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SERRE SUBCATEGORY, LOCAL HOMOLOGY AND
LOCAL COHOMOLOGY

S. O. FARAMARZI∗ AND Z. BARGHSOUZ

Abstract. This paper deals with local homology modules and
local cohomology modules contained in a Serre subcategory of the
category of R-modules. For an ideal a of R, we define the con-
cept of the condition Ca on a Serre category which is dual to the
condition Ca of Melkersson. As a main result we show that the
local homology module Ha

i (M) of a minimax R-module M of any
Serre category S satisfying the condition Ca belongs to S. Also,
if S satisfies the condition Ca, then the local cohomology module
Hi

a(M) ∈ S for all i ≥ 0.

1. Introduction

Throughout this paper, let R denote a commutative Noetherian ring
(with identity), a an ideal of R and M an R-module. Cuong and Nam
in [4] defined the i-th local homology module Ha

i (M) of an R-module
M with respect to the ideal a by

Ha
i (M) = lim←−Tor

R
i (R/an ,M ).

This definition slightly differs from the definition of Greenlees and May
[7]. However, both difinitions are the same for the Artinian modules.
It should be noticed that this definition of local homology modules is,
in some sense, dual to the definition of local cohomology modules of
Grothendieck [8]. For each i ≥ 0, the i-th local cohomology module
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H i
a(M) with respect to the ideal a is defined by

H i
a(M) = lim−→ExtiR(R/an ,M ).

The reader can refer to [4], [8] for some basic properties of local homol-
ogy and local cohomology modules.

Vanishing, finiteness and artinianness of local cohomology and lo-
cal homology modules are the main problems in commutative algebra.
Also, these problems consist the core of almost all researches in the
theory of local homology and local cohomology modules. It is well
known that Noetherian and Artinian R-modules are Serre subcategory
of the category of R-modules. Instead of the above problems, one can
ask the following general question which is a new attitude to the above
questions.

Question Under which conditions, local cohomology and local ho-
mology modules belong to a Serre category?

Recall that a subcategory S of the category of R-modules is called
Serre subcategory if it is closed under taking submodules, quotients
and extensions. This paper is to provide some conditions to answer
the above question. The rest of the paper is organised as follows:

In Section 2, we would like to investigate the membership of the local
homology modules Ha

i (M) in S with the condition a ⊆
√

0 : Ha
i (M)

for some integers i, where M is an Artinian R-module (Theorems 2.4
and 2.5). The Theorem 2.7 is one of the main results of this section
which shows that Ha

s (M)/aHa
s (M) ∈ S for Artinian R-module M when

Ha
i (M) ∈ S for all i < s.
In Section 3, we define the condition Ca on the Serre subcategory

of the category of R-modules S as follows: If M
aM
∈ S and M is a-

separated, then M ∈ S. This definition is dual sense to the Melkersson
condition Ca in [1]. First we provide some results for local homology
modules, when (R,m) is a local ring and S satisfies the condition Cm

(Lemma 3.8, Corollary 3.9 and Corrolary 3.10). Next, we show that
if M is an Artinian R-module with NdimM = d and S satisfies the
condition Ca, then Ha

d(M) ∈ S. Finally, as a main theorem of this
section we show that if S is a Serre subcategory of the category of
R-modules satisfying the condition Ca and M is a minimax R-module
of the category S, then Ha

i (M) ∈ S for all i ≥ 0 (Theorem 3.12).
In sections 4 and 5 we prove some results for local cohomology mod-

ules as a dual of sections 2 and 3. Specially in section 4, as a main
theorem, we show that if M is a finitely generated R-module and
H i

a(M) ∈ S for all i > t, then H t
a(M)/aH t

a(M) ∈ S. In section 5,
we assume that S is a Serre subcategory of the category of R-modules
satisfying the condition Ca and prove some results for local cohomology
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modules. As a main theorem of this section we show that if M is a
minimax R-module of S, then H i

a(M) ∈ S for all i ≥ 0 (Theorem 5.5).

2. Local Homology and Serre Subcategory

Let a be an ideal of R and M an R-module. It is well-known that
the i-th local homology module Ha

i (M) of M with respect to the ideal
a is defined in [4] by

Ha
i (M) = lim←−Tor

R
i (R/an ,M ).

