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ON LOCAL ANTIMAGIC CHROMATIC NUMBER OF
GRAPHS

S. SHAEBANI

Abstract. A local antimagic labeling of a connected graph G with
at least three vertices, is a bijection f : E(G) → {1, 2, . . . , |E(G)|}
such that for any two adjacent vertices u and v of G, the condition
ωf (u) ̸= ωf (v) holds; where ωf (u) =

∑
x∈N(u) f(xu). Assigning

ωf (u) to u for each vertex u in V (G), induces naturally a proper
vertex coloring of G; and |f | denotes the number of colors appear-
ing in this proper vertex coloring. The local antimagic chromatic
number of G, denoted by χla(G), is defined as the minimum of
|f |, where f ranges over all local antimagic labelings of G. In this
paper, we explicitly construct an infinite class of connected graphs
G such that χla(G) can be arbitrarily large while χla(G∨ K̄2) = 3,
where G ∨ K̄2 is the join graph of G and the complement graph
of K2. The aforementioned fact leads us to an infinite class of
counterexamples to a result of [Local antimagic vertex coloring of
a graph, Graphs and Combinatorics 33 (2017), 275–285].

1. Introduction

Unless otherwise stated, we consider connected finite simple graphs
that have at least three vertices. Let G be a graph and f : E(G) →
{1, 2, . . . , |E(G)|} be a bijection. For each vertex u in V (G), we define
ωf (u) to be the sum of the labels of all incident edges to u; more
precisely, ωf (u) =

∑
x∈N(u) f(xu). Whenever there is no ambiguity on

f , we use the symbol ω(u) instead of ωf (u).
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Let G be a graph and f : E(G) → {1, 2, . . . , |E(G)|} be a bijection.
If ωf (u) ̸= ωf (v) for any two distinct vertices u and v in V (G), then f
is called an antimagic labeling of G [5]. Hartsfield and Ringel conjec-
tured that every connected graph with at least three vertices admits
an antimagic labeling [5]. They also made a weaker conjecture that
every tree with at least three vertices admits an antimagic labeling.
By several authors, these two conjectures were partially shown to be
true, but they are still unsolved. For the best and most interesting
results were obtained so far, one can see [7] for trees and [3] for general
graphs. Also, for a detailed and interesting review on these conjectures
one can see chapter 6 of [4].

Arumugam, Premalatha, Bača, and Semaničová-Feňovčíková in [1],
and independently, Bensmail, Senhaji, and Lyngsie in [2], posed a new
definition as a relaxation of the notion of antimagic labeling. They
called a bijection f : E(G) → {1, 2, . . . , |E(G)|} a local antimagic
labeling of G if for any two adjacent vertices u and v in V (G), the con-
dition ωf (u) ̸= ωf (v) holds. They conjectured that every connected
graph with at least three vertices admits a local antimagic labeling.
This conjecture was solved partially in [2]. Finally, Haslegrave proved
this conjecture by means of probabilistic tools [6].

Based on the notion of local antimagic labeling, Arumugam, Pre-
malatha, Bača, and Semaničová-Feňovčíková introduced a new graph
coloring parameter. Let G be a connected graph with at least three
vertices, and f : E(G) → {1, 2, . . . , |E(G)|} be a local antimagic label-
ing of G. For any two adjacent vertices u and v we have ωf (u) ̸= ωf (v);
so, assigning ωf (u) to u for each vertex u in V (G), induces naturally
a proper vertex coloring of G which is called a local antimagic vertex
coloring of G. Let |f | denote the number of colors appearing in this
proper vertex coloring. More precisely, |f | = |{ωf (u) : u ∈ V (G)}|.
The local antimagic chromatic number of G, denoted by χla(G), is de-
fined as the minimum of |f |, where f ranges over all local antimagic
labelings of G [1].

Let G1 and G2 be two vertex disjoint graphs. The join graph of
G1 and G2, denoted by G1 ∨ G2, is the graph whose vertex set is
V (G1) ∪ V (G2) and its edge set equals E(G1) ∪ E(G2) ∪ {ab : a ∈
V (G1) and b ∈ V (G2)}.

