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EQUALIZERS IN THE CATEGORIES FUZZ AND
TOPFUZZ

GH. MIRHOSSEINKHANI∗ AND N. NAZARI

Abstract. It is well known that the categories Fuzz of fuzzes
and TopFuzz of topological fuzzes are both complete and cocom-
plete, and some categorical properties of them were introduced by
many authors. In this paper, we introduce the structure of equal-
izers in these categories. In particular, we show that every regular
monomorphism is an injective map, but monomorphisms need not
be injective, in general.

1. Introduction and preliminaries

In 1992, Wang introduced the theory of topological molecular lat-
tices as a generalization of ordinary topological spaces, fuzzy topologi-
cal spaces and L-fuzzy topological spaces in terms of closed elements,
molecules, remote neighborhoods and generalized order-homomorphisms
[9]. Then, many authors characterized some topological notions in such
spaces, such as convergence theories of molecular nets or ideals, sepa-
ration axioms and other notions.

Topological fuzzes are an important special class of topological molec-
ular lattices. A fuzz is a pair (F, ′) consisting of a completely distribu-
tive complete lattice F and an order-reversing involution ′ : F → F ,
that is, x ≤ y if and only if y′ ≤ x′ and x′′ = x for all x, y ∈ F . A
topological fuzz or a fuzzy topological space in the sense of Hutton, is
a triple (F, ′, τ) such that (F, ′) is a fuzz and τ ⊆ F is a topology, i.e.,
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it is closed under finite meets, arbitrary joins and 0, 1 ∈ τ , where 0 and
1 are the smallest and the greatest elements of F , respectively [5, 11].

The category of all fuzzes with their homomorphisms is denoted by
Fuzz, and the category of all topological fuzzes with their homomor-
phisms is denoted by TopFuzz. It is well known that these categories
are both complete and cocomplete, and some categorical properties of
them were introduced by many authors [3, 4, 5, 6, 7]. Also, the cate-
gory Fuzz is cartesian closed [11], but since the category TopFuzz has
the category Top of topological spaces as a reflective and coreflective
full subcategory, it follows that it is not cartesian closed [8]. In this
paper, we introduce the structure of equalizers in these categories. In
particular, we show that every regular monomorphism is an injective
map, but monomorphisms need not be injective, in general.

Let us first recall some definitions and properties of fuzzes and topo-
logical fuzzes.

Definition 1.1. [9] An element a of a lattice F is called coprime, if
a ≤ b ∨ c implies a ≤ b or a ≤ c, for every b, c ∈ F , and it is called
completely coprime if, for every S ⊆ F , a ≤ ∨S implies a ≤ s for some
s ∈ S.

Throughout this paper, we denote by M(F ) and M(F ) the set of all
nonzero coprime elements and nonzero completely coprime elements of
a complete lattice F , respectively. Nonzero coprime elements are also
called molecules. If F is a completely distributive complete lattice, then
F is ∨-generated by the set M(F ), i.e., every element of F is a join
of some elements of M(F ). Thus, a completely distributive complete
lattice is called a molecular lattice.

Let f : F → G be a mapping between molecular lattices such that
preserves arbitrary joins. Then f has a right adjoint and denoted by
f̂ . Moreover, f̂(y) =

∨
{x ∈ F | f(x) ≤ y} for every y ∈ G.

Definition 1.2. [9] A mapping f : F → G between molecular lattices
is called a generalized order-homomorphism (briefly, GOH) if f pre-
serves arbitrary joins and its right adjoint f̂ preserves arbitrary joins
and arbitrary meets.

Definition 1.3. [10] A mapping f : (F, ′) → (G, ′) between fuzzes
is called an order-homomorphism or a fuzz map in this paper if f
preserves arbitrary joins and its right adjoint f̂ preserves ′.

It is easy to show that every fuzz map is a GOH, but the converse
is not true, in general [10].
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Definition 1.4. [5, 11] A fuzz map f : (F, ′, τ) → (G, ′, η) between
topological fuzzes is said to be continuous if b ∈ η implies f̂(b) ∈ τ .

Lemma 1.5. [9] If f : F → G is a GOH, then f preserves the coprime
elements.

In the following, we recall some definitions and properties of cate-
gorical structures [1].