It is clear that Ha
0(M) ∼= Λa(M) where Λa(M) = lim←−M/anM is the a-

adic completion of M . Moreover, if M is a finitely generated R-module,
then Ha

i (M) = 0 for all i > 0 according to [4, Remark 3.2].

Remark 2.1. Let M be an Artinian R-module. Then there exists a
positive integer n such that atM = anM for all t ⩾ n and so Ha

0(M) ∼=
Λa(M) ∼= M/anM . Additionally, we have the short exact sequence of
Artinian R-modules

0→
∩
j>0

ajM →M → Λa(M)→ 0.

We put K := anM and assume that aK = K. There is an element x
in a such that xK = K. Thus, we have the short exact sequence of
Artinian modules as follows:

0→ 0 :K x→ K
x−→ K → 0.

Lemma 2.2. [4, Corollary 4.5] Let M be an Artinian R-module and
K :=

∩
j>0 a

jM . Then

Ha
i (K) ∼=

{
0 i = 0,

Ha
i (M) i ⩾ 1.

Now, we recall the definition of the notation NdimRM by the ap-
proach of Kirby [10].

Definition 2.3. The noetherian dimension of M denoted by NdimRM
is defined inductively as follows: when M = 0, put NdimM = −1 .
Then by induction, for any integer d ≥ 0, we define NdimRM = d if
NdimRM < d is false, and for every ascending sequence M0 ⊆ M1 ⊆
· · · of submodules of M , there exists a positive integer n0 such that
Ndim(Mn+1/Mn) < d for all n ≥ n0. Thus M is non-zero and finitely
generated if and only if NdimRM = 0. Also, if M is an Artinian module,
then NdimRM <∞. If 0→M ′ →M →M ′′ → 0 is an exact sequence
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of R-modules, then NdimRM = max{NdimRM
′,NdimRM

′′}. For more
details see [10, 15].
Theorem 2.4. Let S be a Serre subcategory of the category of R-
modules, M be an Artinian R-module and s be a non-negative integer.
If a ⊆

√
0 : Ha

i (M) for all i > s, then Ha
i (M) ∈ S for all i > s.

Proof. We use induction on d := NdimM . For d = 0, Ha
i (M) = 0 for

all i > 0 according to [4, Proposition 4.8]. Now, let d > 0 and assume
that the claim holds for all R-modules with Noetherian dimension less
than d. By Lemma 2.2 we have Ha

i (M) ∼= Ha
i (K) for all i > 0. Thus,

the proof will be completed if we show that Ha
i (K) ∈ S for all i > s.

From Remark 2.1 there is an element x ∈ a such that xK = K. Also,
there exists a positive integer r such that xrHa

i (K) = 0 for all i > s by
assumption. The short exact sequence

0→ 0 :K xr → K
xr

−→ K → 0

induces a short exact sequence of local homology modules
0→ Ha

i+1(K)→ Ha
i (0 :K xr)→ Ha

i (K)→ 0,

for all i > s. It follows a ⊆
√

0 : Ha
i (0 :K xr) for all i > s. It should be

noted by [5, Lemma 4.7] that Ndim(0 :K xr) ⩽ d− 1. By the inductive
hypothesis Ha

i (0 :K xr) ∈ S for all i > s. Therefore Ha
i (K) ∈ S for all

i > s, as required. □
Theorem 2.5. Let S be a Serre subcategory of the category of R-
modules, M be an Artinian R-module such that M ∈ S and s be a
positive integer. If a ⊆

√
0 : Ha

i (M) for all i < s, then Ha
i (M) ∈ S for

all i < s.
Proof. We use induction on s. If s = 1, Ha

0(M) ∼= M
K

so Ha
0(M) ∈ S.