Theorem 2.16 of [1] asserts that if a graph G has at least four ver-
tices, then χla(G) + 1 ≤ χla(G ∨ K̄2), where K̄2 is the complement
graph of a complete graph with two vertices. In this paper, we show
that the mentioned theorem is incorrect. In this regard, we explicitly
construct an infinite class of connected graphs G such that χla(G) can
be arbitrarily large and χla(G ∨ K̄2) = 3.
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2. Main results

This section is devoted to constructing an infinite class of connected
graphs G such that χla(G) can be arbitrarily large while χla(G∨ K̄2) =
3. Our procedure is to consider the complete bipartite graph K1,n that
satisfies χla(K1,n) = n + 1 for each positive integer n ≥ 2. We show
that if n is odd and n+1 is not divisible by 3, then χla(K1,n∨ K̄2) = 3.

Theorem 2.1. Let n be an odd integer such that n+ 1 is not divisible
by 3. Then, the join of the star graph K1,n and the complement of K2,
say H := K1,n ∨ K̄2, satisfies χla(H) = 3.

Proof. Let the vertex set of the star graph K1,n be {v, v1, v2, . . . , vn}
and v be its central vertex. Also, let x and y be the two vertices of
K̄2. Since H has some triangles, we have χla(H) ≥ χ(H) ≥ 3. So, for
proving χla(H) = 3, it suffices to provide a local antimagic labeling of
H that induces a local antimagic vertex coloring using exactly three
colors.

For n = 1, define f : E(H) → {1, 2, 3, 4, 5} by

f(vv1) = 1, f(vx) = 5, f(vy) = 4,
f(v1x) = 2, f(v1y) = 3.

In this case, we have

ω(v) = 10, ω(v1) = 6, ω(x) = ω(y) = 7.

Therefore, f is a local antimagic labeling of H that induces a local
antimagic vertex coloring using exactly three colors.

For n ≥ 3, the aim is to construct a local antimagic labeling f :
E(H) → {1, 2, 3, . . . , 3n + 2} such that ω(v1) = ω(v2) = · · · = ω(vn)
and ω(x) = ω(y). In this regard, we first assign f(vvi) = i for each i in
{1, 2, . . . , n}. Also, in our construction, {f(vx), f(vy)} = {n+1, n+2}.
Therefore,

ω(v) =
n+2∑
i=1

i = (n+2)(n+3)
2

.

Also, we must have

ω(x) = ω(y) = 1
2

3n+2∑
i=n+1

i = (n+1)(4n+3)
2

,

and

ω(v1) = ω(v2) = · · · = ω(vn) =
9n+11

2
.
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This shows that since n+ 1 is not divisible by 3, the desired f will be
a local antimagic labeling of H and it induces a local antimagic vertex
coloring of H with three colors. We make a partition {A1, A2, . . . , An}
of the set {n+3, n+4, . . . , 3n+2} such that for each i in {1, 2, . . . , n},
the set Ai has two elements and Ai = {f(vix), f(viy)}. Also, Ai has
one element in {n + 3, n + 4, . . . , 2n + 2} and one element in {2n +
3, 2n + 4, . . . , 3n + 2}. In this regard, our suitable partition is as the
following;

Ai =

 {2n+ 4− 2i , 5n+3
2

+ i} if 1 ≤ i ≤ n+1
2

{3n+ 4− 2i , 3n+3
2

+ i} if n+3
2

≤ i ≤ n.

It is obvious that for each i in {1, 2, . . . , n}, we have
ω(vi) = i+ f(vix) + f(viy) =

9n+11
2

.
Accordingly, the following n+ 1 sets

{f(vx), f(vy)}, {f(v1x), f(v1y)}, . . . , {f(vnx), f(vny)}
are determined. For completing the proof, it is sufficient to determine
the exact values of each of

f(vx), f(vy), f(v1x), f(v1y), . . . , f(vnx), f(vny),
in such a way that ω(x) = ω(y). In this regard, we consider the follow-
ing four cases.

