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ORDER DENSE ESSENTIALITY AND BEHAVIOR OF
ORDER DENSE INJECTIVITY

L. SHAHBAZ

Abstract. In this paper, we study the categorical and algebraic
properties, such as limits and colimits of the category Pos-S with
respect to order dense embeddings. Injectivity with respect to this
class of monomorphisms has been studied by the author and used
to obtain information about injectivity relative to order embed-
dings. Then, we study three different kinds of essentiality, usually
used in literature, with respect to the class of all order dense em-
beddings of S-posets, and investigate their relations to order dense
injectivity. We will see, among other things, that although all of
these essential extensions are not necessarily equivalent, they be-
have equivalently with respect to order dense injectivity. More
precisely, it is proved that order dense injectivity well behaves re-
garding these essentialities. Finally, a characterization of these
essentialities over pogroups is given.

1. Introduction

The study of injectivity with respect to different classes of monomor-
phisms is crucial in almost all categories. It is well known that there
is no non-trivial injective object with respect to monomorphisms in
the categories Pos of posets and Pos-S of S-posets. The most natu-
ral monomorphisms in ordered structures are order embeddings which
are the equalizers (regular monomorphisms). That is why researchers
study different types of injectivity with respect to different types of em-
beddings instead of general monomorphisms. For example, in [8], [12],
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[15], and [16] injectivity of S-posets with respect to order embeddings
has been studied and [8] shows that there are enough regular injective
S-posets. There are three main propositions given by Banaschewski in
relation to injectivity that are called Well-Behavior Theorems of Injec-
tivity. These propositions are about the relations between the notion
of injectivity, absolute retract, essential extension, and injective hull.
Also, there are three different definitions of essentiality usually used
in literature with respect to a subclass of monomorphisms. Ebrahimi
et al. in [5, 6] and Barzegar et al. in [2] studied the behavior of M-
injectivity with respect to these three different types of essentiality
relative to a subclass M of monomorphisms of a category in general.
In this paper, we study the categorical and algebraic properties, such as
limits and colimits of the category Pos-S with respect to order dense
embeddings. Injectivity with respect to this class of monomorphisms is
related to regular injectivity and this motivates us to study this kind of
injectivity. Also, three kinds of essentiality with respect to the class of
all order dense embeddings of S-posets are studied and their relations
to order dense injectivity are investigated. It is proved among other
things, that although all of these essential extensions are not neces-
sarily equivalent, they behave equivalently with respect to order dense
injectivity. More precisely, it is proved that order dense injectivity
well behaves regarding these essentialities. Finally, a characterization
of these essentialities over pogroups is given.

First we briefly recall the definition and the categorical and algebraic
ingredients of the category Pos-S of (right) S-posets needed in the
sequel. For more information see [4], [7] and [9]. Recall that a monoid
(semigroup) S is said to be a pomonoid (posemigroup) if it is also a
poset whose partial order ≤ is compatible with its binary operation
(that is, s ≤ t, s′ ≤ t′ imply ss′ ≤ tt′).

A (right) S-poset over a pomonoid (or, a posemigroup S) is a poset A
which is also an S-act whose action λ : A×S → A is order-preserving,
where A× S is considered as a poset with componentwise order.

An S-poset map (or S-poset morphism) is an action preserving mono-
tone map between S-posets. Moreover, regular monomorphisms (equal-
izers) are exactly order embeddings (briefly, embeddings); that is, (mono)
morphisms f : A→ B for which f(a) ≤ f(a′) if and only if a ≤ a′, for
all a, a′ ∈ A.

Let A be an S-poset. A (right) S-poset congruence on A is a (right)
S-act congruence θ, that is, an equivalence relation on A which is closed
under S-action, with the property that the S-act A/θ can be made into
an S-poset in such a way that the canonical S-act map A → A/θ is
an S-poset map. The set of all S-poset congruences on A is denoted
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by Con(A). For a binary relation β on A, define a relation ≤β on A
by a ≤β a′ if and only if a ≤ a1βa

′
1 ≤ ... ≤ anβa

′
n ≤ a′ for some

a1, a
′
1, ..., an, a

′
n ∈ A, n ∈ N. Then an S-act congruence θ on A is

an S-poset congruence if and only if for every a, a′ ∈ A, aθa′ whenever
a ≤θ a

′ ≤θ a. The S-poset quotient is then the S-act quotient A/θ with
the partial order given by [a]θ ≤ [a′]θ if and only if a ≤θ a

′. Clearly,
a ≤ a′ implies that a ≤θ a

′.
Recall that the product of a family of S-posets is their cartesian

product, with componentwise action and order. The coproduct is their
disjoint union, with natural action and componentwise order. As usual,
we use the symbols

∏
and

⨿
for product and coproduct, respectively.

Also for a family (Ai)i∈I of S-posets each of which has a unique fixed
element 0, the direct sum

⊕
iAi is defined to be the sub-S-poset of the

product
∏

iAi consisting of all (ai)i∈I such that ai = 0 for all i ∈ I
except finitely many number of indices.

