a gener-
alized path P(x,y,d) with (x,y,d) # (1,0,1) satisfying the following
properties:

1. Vo,d, Vd,0 € G,'
ii. N(vig) N {vic1j-1,vi1,vic1j01} # 0 and
N(Ui’j) N {Ui—l,j—la Vij—1, Uz‘—l—l,j—l} 7é @ fOT’ each Vi e G.

Proof. An inductive argument proves that any subgraph of P(z,vy,d)
with (z,y,d) # (1,0, 1) possessing the properties (i) and (i7) is a metric
two-dimensional graph with the basis B = {a := vg4,b := vao} and
the basic distance d.

Conversely, suppose that G is a metric two-dimensional graph with
the basis B = {a, b} and the basic distance d. Let

x = max{d(v,a) : v € G},

and
y :=max{i: (i,i + d) = (v|B), for some v € G}.

Define ¢ : G — P(z,y,d) by ¢(v) = v, where (i,j) = (v|B). We
show that

li—d| <j<i+d, fori=0,...,y,
i—d <j<i+d—-1, fori=y+1,...,x.
J Yy

We have d(v,a) = i and d(v, b) = j, since (i, j) = (v|B). The triangle
inequality implies that d = d(a, b) < d(a,v)+d(v,b) =i+ j. Moreover,
Jj=d(v,b) <d(v,a)+d(a,b) =i+dand i = d(v,a) < d(v,b)+d(b,a) =
j4+d. Thus |i —d| < j <i+dforeach 0 << x.

If i > y+ 1, then 5 cannot be ¢ 4 d, since otherwise we should have
(i,7+ d) = (i,5) = (v|B) which contradicts the definition of y. Hence
j<i+d—1fori>y+1.
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We therefore have p(V(G)) C V(P(x,y,d)). Now let e = uv be an
edge in V(G). If ¢(u) = v;; and ¢(v) = vy, then
i =d(u,a) < d(u,v) +dv,a) =1+k,
and
k=d(v,a) < dv,u)+d(u,a) =1+1.
Thus |i — k| < 1. By the same argument, |j — ¢| < 1. This shows that
k=i—1iori+1land ¢{=j—1,jor j+ 1. Whence p(e) is an edge
in P(z,y,d) and so G is a subgraph of P(z,y, d).
Clearly, v9 4 = a,vq0 = b € G. To show that (i) does also hold, note
that if, for example, N(v; ;) N {vi—1-1,Vi-14,Vi—1j+1} = 0, then there
is no path with the length i from v; ; to a. O

3. ENUMERATING OF METRIC TWO-DIMENSIONAL GRAPHS WITH
THE BASIC DISTANCE 1

Lemma 2.5 shows that any generalized path P(z,y,d) can be re-
garded as a larger path P(2’,y',d’). Thus the generalized path men-
tioned in Theorem 2.6 is not unique. A simple argument based on the
property (ii) of Theorem 2.6 implies that if x = max{d(v,a) : v €
G}y = max{i : (i,i + d) = (v|B), for some v € G} and d = d(a,b),
then the boundary OP(x,y,d)

Vo,ds V1,d—1, V2,d—25 - + - 5 Ud,05 Vd+1,1Vd+2,25 - - - » Vz,x—d> V1,d+1 V2,d+2 - - - s Uy,y+d
of P(x,y,d) are vertices of G. Whence this x,y and d are the least
possible values such that G is a subgraph of P(z,y, d).
Definition 3.1. Let GG be a simple metric two-dimensional graph. We
say that G is fitted in P(x,y,d), denoted by G C P(x,y, d), if

r = max{d(v,a) : v € G},

y = max{i: (i,i + d) = (v|B), for some v € G},

d = d(a,b),
or equivalently G contains the boundary OP(x,y,d)

Vo,d) V1,d—1, V2,d—25 - - -y Vd,05 Vd+1,1Vd+2,25 - - - y Vz,x—d> V1,d+15 V2,d+25 - - - » Vy,y+d

of P(x,y,d). The parameters = and y are called the length and width
of G and are denoted by ¢(G) and w(G), respectively.

We now want to enumerate the number of n vertex metric two-
dimensional graph with the basic distance 1. Prior to this, we enu-
merate the number of n vertex metric two-dimensional graph with the
length z, width y, and the basic distance 1. We denote the latter
number by v(n;x,y).
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Lemma 3.2. v(n;x,y) > 1 ifand only if t +y+2<n<2x+y+ 1.

Proof. Suppose that there is an n vertex metric two-dimensional graph
G with the length z, width y and the basic distance 1. Using Theorem
2.6, we fit it in P(z,y, 1). Since the boundary of P(z,y,1) has x+y+1
elements, we should have n > z 4+ y + 1. If n = 4+ y + 1, then
G = OP(z,y,1) which is a path and has metrics dimension 1. Thus
n >z +y+ 2. Moreover, n = |V(G)| < |V(P(z,y,1))| =2z +y + 1.
On the other hand, if t + y+2 < n < 2z +y+ 1, then we can write
n=x4+y+1+7r where 1 <r < z. Now consider the subgraph of
P(z,y,1) induced by OP(z,y,1) U{vi1,...,v,}. This is an n vertex
subgraph of P(x,y, 1) satisfying (i) and (i) of Theorem 2.6. O

Based on Lemma 3.2, for simplicity, we denote v(n; x, y) by pu(m;x,y).
We note that pu(m;x,y) > 1 if and only if 1 < m < z.