Case 1. The case that n+1
2

4≡ 0.
In this case, we have n ≥ 7. First we determine f(vix) and f(viy) for
each i in {1, 2, . . . , n+1

2
}; as follows.

f(vix) =


5n+3

2
+ i if 1 ≤ i ≤ n+1

2
and (i

4≡ 1 or i
4≡ 0)

2n+ 4− 2i if 1 ≤ i ≤ n+1
2

and (i
4≡ 2 or i

4≡ 3)

and

f(viy) =


2n+ 4− 2i if 1 ≤ i ≤ n+1

2
and (i

4≡ 1 or i
4≡ 0)

5n+3
2

+ i if 1 ≤ i ≤ n+1
2

and (i
4≡ 2 or i

4≡ 3).

If i is a positive integer such that i
4≡ 1 and i+ 4 ≤ n+1

2
, then

i+3∑
j=i

f(vjx) = 9n+ 8− 2i
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and
i+3∑
j=i

f(vjy) = 9n+ 8− 2i.

This shows that since n+1
2

is divisible by 4, we have
n+1
2∑

j=1

f(vjx) =

n+1
2∑

j=1

f(vjy).

Now, we put f(vx) = n + 2 and f(vy) = n + 1. Also, for each i in{
n+3
2
, n+5

2
, n+7

2

}
put

f(vix) =


3n+3

2
+ i if i ∈

{
n+3
2
, n+5

2

}
3n+ 4− 2i if i = n+7

2

and

f(viy) =

 3n+ 4− 2i if i ∈
{

n+3
2
, n+5

2

}
3n+3

2
+ i if i = n+7

2
.

We have

f(vx) +

n+7
2∑

j=n+3
2

f(vjx) = f(vy) +

n+7
2∑

j=n+3
2

f(vjy).

Therefore,

f(vx) +

n+7
2∑

j=1

f(vjx) = f(vy) +

n+7
2∑

j=1

f(vjy).

Now, it is turn to determine the exact values of

f
(
xvn+9

2

)
, f

(
yvn+9

2

)
, f

(
xvn+11

2

)
, f

(
yvn+11

2

)
, . . . , f(xvn), f(yvn).

Consider the following assignments;

f(vix) =


3n+3

2
+ i if n+9

2
≤ i ≤ n and (i

4≡ 0 or i
4≡ 3)

3n+ 4− 2i if n+9
2

≤ i ≤ n and (i
4≡ 1 or i

4≡ 2)

and

f(viy) =


3n+ 4− 2i if n+9

2
≤ i ≤ n and (i

4≡ 0 or i
4≡ 3)

3n+3
2

+ i if n+9
2

≤ i ≤ n and (i
4≡ 1 or i

4≡ 2).
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Since n+1
2

is divisible by 4, the number of vertices in
{
vi| n+9

2
≤ i ≤ n

}
is divisible by 4. Also, n+9

2

4≡ 0. Now, if {i, i + 1, i + 2, i + 3} ⊆{
n+9
2
, n+11

2
, . . . , n− 1, n

}
and i

4≡ 0, we have

i+3∑
j=i

f(vjx) =
i+3∑
j=i

f(vjy).

Accordingly,
n∑

j=n+9
2

f(vjx) =
n∑

j=n+9
2

f(vjy).

We conclude that

f(vx) +
n∑

j=1

f(vjx) = f(vy) +
n∑

j=1

f(vjy);

and the proof is completed in this case.

Case 2. The case that n+1
2

4≡ 2.
For each i in {1, 2, . . . , n+1

2
}, we define f(vix) and f(viy) as follows;

f(vix) =


5n+3

2
+ i if 1 ≤ i ≤ n+1

2
and (i

4≡ 1 or i
4≡ 0)

2n+ 4− 2i if 1 ≤ i ≤ n+1
2

and (i
4≡ 2 or i

4≡ 3)

and

f(viy) =


2n+ 4− 2i if 1 ≤ i ≤ n+1

2
and (i

4≡ 1 or i
4≡ 0)

5n+3
2

+ i if 1 ≤ i ≤ n+1
2

and (i
4≡ 2 or i

4≡ 3).

If {i, i+ 1, i+ 2, i+ 3} ⊆
{
1, 2, . . . , n+1

2

}
and i

4≡ 1, then

i+3∑
j=i

f(vjx) =
i+3∑
j=i

f(vjy).