Let s > 1. By Lemma 2.2 we have Ha
i (M) ∼= Ha

i (K) for all i > 0.
Therefore, the proof will be completed if we show that Ha

i (K) ∈ S
for all i < s. From Remark 2.1 there is an element x ∈ a such that
xK = K. Moreover, there is a positive integer r such that xrHa

i (K) = 0

for all i < s, since a ⊆
√

0 : Ha
i (K) for all i < s. Now the short exact

sequence
0→ 0 :K xr → K

xr

−→ K → 0

induces a short exact sequence of local homology modules
0→ Ha

i (K)→ Ha
i−1(0 :K xr)→ Ha

i−1(K)→ 0,

for all i < s. It follows a ⊆
√

0 : Ha
i−1(0 :K xr) for all i < s and by

the inductive hypothesis Ha
i−1(0 :K xr) ∈ S for all i < s. Therefore,

Ha
i (K) ∈ S for all i < s, as required. □
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Corollary 2.6. [4, Proposition 4.7] Let M be an Artinian R-module
and s be a positive integer. Then the following statements are equiva-
lent:

(i) a ⊆
√

0 : Ha
i (M) for all i < s;

(ii) Ha
i (M) is an Artinian R-module for all i < s.

Proof. (i)⇒ (ii) It is a direct result of what we explained in Theorem
2.5.
(ii) ⇒ (i) Let Ha

i (M) is an Artinian R-module for all i < s. Since
Ha

i (M) is a-separated, it follows that atHa
i (M) = 0 for some positive in-

teger t according to [4, Proposition 3.3(i)]. Therefore a ⊆
√

0 : Ha
i (M)

for all i < s. □
Theorem 2.7. Let S be a Serre subcategory of the category of R-
modules, M be an Artinian R-module such that M ∈ S and s be a non-
negative integer. If Ha

i (M) ∈ S for all i < s, then Ha
s (M)/aHa

s (M) ∈
S.

Proof. We use induction on s. Let s = 0. Then the short exact sequence

0→
∩
t>0

atM →M → Λa(M)→ 0

induces an exact sequence∩
t>0

atM/a
∩
t>0

atM →M/aM → Λa(M)/aΛa(M)→ 0.

From Remark 2.1, we have
∩

t>0 a
tM/a

∩
t>0 a

tM = 0, therefore
Λa(M)/aΛa(M) ∼= M/aM , hence Λa(M)/aΛa(M) ∈ S. Let s > 0.
By Lemma 2.2, Ha

i (M) ∼= Ha
i (K) for all i > 0. Thus, the proof will be

completed if we show that Ha
s (K)/aHa

s (K) ∈ S. By Remark 2.1, there
is an element x ∈ a such that xK = K. Now, the short exact sequence

0→ 0 :K x→ K
x−→ K → 0

induces a long exact sequence of local homology modules

· · · → Ha
i (K)

x−→ Ha
i (K)→ Ha

i−1(0 :K x)→ Ha
i−1(K)→ · · · .

It follows from the hypothesis that Ha
i (0 :K x) ∈ S for all i < s − 1,

hence by the inductive hypothesis Ha
s−1(0 :K x)/aHa

s−1(0 :K x) ∈ S.
Now consider the exact sequence

Ha
s (K)

x−→ Ha
s (K)

f−→ Ha
s−1(0 :K x)

g−→ Ha
s−1(K),

which induces the following exact sequences
0→ im f → Ha

s−1(0 :K x)→ im g → 0
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and
Ha

s (K)
x−→ Ha

s (K)→ im f → 0.

Therefore, the following two exact sequences can be obtained:
TorR1 (R/a, im g)→ im f /a(im f )→ H a

s−1 (0 :K x )/aH a
s−1 (0 :K x )

and
Ha

s (K)/aHa
s (K)

x−→ Ha
s (K)/aHa

s (K)→ im f/a(im f)→ 0.

As x ∈ a, one can get Ha
s (K)/aHa

s (K) ∼= im f/a(im f). By [2, Lemma
2.1], TorR1 (R/a, im g) ∈ S. Thus im f/a(im f) ∈ S. □

3. Local homology and Serre category with the condition Ca

In this section we introduce the concept of Ca condition on a Serre
category of R-modules which is dual to Melkersson condition Ca. Also,
we will prove some results on local homology moduls under this condi-
tion. This section starts by reminding the concepts of linearly compact
modules, co-associated prime and co-support.