Lemma 3.3. u(z;z,y) = 4 x 2091 x 10°7Y for each x > y > 1 and
w(z;x,0) =2 x 10*7! for each x > 1.

Proof. Let G be an n vertex metric two-dimensional graph G with the
length x, width y and the basic distance 1, where n = 2x + y + 1.
Thus G C P(z,y, 1) and the induced subgraph 0P (x,y, 1) of P(x,y,1)
should be a subgraph of G. For other vertices

{vi1, .. » Uyys Uy+1y+15 - - - Uz}

we should put the edges in such a way that (i) of Theorem 2.6 is
satisfied. For v;; putting edges v1,1v91 and v;11v1 is compulsory, and
we have 4 choices for ‘to put’ or ‘not to put’ the edges vy 1012 and
V1,102,1-

If 1 <@ <y, then for v;; putting one of the 5 sets of edges,

{Uz',ivi—l,i—l}; {Ui,ivi—l,iy Uz‘,ivz’,z’—1}> {Ui,ivi—l,i—h Uz‘,ivi—l,i}a

{Ui,ivifl,ifla Ui,ivi,ifl}a {Ui,z‘viq,pl, Vi,iVi—1,i, Ui,iUz',zel}

is compulsory and we have 4 choices for ‘to put’ or ‘not to put’ the
edges v; ;0; 41 and v; ;V;41;.

If y+1 < < z, then the 4 choices decreases into 2 choices, since we
do not have v; ;41.

Finally, if y = 0, then we have 2 choices for v;; and 10 choices for
v;; when 1 <17 < w. O

Though we know that u(0;x,y) = 0, but for the following recur-
sive relation, we need to assume, as a convenient, that p(0;z,y) = 1.
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Furthermore, for y > 1, we assume that

and for y = 0 we assume that

N )2, g=1,
“’(J)_{lo, 2<j <.

Theorem 3.4. Let x be a positive integer, let y be a nonnegative
integer, and let 1 < m < x. Then p(m;x,y) satisfies the recursive
relation

m+1 i—1

w(m; z,y) Z Hw — (1 —1);z —i,max{y — 7,0}),

i=1 j=1

with the boundary values
p(O;z,y) =1, p(r;z,y) Hw

Proof. To determine u(m;x,y), we in fact need to enumerate the num-
ber of n = z 4+ y + 1 + m vertex metric two-dimensional subgraphs
G of P(x,y,1) with the basic distance 1. Let m < x. Then there
is a vertex v;; € P(z,y,1) \ G. Let i be the first index such that
vi; € P(z,y,1)\ G. Then 1 <i<m+ 1. Since vy1,...,v-1,-1 € G,
we have HJ L w(j) choices for selecting appropriate edges. Then we
have pu(m — (i — 1); 2 — ¢, max{y — 4,0}) choices for selecting other
edges for other vertices of G. OJ

Corollary 3.5. Let x be a positive integer and let 1 < m < x. Then

m+1

p(m;x,0) :,u(m;a:—l,O)—i—ZQx 1072 p(m — (i — 1);2 — i,0).

Example 3.6. We evaluate pu(m;x,0) for m = 1,2,3 and z > m.
A simple verification shows that u(1;2,0) = 2z. For m =2 < x we
have

w(2;2,0) = p(2;r—1,0) +2u(l;2 —2,0) + 20p(0; 2 — 3,0)
= w2;2—-1,0)+2-2(x—2)+20
= u(2;2—1,0)+4(z + 3).
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[terating the above equation, we have
w(2;2,0) = p(2;2—1,0)+4(x + 3)
w22 —2,0)+4(x + 2) + 4(x + 3)
= w2;2—-3,0)+4(x+1)+4(z+2) +4(z +3)

= 1(2;2,0)+42+4)+...4(x+3)
4
- 20+4((x+3>2($+ >—15)
= 2(z—1)(x+38).

Finally, for m = 3 < x, we have
1(3;2,0) = p(32—1,0)+2u(252 —2,0) + 20u(1;z — 3,0)

+ 200p(0;z —4,0)

= u3;2—1,0)+2-2(x—3)(z+6)+20-2(z—3)+ 200

= u(3;2—1,0)+4(z* + 13z + 2).

A similar method gives

4 104
w(3;2,0) = §x3 + 2822 + < 192.

Corollary 3.7. Let x be a positive integer and let 1 < m < x. Then
p(m;z,0) is a polynomial of  of degree m.

Proof. Using induction on m + x, we can assume that the right hand
side of Corollary 3.5 is a polynomial of = of degree m. Whence the left
hand side is also a polynomial of x of degree m. O

We now can simply evaluate v(n); the number of all n vertex labeled
metric two-dimensional graph with the basis B = {a,b} and the basic
distance 1.

Theorem 3.8. The number of alln vertex labeled metric two-dimensional
graph G with the basis B = {a,b} and the basic distance 1, is

v(n) = > un—z—y—1iz,y).

y:O le’nfyfl-‘

Proof. Each G can be fitted in a P(x,y, 1) where, by Lemma 3.2, we
should have z +y 4+ 2 < n < 2x +y + 1. Thus the valid values of x
and y are 0 < y < [%2] and [®22] < o < n—y— 2. We know
that the number of metric two-dimensional subgraph of P(z,y,1) is

pn—z—y—1z,9). O
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