Definition 1.6. Let A
f−→

−→
g
B be a pair of morphisms. A morphism E

e→A

is called an equalizer of f and g provided that f ◦ e = g ◦ e; and for any
morphism E ′ e′→A with f ◦ e′ = g ◦ e′, there exists a unique morphism
E ′ ē→E such that e′ = e ◦ ē.

Definition 1.7. A morphism E
e→A is called a regular monomorphism

provided that it is an equalizer of some pair of morphisms.

Definition 1.8. A square

P

f̄
��

ḡ // B

f
��

A g
// C

is called a pullback square provided it commutes and that for any
commuting square of the form

Q

f ′

��

g′ // B

f
��

A g
// C

there exists a unique morphism Q
k→P such that f̄◦k = f ′ and ḡ◦k = g′.

Theorem 1.9. Let A f→C
g←B be a pair of morphisms. If A p1←A×B p2→B

is a product of A and B, and E
e→A×B is an equalizer of A×B

f◦p1−→
−→
g◦p2

C,
then

E

p2◦e
��

p1◦e // A

f
��

B g
// C

is a pullback square.
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2. Main results

In this section, we give the structure of equalizers in Fuzz and
TopFuzz. Let (F, ′) be a fuzz. Then for every complete join sub-
lattice E of F , i.e., E ⊆ F and it is closed under arbitrary joins, we
can define an order-reversing c : E → E defined by xc = ê(x′), where ê
is the right adjoint of the inclusion map e : E → F .

Definition 2.1. An element m of a fuzz (F, ′) is called ′-coprime if,
for every x ∈ F , either m ≤ x or m ≤ x′ but not both.

We denote by M̃(F ) the set of all ′-coprime elements of F . It is
easy to show that M̃(F ) ⊆ M(F ) ⊆ M(F ). For any topological space
(X, τ), suppose P(X) denote the powerset of X and the order-reversing
involution on P(X) is the subset complement. Then (P(X), τ) is a
topological fuzz and M̃(P(X)) = M(P(X)) = M(P(X)) = {{x} | x ∈
X}. In general, M̃(F ) is a join generating base for a fuzz (F, ′) if and
only if F is fuzz isomorphic to P(M̃(F )), moreover M̃(F ) = M(F ) =
M(F ).

For a fuzz map f , since f and f̂ preserve arbitrary joins, we have
f̂(0) = f̂(∨ϕ) = ∨ϕ = 0 and similarly, f(0) = 0.

Lemma 2.2. Let f : F → G be a fuzz map. Then the following
statements hold:

(1) f ◦ f̂ ≤ id, f̂ ◦ f ≥ id, f ◦ f̂ ◦ f = f and f̂ ◦ f ◦ f̂ = f̂ , where
id denote the identity map.

(2) f̂ is unique, i.e., if g ◦ f ≥ id and f ◦ g ≤ id, then g = f̂ .
(3) f̂(1) = 1. Also, f(a) = 0 if and only if a = 0.

Proof. For parts (1) and (2) see [2]. Since f(1) ≤ 1, we have 1 ≤
f̂(f(1)) ≤ f̂(1) and hence f̂(1) = 1. Now, let f(a) = 0. Then a ≤
f̂(f(a)) = f̂(0) = 0 and hence a = 0. □
Lemma 2.3. Let f : F → G be a map between fuzzes such that pre-
serves all joins.

(1) If f is a fuzz map, then f preserves ′-coprime elements.
(2) If M̃(F ) is a join generating base for F , then f is a fuzz map

if and only if f preserves ′-coprime elements.

Proof. (1): Let m ∈ M̃(F ) and y ∈ G. Then either m ≤ f̂(y) or m ≤
(f̂(y))′ = f̂(y′). Thus either f(m) ≤ y or f(m) ≤ y′. If f(m) ≤ y ∧ y′,
then m ≤ f̂(y∧y′) = f̂(y)∧ f̂(y′), which is a contradiction. Thus f(m)
is a ′-coprime element.
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(2): Let y ∈ G, m ∈ M̃(F ) and f preserves ′-coprime elements.
Then

m ≤ f̂(y′)⇔ f(m) ≤ y′ ⇔ f(m) ≰ y ⇔ m ≰ f̂(y)⇔ m ≤ (f̂(y))′.