In [11], Macdonald defined the linearly compact module M as follows:

Definition 3.1. A Hausdorf linearly topologized R-module M is said
to be linearly compact if F is a family of closed cosets (i.e., cosets of
closed submodules) in M which has the finite intersection property,
then the cosets in F have a non-empty intersection.

It is clear that Artinian R-modules are linearly compact with the
discrete topology. Moreover, if (R,m) is a complete ring, then the
finitely generated R-modules are also linearly compact.

Definition 3.2. A prime ideal p of R is called the co-associated prime
of module M if there exists a cocyclic homomorphic image L of M such
that p = AnnR(L).

Note that a module is cocyclic if it is a submodule of E(R/m) for
some maximal ideal m ∈ R. The set of co-associated primes of M is de-
noted by Coass(M ) (see [16]). Now, let T be a multiplicatively closed
subset of R and M an R-module. In [12], Melkersson and Schenzel
called the module TM = HomR(RT ,M ) the co-localization of M with
respect to T and CosR(M ) = {p ∈ SpecR|pM ̸= 0} the co-support of
M . After that, Yassemi defined the co-support of an R-module M , de-
noted by CosuppR(M ), to be the set of primes p such that there exists
a cocyclic homomorphic image L of M with Ann(L) ⊆ p [16]. In gen-
eral, we have Coass(M ) ⊆ Cosupp(M ) and CosR(M ) ⊆ Cosupp(M ).
Also Yassemi showed CosR(M ) = Cosupp(M ) in case M is an Artinian
R-module [16].
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Lemma 3.3. [14, Theorem 3.1] Let a be an ideal of R and M be
a linearly compact R-module. Then

∩
n>0 a

nM = 0 if and only if
Cosuup(M ) ⊆ V (a).

The magnitude of M is defined by
magR(M ) := sup{dimR/p|p ∈ CoassRM }.

If M = 0, then we put magRM = −∞ (see [17]).

Lemma 3.4. Let M be a linearly compact R-module. Then the follow-
ing assertions are true.
(i) If Coaas(M /aM ) is finite and

∩
n>0 a

nM = 0, then Coass(M ) is
finite.
(ii) If magR(M /aM ) ≤ s and

∩
n>0 a

nM = 0, then magR(M ) ≤ s.

Proof. (i) By [16, Theorem 1.21],
Coass(M /aM ) = Supp(R/a) ∩ CoassM = V (a) ∩ CoassM .

Since CoassM ⊆ CosuppM ⊆ V(a), thus Coass(M /aM ) = CoassM .
(ii) follows from (i). □

Definition 3.5. Let S be a Serre subcategory of the category of R-
modules, a be a finitely generated ideal of R and M be an R-module.
We say that S satisfies the condition (Ca): if

∩
n>0 a

nM = 0 and
furthermore if M

aM
∈ S, then M belongs to S.

Example 3.6. The following module classes are Serre subcategories
stisfying the condition Ca.

(i) The class of Noetherian R-modules satisfies the condition Ca if R is
a complete ring with respect to the a-adic completion [5, Lemma 5.1].

(ii) Let R̂ denote the m-adic completion of (R,m). Then the class of
Noetherian R̂-module with finite co-support satisfies the condition Ca.
It is reminded that for any Noetherian R̂-module M , CoassRM =
CosRM [6, Lemma 4.1]. Now, by Lemma 3.4, the result is achieved.

(iii) Let R̂ denote the m-adic completion of (R,m) and s be a non-
negative integer. Then the class of Noetherian R̂-modules with co-
dimension less than s satisfies on Ca condition. It is recalled that
for an R-module M , the co-dimension of M is defined as the integer
CdimRM = sup{dimR/p|p ∈ CosR(M )}(posibily infinite).