Because of n+1
2

4≡ 2, we have
n+1
2∑

i=1

f(viy) = 3 +

n+1
2∑

i=1

f(vix).
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By setting the following four assignments

f
(
xvn+3

2

)
= 3n+3

2
+ n+3

2
, f(vx) = n+ 2,

f
(
yvn+3

2

)
= 3n+ 4− 2

(
n+3
2

)
, f(vy) = n+ 1,

we obtain

f(vx) +

n+3
2∑

i=1

f(vix) = f(vy) +

n+3
2∑

i=1

f(viy).

Now, we determine the exact values of

f
(
xvn+5

2

)
, f

(
yvn+5

2

)
, f

(
xvn+7

2

)
, f

(
yvn+7

2

)
, . . . , f(xvn), f(yvn).

Let us regard the following assignments;

f(vix) =


3n+3

2
+ i if n+5

2
≤ i ≤ n and (i

4≡ 0 or i
4≡ 3)

3n+ 4− 2i if n+5
2

≤ i ≤ n and (i
4≡ 1 or i

4≡ 2)

and

f(viy) =


3n+ 4− 2i if n+5

2
≤ i ≤ n and (i

4≡ 0 or i
4≡ 3)

3n+3
2

+ i if n+5
2

≤ i ≤ n and (i
4≡ 1 or i

4≡ 2).

If i 4≡ 0 and {i, i+ 1, i+ 2, i+ 3} ⊆
{

n+5
2
, n+7

2
, . . . , n

}
, then

i+3∑
j=i

f(vjx) =
i+3∑
j=i

f(vjy).

Thus, since n+5
2

4≡ 0 and the number of vertices in
{
vn+5

2
, vn+7

2
, . . . , vn

}
is divisible by 4, we obtain that

n∑
j=n+5

2

f(vjx) =
n∑

j=n+5
2

f(vjy).

Accordingly,

f(vx) +
n∑

j=1

f(vjx) = f(vy) +
n∑

j=1

f(vjy);
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which is desired in this case.

Case 3. The case that n+1
2

is odd and n+3
2

is divisible by 3.
In this case, n−1

2
is even. Also, since n+3

2
is divisible by 3, both of n

3

and n−3
6

are integers. We define
f (v1x) = 2n+ 4− 2, f(vx) = n+ 1,

f (v1y) =
5n+3

2
+ 1, f(vy) = n+ 2.

For each i with 2 ≤ i ≤ n
3
, set f(vix) and f(viy) as the following;

f(vix) =


5n+3

2
+ i if 2 ≤ i ≤ n

3
and i is even

2n+ 4− 2i if 2 ≤ i ≤ n
3
and i is odd

and

f(viy) =

 2n+ 4− 2i if 2 ≤ i ≤ n
3
and i is even

5n+3
2

+ i if 2 ≤ i ≤ n
3
and i is odd.

It is obvious that if i is an even integer with 2 ≤ i ≤ n
3
, then

f(yvi) + f(yvi+1) = f(xvi) + f(xvi+1) + 3.
So,

n
3∑

i=2

f(yvi) =
n−3
2

+

n
3∑

i=2

f(xvi).

Now, for each i with n+3
3

≤ i ≤ n+1
2

, define f(vix) and f(viy) as the
following;

f(vix) =

 2n+ 4− 2i if n+3
3

≤ i ≤ n+1
2

and i is even

5n+3
2

+ i if n+3
3

≤ i ≤ n+1
2

and i is odd

and

f(viy) =


5n+3

2
+ i if n+3

3
≤ i ≤ n+1

2
and i is even

2n+ 4− 2i if n+3
3

≤ i ≤ n+1
2

and i is odd.

If i is an even integer with n+3
3

≤ i ≤ n+1
2

, then we have
f(xvi) + f(xvi+1) = f(yvi) + f(yvi+1) + 3.

Therefore,
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n+1
2∑

i=n+3
3

f(xvi) =
n+3
4

+

n+1
2∑

i=n+3
3

f(yvi).