Thus f̂(y′) = (f̂(y))′. Conversely, by part (1), the result holds. □

By Lemma 2.3, we have the following result.

Corollary 2.4. f : {0, 1} → F is a fuzz map if and only if f(1) ∈
M̃(F ).

Definition 2.5. Let (F, ′) be a fuzz and E be a complete join sublattice
of F . Then we say that (E, c) is a subfuzz of F if (E, c) is a fuzz and
the inclusion map e : E → F is a fuzz map.

Example 2.6. Let F = {0, x, y, 1}, where x and y are incomparable,
x′ = y and y′ = x. Then F is a fuzz and E = {0, x} is a subfuzz of F .
If A = {0, 1}, then A is a fuzz but it is not a subfuzz of F , because the
inclusion e : A→ F is not a fuzz map.

Definition 2.7. Let (F, ′, µ) be a topological fuzz and (E, c) a subfuzz
of F . If δ = ê(µ), then (E, c, δ) is also a topological fuzz which is called
a topological subfuzz of F .

Now, we present a characterization of subfuzzes. Let F be a fuzz.
In the following we consider a mapping J : F → F which satisfies the
following conditions:

(S1) J(a) ≤ a for all a ∈ F ;
(S2) J ◦ J = J ;
(S3) J preserves arbitrary joins;
(S4) J((J(a))′) = J(a′) for all a ∈ F .

Lemma 2.8. Let (F, ′) be a fuzz and E be a complete join sublattice
of F . Then (E, c) is a subfuzz of F if and only if there exists a
mapping J : F → F which satisfies the conditions (S1) − (S4), such
that E = ImJ and ac = J(a′) for each a ∈ E.

Proof. Let (E, c) be a subfuzz of F . Since the inclusion map e : E → F
is a fuzz map, if we define a mapping J : F → F by J(a) = ê(a) for
each a ∈ F , then the result holds.

Conversely, let J : F → F be a mapping which satisfies the condi-
tions (S1)− (S4), such that E = ImJ and ac = J(a′) for each a ∈ E.
Since J preserves joins, it follows that E is a complete join sublattice
of F and hence is a complete lattice. Since J preserves order, c is an
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order-reversing. Now, we show that c is an involution on E. Let x ∈ E.
Then we have

xcc = (J(x))cc = (J(x′))c = J(x′′) = J(x) = x.

The infimum in E is as following:
⊓i∈IJ(ai) = (∨i∈I(J(ai))c)c = (∨i∈IJ(a′i))c

= (J(∨i∈Ia′i))c = J(∨i∈Ia′i)′ = J(∧i∈Iai).

On the other hand, we have
∨i∈I⊓j∈JJ(aij) = J(∨i∈I∧j∈Jaij) = J(∧j∈J ∨i∈I aij) = ⊓j∈J ∨i∈I J(aij).

Thus E is a completely distributive lattice and hence (E, c) is a fuzz.
Finally, we show that e : E → F is a fuzz map. Let x ∈ F . Then we
have

ê(x) = ∨{J(a) | J(a) ≤ x} ⇒ ê(x) = J(ê(x)) ≤ x⇒ ê(x) ≤ J(x).

Since J(x) ≤ x, it follows that ê(x) = J(x). Thus, for any x ∈ F we
have:

ê(x′) = J(x′) = J((J(x))′) = J((ê(x))′) = (ê(x))c.

□

Lemma 2.9. Let (F, ′) be a fuzz and E be a complete join sublattice
of F . Let S be the collection of all mappings J : F → F which satisfy
the conditions (S1) − (S4) and ImJ ⊆ E. Then S with respect to
pointwise order has a maximal element γ such that for each J ∈ S,
ImJ ⊆ Imγ ⊆ E.

Proof. Consider γ : F → F given by γ(a) = ∨{J(a) | J ∈ S} for every
a ∈ F . Then we have:

(1) γ(a) ≤ a;
(2) γ(γ(a)) = γ(

∨
J∈S J(a)) =

∨
I∈S

∨
J∈S I(J(a))

=
∨

I∈S I(a) = γ(a);
(3) γ(

∨
i∈I ai) =

∨
J∈S J(

∨
i∈I ai) =

∨
J∈S

∨
i∈I J(ai)

=
∨

i∈I
∨

J∈S J(ai) =
∨

i∈I γ(ai);
(4) γ((γ(a))′) =

∨
J∈S J((γ(a))

′) =
∨

J∈S J((
∨

I∈S I(a))
′)

=
∨

J∈S J(
∧

I∈S(I(a))
′) =

∨
J∈S ⊓I∈SJ((I(a))′)

=
∨

J∈S J(a
′) = γ(a′).