In [13], Nam defined a-coartinian module M as follows: An R-module
M is said to be a-coartinian if Cosupp(M ) ⊆ V (a) and TorRi (R/a,M )
is an Artinian R-module for each i. This definition is in some sense
dual to Hartshorne,s concept of a-cofinite modules [9].
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Example 3.7. Let S be the class of a-coartinian Noetherian mod-
ules on a complete local ring. Then S satisfies the condition Ca. Let∩

n>0 a
nM = 0 and M

aM
∈ S. Then, M/aM has finite length and

hence M is finitely generated R-module by Example 3.6(i). Also,
CosuppM ⊆ V (a) since

∩
n>0 a

nM = 0. Now, M is a-coartinian ac-
cording to [13, Theorem 4.8].
Lemma 3.8. Let (R,m) be a local ring and S be a non-zero Serre
subcategory of the category of R-modules satisfying the condition Cm.
If M is a Noetherian R-module, then M ∈ S.
Proof. Since M is a Noetherian R-module,

∩
mnM = 0. Also M

mM
has

finite length, and so M
mM
∈ S according to [2, Lemma 2.11]. Thus

M ∈ S, since S satisfies the condition Cm. □
Corollary 3.9. Let (R,m) be a complete local ring, S be a non-zero
Serre subcategory of the category of R-modules satisfying the condition
Cm and M be an Artinian R-module. Then Hm

i (M) ∈ S for all i ⩾ 0.
Proof. By [5, Theorem 5.2] Hm

i (M) is a Noetherian R-module for all
i ⩾ 0. Thus, Hm

i (M) ∈ S for all i ⩾ 0 by Lemma 3.8. □
Corollary 3.10. Let (R,m) be a complete local ring, S be a non-zero
Serre subcategory of the category of R-modules satisfying the condition
Cm and M be an Artinian R-module with NdimM = d . Then Ha

d(M) ∈
S.
Proof. Using [5, Theorem 5.3] and Lemma 3.8, we have the result. □
Theorem 3.11. Let (R,m) be a local ring, S be a non-zero Serre
subcategory of the category of R-modules satisfying the condition Ca

and M be an Artinian R-module with NdimM = d . Then Ha
d(M) ∈ S.

Proof. We use induction on d. If d = 0, then M is a finitely generated
R-module and therefore, is an a-separated R-module. By [5, Theorem
3.8], Ha

0(M) ∼= Λa(M) ∼= M and therefore Ha
0(M) has finite length and

hence Ha
0(M) ∈ S according to [2, Lemma 2.11]. Let d > 0. From

Lemma 2.2, we have Ha
d(M) ∼= Ha

d(
∩

t>0 a
tM). If Ndim(

∩
t>0 a

tM ) <
d , then Ha

d(M) = 0 according to [5, Theorem4.8] and then there is
nothing to prove. So, assume that Ndim(

∩
t>0 a

tM ) = d , and without
loss of generality M can replaced by

∩
t>0 a

tM . Thus, there is an
element x ∈ a such that xM = M . The short exact sequence

0→ 0 :M x→M
x−→M → 0

induces an exact sequence of local homology modules

Ha
d(M)

x−→ Ha
d(M)

δ−→ Ha
d−1(0 :M x).
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Note that according to [5, Lemma 4.7], Ndim(0 :M x) ≤ d − 1. If
Ndim(0 :M x) < d − 1, then Ha

d−1(0 :M x) = 0 and hence according to
[5, Lemma 3.2(ii)], we have

Ha
d(M) = xHa

d(M) =
∩
t>0

xtHa
d(M) = 0.

So it can be assumed that Ndim(0 :M x) = d− 1. It follows by the in-
ductive hypothesis that Ha

d−1(0 :M x) ∈ S. On the other hand, we have
Ha

d(M)/xHa
d(M) ∼= im δ ⊆ Ha

d−1(0 :M x). Thus Ha
d(M)/xHa

d(M) ∈ S,
and hence Ha

d(M)/aHa
d(M) ∈ S, since x ∈ a. Therefore Ha

d(M) ∈ S,
since S satisfies the condition Ca. □

Theorem 3.12. Let (R,m) be a local ring, S be a Serre subcategory of
the category of R-modules satisfying the condition Ca and M ∈ S be a
minimax R-module. Then Ha

i (M) ∈ S for all i ⩾ 0.