Finally, let us regard the following assignments for f(vix) and f(viy)
when i is an integer with n+3

2
≤ i ≤ n;

f(vix) =

 3n+ 4− 2i if n+3
2

≤ i ≤ n and i is even

3n+3
2

+ i if n+3
2

≤ i ≤ n and i is odd

and

f(viy) =


3n+3

2
+ i if n+3

2
≤ i ≤ n and i is even

3n+ 4− 2i if n+3
2

≤ i ≤ n and i is odd.

Again, for each even integer i with n+3
2

≤ i ≤ n we have

f(xvi) + f(xvi+1) = f(yvi) + f(yvi+1) + 3.

Thus,
n∑

i=n+3
2

f(xvi) =
3(n−1)

4
+

n∑
i=n+3

2

f(yvi).

We conclude that

f(vx) +
n∑

i=1

f(vix) = f(vy) +
n∑

i=1

f(viy);

which completes the proof in this case.

Case 4. The case that n+1
2

is odd and n−1
2

is divisible by 3.
In this case, we define

f (v1x) = 2n+ 4− 2, f(vx) = n+ 2,

f (v1y) =
5n+3

2
+ 1, f(vy) = n+ 1.

For each i with 2 ≤ i ≤ n+2
3

, put f(vix) and f(viy) as the following;

f(vix) =


5n+3

2
+ i if 2 ≤ i ≤ n+2

3
and i is even

2n+ 4− 2i if 2 ≤ i ≤ n+2
3

and i is odd
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and

f(viy) =

 2n+ 4− 2i if 2 ≤ i ≤ n+2
3

and i is even

5n+3
2

+ i if 2 ≤ i ≤ n+2
3

and i is odd.

For each even integer i with 2 ≤ i ≤ n+2
3

, the following equality holds;

f(yvi) + f(yvi+1) = f(xvi) + f(xvi+1) + 3.

This implies that
n+2
3∑

i=2

f(yvi) =
n−1
2

+

n+2
3∑

i=2

f(xvi).

For each i with n+5
3

≤ i ≤ n+1
2

, we define f(vix) and f(viy) as follows;

f(vix) =

 2n+ 4− 2i if n+5
3

≤ i ≤ n+1
2

and i is even

5n+3
2

+ i if n+5
3

≤ i ≤ n+1
2

and i is odd

and

f(viy) =


5n+3

2
+ i if n+5

3
≤ i ≤ n+1

2
and i is even

2n+ 4− 2i if n+5
3

≤ i ≤ n+1
2

and i is odd.

Now, for each even integer i that n+5
3

≤ i ≤ n+1
2

we have

f(xvi) + f(xvi+1) = f(yvi) + f(yvi+1) + 3.

So, we obtain
n+1
2∑

i=n+5
3

f(xvi) =
n−1
4

+

n+1
2∑

i=n+5
3

f(yvi).

Now, it is time to determine f(vix) and f(viy) for those integers i that
n+3
2

≤ i ≤ n. Let us assign

f(vix) =

 3n+ 4− 2i if n+3
2

≤ i ≤ n and i is even

3n+3
2

+ i if n+3
2

≤ i ≤ n and i is odd

and

f(viy) =


3n+3

2
+ i if n+3

2
≤ i ≤ n and i is even

3n+ 4− 2i if n+3
2

≤ i ≤ n and i is odd.
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Since the equality f(xvi) + f(xvi+1) = f(yvi) + f(yvi+1) + 3 holds for
each even integer i that n+3

2
≤ i ≤ n, we have

n∑
i=n+3

2

f(xvi) =
3(n−1)

4
+

n∑
i=n+3

2

f(yvi).

Accordingly,

f(vx) +
n∑

i=1

f(vix) = f(vy) +
n∑

i=1

f(viy);

and therefore, the proof is completed in the final case. □
The following corollary is an immediate consequence of Theorem 2.1.

Corollary 2.2. For each positive integer n, there exists a graph Gn

such that
min

{
χla(Gn)

χla(Gn ∨ K̄2)
, χla(Gn)− χla(Gn ∨ K̄2)

}
> n.

In other words, min

{
χla(G)

χla(G ∨ K̄2)
, χla(G)− χla(G ∨ K̄2)

}
can be made

arbitrarily large.
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