It is easy to see that for every J ∈ S, J ≤ γ and Imγ ⊆ E. On
the other hand, we have J(a) = J(J(a)) ≤ γ(J(a)) ≤ J(a). Thus
J(a) = γ(J(a)), and hence ImJ ⊆ Imγ. □

By Lemmas 2.8 and 2.9, we have the following result.
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Corollary 2.10. Let (F, ′) be a fuzz and A be a complete join sublattice
of F . Let S be the collection of all subfuzzes B of F such that B ⊆ A.
Then S has a maximal element.

Theorem 2.11. The equalizer of F
f−→

−→
g

G in Fuzz is the pair (E, e),
where E is the maximal subfuzz of F such that E ⊆ Efg := {x ∈ F |
f(x) = g(x)} and e : E → F is the inclusion map.
Proof. Let h : N → F be a fuzz map such that f ◦ h = g ◦ h. Consider
a mapping J : F → F given by J(a) = h ◦ ĥ(a) for every a ∈ F .
Since ĥ ◦ h ◦ ĥ = ĥ, it is easy to show that J satisfies the conditions
(S1) − (S4). Thus Imh = ImJ ⊆ Efg and hence h(x) ∈ E. Now, we
define α : N → E by α(x) = h(x). Then e ◦α = h and for every x ∈ E
we have

α̂(xc) = α̂(ê(x)c) = α̂ ◦ ê(x′) = ĥ(x′) = (ĥ(x))′ = (α̂(x))′.

Thus α is a fuzz map. Finally, it is easy to check that α is unique. □
Similar to the proof of Theorem 2.11, we have the following result.

Theorem 2.12. e : (E, δ)→ (F, τ) is an equalizer of (F, τ)
f−→

−→
g
(G, η) in

TopFuzz if and only if e is an equalizer in Fuzz and δ = {ê(a) | a ∈ τ}.

Corollary 2.13. If M̃(F ) is a join generating base for F , then the
equalizer of F

f−→
−→
g

G in Fuzz is the pair (E, e), where E is the complete
join sublattice generated by the set M̃fg := {m ∈ M̃(F ) | f(x) = g(x)}
and e : E → F is the inclusion map.

Proof. Consider γ : F → F given by γ(a) = ∨{m ∈ M̃fg | m ≤ a} for
every a ∈ F . It is easy to show that the map γ satisfies the conditions
(S1)− (S4) and Imγ = E. On the other hand, for every mapping J :
F → F which satisfies the conditions (S1)− (S4) and ImJ ⊆ Efg, we
have J(a) = J(∨{m ∈ M̃(F ) | m ≤ a}) = ∨{J(m) | m ∈ M̃(F ),m ≤
a}. Since J(m) ≤ m, so for every m ∈ M̃(F ), either J(m) = m
or J(m) = 0. Thus ImJ ⊆ Imγ, which shows that E is a maximal
subfuzz of F such that E ⊆ Efg, as desired. □
Remark 2.14. [8] The category Top is a reflective and coreflective full
subcategory of TopFuzz via the embedding power functor P : TOP→
TopFuzz defined by P(X, τ) = (P(X), τ).

Example 2.15. Let X
f−→

−→
g
Y be two arbitrary continuous functions.

Then the equalizer of P(X)
P(f)−→
−→
P(g)
P(Y ) in TopFuzz is the pair (E, e),
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where E is the complete join sublattice generated by the set {{x} |
x ∈ X, f(x) = g(x)} and e : E → P(X) is the inclusion map. Thus
E = P(Efg), where Efg := {x ∈ X | f(x) = g(x)} is the equalizer of
f and g in the category Top. This of course amounts to the familiar
fact that the reflector P preserves limits.

Recall that an extra order ◁ on a complete lattice L is defined by
a◁ b if, for every subset S ⊆ L, b ≤ ∨S implies a ≤ s for some s ∈ S
[7].