Proof. The proof will be divided into two steps:
Step 1. We assume that M is an Artinian R-module and prove the
theorem using induction on i. If i = 0, then Ha

0(M) ∼= Λa(M) ∼=
M/

∩
t>0 a

tM according to [14, Remark 2.2]. Thus Ha
0(M) ∈ S, since

M ∈ S. Let i > 0. By Remark 2.1, the short exact sequence of Artinian
modules is obtained

0→ 0 :K x→ K
x−→ K → 0,

which induces the following exact sequence of local homology modules

Ha
i (K)

x−→ Ha
i (K)

δ−→ Ha
i−1(0 :K x).

We have Ha
i (K)/xHa

i (K) ∼= im δ ⊆ Ha
i−1(0 :K x). By the inductive

hypothesis, Ha
i−1(0 :K x) ∈ S. Therefore Ha

i (K)/xHa
i (K) ∈ S and

hence Ha
i (K)/aHa

i (K) ∈ S. Now Ha
i (K) ∈ S, since S satisfies the

condition Ca.
Step 2. We assume that M is a minimax R-module. Thus there is a
short exact sequence

0→ N →M → A→ 0,

where N is finitely generated and A is Artinian. Now, the long exact
sequence of local homology modules is obtained

· · · → Ha
i (N)→ Ha

i (M)→ Ha
i (A)→ · · · .

As it is proved in step 1, Ha
i (A) ∈ S for all i ≥ 0. Also Ha

i (N) = 0
for i > 0 by [5, Lemma 3.2] and Ha

0(N) ∼= Λa(N) ∼= N ∈ S. Thus
Ha

i (M) ∈ S for all i ≥ 0. □
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4. Local cohomology and Serre category
In this section, we prove some results for local cohomology modules

as a dual of section 2. Let a be an ideal of R and M be an R-module.
It is well-known that the i-th local cohomology module H i

a(M) of M
with respect to the ideal a can be defined by

H i
a(M) = lim−→ExtiR(R/an ,M ).

When i = 0, we have H0
a (M) ∼= ∪n>0(0 :M an) = Γa(M).

Theorem 4.1. Let S be a Serre subcategory of the category of R-
modules, M a finitely generated R-module and t a non-negative integer.
If a ⊆

√
0 : H i

a(M) for all i > t, then H i
a(M) ∈ S for all i > t.

Proof. We use induction on d = dimM . For d = 0, H i
a(M) = 0 for all

i > 0 according to [3, Theorem 6.1.2]. Now, let d > 0 and assume that
the claim holds for all R-modules of dimension less than d. Without
loss of generality, we can assume that M is an a-torsion free R-module.
Then by assumption, there is an M -regular element x ∈ a and a positive
integer k such that xkH i

a(M) = 0. The short exact sequence

0→M
xk

−→M →M/xkM → 0

gives rise to a long exact sequence

· · · → H i
a(M)

xk

−→ H i
a(M)→ H i

a(M/xkM)→ H i+1
a (M)→ · · · ,

for all i ∈ N0. From this exact sequence we have a ⊆
√

0 : H i
a(M/xkM)

for all i > t. Since dimM /xkM = d − 1, it follows from the inductive
hypothesis that H i

a(M/xkM) ∈ S for all i > t. Since xkH i
a(M) = 0 for

all i > t, the above long exact sequence implies that

0→ H i
a(M)→ H i

a(M/xkM)→ H i+1
a (M)→ 0

is an exact sequence for all i > t. Hence H i
a(M) ∈ S for all i > t. □

Theorem 4.2. Let S be a Serre subcategory of the category of R-
modules, M be a finitely generated R-module such that M ∈ S and t be
a positive integer. If a ⊆

√
0 : H i

a(M) for all i < t, then H i
a(M) ∈ S

for all i < t.

Proof. We use induction on t. When t = 1, we have H0
a (M) = Γa(M) ∈

S. Now, let t > 1 and the result has been proved for smaller value of t.
Without loss of generality, we can assume that M is an a-torsion free
R-module. Then by assumption, there is an M -regular element x ∈ a
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and a positive integer k such that xkH i
a(M) = 0 for all i < t. The short

exact sequence
0→M

xk

−→M →M/xkM → 0

gives us the long exact sequence

· · · → H i
a(M)

xk

−→ H i
a(M)→ H i

a(M/xkM)→ H i+1
a (M)→ · · · .

Thus, we have an induced short exact sequence
0→ H i−1

a (M)→ H i−1
a (M/xkM)→ H i

a(M)→ 0,

for all i < t. It follows that a ⊆
√

0 : H i
a(M/xkM) for all i < t− 1 and

by the inductive hypothesis H i
a(M/xkM) ∈ S for all i < t − 1. Hence

H i
a(M) ∈ S for all i < t. □

Corollary 4.3. [3, Proposition 9.1.2] Let M be a finitely generated
R-module and t be a positive integer. Then the following statements
are equivalent:

(i) a ⊆
√

0 : H i
a(M) for all i < t;

(ii) H i
a(M) is finitely generated for all i < t.

Proof. (i)⇒ (ii) It is a direct result of what we explained in Theorem
4.2.
(ii)⇒ (i) H i

a(M) is finitely generated for all i < t, then auH i
a(M) = 0

for some positive integer u, and so a ⊆
√

0 : H i
a(M). □

Theorem 4.4. Let S be a non-zero Serre subcategory of the category of
R-modules, M be a finitely generated R-module and t be a non-negative
integer. If H i

a(M) ∈ S for all i > t, then H t
a(M)/aH t

a(M) ∈ S.

Proof. We use induction on d = dimM . If d = 0, then H i
a(M) =

0 for all i > 0 according to [3, Theorem 6.1.2]. It is clear that
H0

a (M)/aH0
a (M) has finite length and thus H0

a (M)/aH0
a (M) ∈ S by

[2, Lemma 2.11]. Now, let d > 0 and assume that the claim holds for
all R-modules of dimension smaller than d. Without loss of generality,
we can assume that M is an a-torsion free R-module. Then there is an
M -regular element x ∈ a. The short exact sequence

0→M
x−→M →M/xM → 0

results the long exact sequence

· · · → H i
a(M)

x−→ H i
a(M)

fi−→ H i
a(M/xM)

gi−→ H i+1
a (M)→ · · · , (4.1)

for all i ∈ N. Since dimM /xM = d − 1, it follows from the inductive
hypothesis that Ht

a(M/xM)
aHt

a(M/xM)
∈ S. The exact sequence (4.1) induces the
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following exact sequence
0→ im(ft)→ H t

a(M/xM)→ im(gt)→ 0.

Now the exact sequence

TorR1 (R/a, im(gt))→ im(ft)⊗R R/a→ H t
a(M/xM)

aH t
a(M/xM)

→ im(gt)

a im(gt)
→ 0

implies that im(ft)⊗R
R
a
∈ S. Also, the long exact sequence (4.1) yields

the isomorphism

H t
a(M)/xH t

a(M)⊗R
R

a
∼= im(ft)⊗R

R

a
.

As x ∈ a, H t
a(M)/xH t

a(M) ⊗R
R
a
∼= H t

a(M)/aH t
a(M). Hence we have

H t
a(M)/aH t

a(M) ∈ S. □

5. Local cohomolog and Serre category with Ca

condition

In this section, we remind the concept of Ca condition on a Serre
category induced by Melkersson in [1]. Concerning this condition some
results about local cohomology modules similar to the section 3 are
proved. It is reminded that a Serre subcategory S of the category of
R-modules satisfies the condition:

(Ca) If M = Γa(M) and if 0 :M a ∈ S then M ∈ S (see [1]).
Lemma 5.1. Let (R,m) be a local ring and S be a non-zero Serre
subcategory of the category of R-modules satisfying the condition Cm.
If M is an Artinian R-module, then M ∈ S.
Proof. Since M is an Artinian R-module, we put M = Γm(M). Also,
using m(0 :M m) = 0, one can get 0 :M m has finite length. Thus
0 :M m ∈ S and hence M ∈ S, since S satisfies the condition Cm. □
Corollary 5.2. Let (R,m) be a local ring, S be a non-zero Serre sub-
category of the category of R-modules satisfying the condition Cm and
M be a finitely generated R-module. Then H i