Let {Fi}i∈I be a family of fuzzes. In [11], the product of {Fi}i∈I in
Fuzz was given by ⊗i∈IFi = {A ⊂

∏
i∈I Fi | A =↓ A; and for every

x ∈ A there exists y ∈ A such that xi◁yi for every i ∈ I}, where ↓ A is
the lower set of A. Now, by Theorem 1.9, we have the following result.

Corollary 2.16. Let F f→L
g←G be a pair of fuzz maps. If F p1←F⊗G p2→G

is the product of F and G, and E
e→F⊗G is the equalizer of F ⊗G

f◦p1−→
−→
g◦p2

L,
then the square

E

p2◦e
��

p1◦e // F

f
��

G g
// L

is a pullback in Fuzz.
By Theorems 2.11 and 2.12, we have every regular monomorphism in

Fuzz and TopFuzz is an embedding map, but the following example
shows that monomorphisms need not be injective, in general.
Example 2.17. A monomorphism in Fuzz and TopFuzz need not be
an injective map. For instance, consider F = {0, x, y, 1}, where x and
y are incomparable, x′ = x, y′ = y and G = {0, a, 1}, where 0 < a < 1,
a′ = a. Let the mapping f : F → G defined by: f(0) = 0, f(x) = a,
f(1) = f(y) = 1. Then f is a Fuzz-morphism, but it is not injective.
Now, we show that f is monomorphism. Let L

r→
→
s
F such that r ̸= s.

Then there exists a m ∈ M(L) such that r(m) ̸= s(m). Since r and s
preserve coprime elements, it follows that r(m) and s(m) ∈ M(F ) =
{x, y}. Without loss of generality, let r(m) = x and s(m) = y. Then
f(r(m)) = a ̸= f(s(m)) = 1, this implies that f ◦ r ̸= f ◦ s. Also, if
τ1 = τ2 = {0, 1}, then f is a TopFuzz-morphism, and hence the result
holds for TopFuzz.
Theorem 2.18. If f : F → G is a monomorphism in Fuzz and
TopFuzz, then the restriction mapping f |M̃(F ): M̃(F ) → M̃(G) is
injective.



EQUALIZERS IN THE CATEGORIES FUZZ AND TOPFUZZ 225

Proof. Let m1,m2 ∈ M̃(F ) and f(m1) = f(m2). Consider r, s :
{0, 1} → F given by r(0) = s(0) = 0, r(1) = m1, s(1) = m2. By
Corollary 2.4, r and s are fuzz maps and continuous with respect to
the discrete topology on {0, 1}. Now, we have f ◦ r = f ◦ s and hence
by hypothesis r = s. Thus m1 = r(1) = s(1) = m2. □

3. Conclusions

It is well known that the categories Fuzz of fuzzes with their ho-
momorphisms and TopFuzz of topological fuzzes with their homo-
morphisms are both complete and cocomplete, and some categorical
properties of them were introduced by many authors. In this paper,
we have presented the structure of equalizes in these categories. For
this, we have defined some concepts as subfuzz and topological subfuzz
and shown that equalizers are embedding and continuous embedding
fuzz maps. Thus, every regular monomorphism in these categories is
an injective map, but we have shown that monomorphisms need not
be injective, in general.
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تاپ فاز و فاز رسته های در معادل سازها

نظری٢ نرگس و میرحسین خانی١ قاسم
ایران سیرجان، سیرجان، صنعتی دانشگاه کامپیوتر، علوم و ریاضی ١دانشکده

ایران بندرعباس، هرمزگان، دانشگاه ریاضی، ٢دانشکده

فازی های شامل تاپ فاز رسته و فازی ها شامل فاز رسته که می دانیم شناخته شده نتیجه یک عنوان به
زیادی پژوهشگران توسط آن ها رسته ای خواص بعضی و هستند هم-تام و تام رسته هایی توپولوژیک،
همچنین می پردازیم. رسته ها این در معادل سازها ساختار معرفی به ما مقاله، این در است. شده معرفی
یک به یک توابع لزوماً تکریختی ها اما است یک به یک نگاشت یک منظمی تکریختی هر که می دهیم نشان

نیستند.

معادل ساز. فاز، تاپ فاز، کلیدی: کلمات
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