m(M) ∈ S for all i ⩾ 0.
Proof. By [3, Theorem 7.1.3] and Lemma 5.1, we get the resut. □
Corollary 5.3. Let (R,m) be a local ring, S be a non-zero Serre sub-
category of the category of R-modules satisfying the condition Cm and
M be a finitely generated R-module of dimension d. Then Hd

a (M) ∈ S.
Proof. Using [3, Theorem 7.1.6] and Lemma 5.1, we have the result. □
Theorem 5.4. Let (R,m) be a local ring, S be a non-zero Serre sub-
category of the category of R-modules satisfying the condition Ca and
M be a finitely generated R-module of dimension d. Then Hd

a (M) ∈ S.
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Proof. We use induction on d. If d = 0, then Γa(M) is an Artinian R-
module with finite length which results H0

a (M) ∈ S. Let d > 0. Then
H i

a(M) ∼= H i
a(M/Γa(M)) for all i ≥ 1. So, without loss of generality we

can assume that M is an a-torsion-free R-module. Thus, there exists
an element x ∈ a which is non-zero divisor on M . The exact sequence

0→M
x−→M →M/xM → 0

induces an exact sequence
Hd−1

a (M/xM)→ Hd
a (M)

x−→ Hd
a (M)

of local cohomology modules. Since dimM/xM = d−1, it follows from
the inductive hypothesis that Hd−1

a (M/xM) ∈ S and so (0 :Hd
a (M) x) ∈

S. Now, since S satisfies the condition Ca, we have Hd
a (M) ∈ S. □

Theorem 5.5. Let S be a non-zero Serre subcategory of the category
of R-modules satisfying the Ca condition and M ∈ S be a minimax
R-module. Then H i

a(M) ∈ S for all i ≥ 0.
Proof. The proof will be divided into the following two steps:

Step 1. We assume that M is a Noetherian R-module and prove the
theorem using induction on i. Assuming i = 0 results Γa(M) ∈ S since
M ∈ S. Let i > 0. Then H i

a(M) ∼= H i
a(M/Γa(M)). Moreover, without

loss of generality, we can assume that M is an a-torsion-free R-module.
Thus there exists an element x ∈ a which is non-zero divisor on M .
The exact sequence

0→M
x−→M →M/xM → 0

induces an exact sequence of local cohomology modules
H i−1

a (M/xM)→ H i
a(M)

x−→ H i
a(M).

It follows from the inductive hypothesis that H i−1
a (M/xM) ∈ S and

therefore 0 :Hi
a(M) x ∈ S. Finally, the condition Ca results what we

would like to prove.
Step 2. We assume that M is a minimax R-module. So, there is a

short exact sequence
0→ N →M → A→ 0,

where N is a finitely generated R-module and A is an Artinian R-
module. Now, we have the long exact sequence of local homology
modules

· · · → H i
a(N)→ H i

a(M)→ H i
a(A)→ · · · .

According to the step 1, H i
a(N) ∈ S for all i ≥ 0. So, the properties

of A result H i
a(A) = 0 for i > 0 and H0

a (A) ∈ S. Now, the proof is
completed. □
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S. O. FARAMARZI AND Z. BARGHSOUZ

موضعی كوهمولوژی و موضعی همولوژی سر، زيررسته

برق سوز زهرا و فرامرزی سعادت اله
ایران تهران، نور، پيام دانشگاه ریاضی، گروه

از سر زیررسته در که موضعی کوهمولوژی مدول های و موضعی همولوژی مدول های بررسی به مقاله این
شرط دوگان واقع در که Ca مفهوم ،R از a ایده آل برای می پردازد. می گیرند، قرار R-مدول ها رسته
که می دهیم نشان اصلی نتیجه یک عنوان به می کنیم. تعریف سر رسته یک روی را است ملکرسون Ca

موضعی همولوژی مدول کند، صدق Ca شرط در که S سر رسته از M مینی ماکس R-مدول هر برای
مدول ،i ≥ ٠ هر برای آن گاه کند، صدق Ca شرط در S اگر هم چنین است. S به متعلق Ha

i (M)

است. S به متعلق H i
a(M) موضعی کوهمولوژی

.Ca شرط سر، زیررسته موضعی، كوهمولوژی موضعی، همولوژی کلیدی: کلمات
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