Recall from [11] that, an order embedding A
m→ B of S-posets is

called regular essential if f : B → C is an order embedding whenever
fm is an order embedding and is called mono-essential if f : B → C
is a monomorphism whenever fm is a monomorphism.

We recall the following definition of sublimit and subcolimit in a
category from [4].

Definition 1.1. Let the functor D : I → Pos-S be an ordered diagram
in the sense that Mor(I) is a poset, where I is a small category. A
family (fi : A→ Di)i∈I′ , where I ′ = {i ∈ I : i = dom(d), for some d ∈
Mor(I), d ̸= id} is called a subsource for D. If also, for every pair of
I-morphisms d ≤ d′ in I where d : i → j and d′ : k → j, we have
Dd ◦ fi ≤ Dd′ ◦ fk, then we call the family a natural subsource for D.
Here, the order relation ≤ between S-poset maps is defined pointwise.
A natural subsource (fi : A→ Di)i∈I′ which has the universal property
that, for every natural subsource (gi : B → Di)i∈I′ there exists a unique
S-poset map h : B → A such that fi ◦ h = gi for all i ∈ I ′, is said to
be a sublimit of the ordered diagram D.

In particular, a sublimit of a discrete diagram
d ⟲⟳ d′

in which d, d′ ̸= id but Dd = idDi, Dd
′ = idDj, is called a subproduct of

Di and Dj, which coincides with the product of Di and Dj. A sublimit
of a diagram

•
d //

d′
// •
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in which d ≤ d′ is called a subequalizer of Dd and Dd′, and a sublimit
of a diagram

• d // • •d′oo

in which d ≤ d′ is called a subpullback of Dd and Dd′. Note that a
subequalizer or subpullback of Dd′ and Dd may be different from that
of Dd and Dd′.

Dually, subcolimits, and in particular, subcoproducts, subcoequaliz-
ers, and subpushouts are defined. Notice that the universal property
given above guarantees that sublimits and subcolimits are unique.

2. Main results

2.1. Categorical properties of order dense embeddings. To study
mathematical notions, such as injectivity, tensor product, and flat-
ness in any category A, one needs to have some categorical and al-
gebraic information about the pair (A,M), where M is a class of
(mono)morphisms. In this section, after recalling the definition of or-
der dense embeddings, we study some categorical and algebraic proper-
ties of the category Pos-S with respect to these monomorphisms. We
study the composition, limit, and colimit properties in the following
three subsections.

Definition 2.1. A sub-S-poset A of an S-poset B is called order dense
in B if for each b ∈ B there exists a ∈ A with b ≤ a. By an order
dense embedding, we mean an order embedding f : A → B such that
f(A) is an order dense sub-S-poset of B. Also, a sub-S-poset A of an
S-poset B is called down closed in B if for each a ∈ A and b ∈ B with
b ≤ a one has b ∈ A. By a down closed embedding, we mean an order
embedding f : A→ B such that f(A) is a down closed sub-S-poset of
B.
The class of all order dense embeddings is denoted by Mod.

2.1.1. Composition properties of order dense embeddings. Here, we in-
vestigate some composition properties of the class Mod of order dense
embeddings. These properties and the ones given in the rest of this sec-
tion are what normally used to study injectivity, and of course other
mathematical notions.

Remark 2.2. (1) Notice that all isomorphisms are order dense and the
composition of an isomorphism with an order dense embedding is an
order dense embedding. Also, each surjective S-poset map is order
dense and the composition of two order dense embeddings is an order
dense embedding.
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(2) The class Mod is right cancellable, in the sense that for S-poset
maps f and g if gf ∈Mod then g ∈Mod.
(3) The class Mod is not left cancellable. For example, consider the
S-poset maps 2

f
↪→ 2∪̇1 g→ 3 with trivial actions of a pomonoid S on

2,2∪̇1 and 3 where 1 = {c} and 2 = {a, b},3 = {a, b, c} are one, two
and three element chains, respectively, f is inclusion and g is given by
g(a) = a, g(b) = g(c) = c. Then gf ∈Mod but f is not in Mod.
Proposition 2.3. Let f : A → B be an S-poset map. Then there are
S-poset maps e,m such that:

(1) f = me with e ∈Mod, and
(2) for any commutative rectangular

A

e
��

u // D

g

��

C
w

  @
@

@
@

m
��
B v

// E

in Pos-S, there is an S-poset map w : C → E with gu = we and
vm = w.
Proof. Take f : A → B, and let C =↓ f(A) where ↓ f(A) = {b ∈
B : ∃a ∈ A, b ≤ f(a)}. Define e : A → C by e(a) = f(a) for a ∈ A,
and take m : C → B to be the inclusion map. Then f = me. This
proves (1). To see (2), define w : C → E by w(f(a)) = gu(a), w(b) =
v(b), b ∈↓ f(A) − f(A). Then clearly w is well-defined. It is clear, by
the definition of w, that gu = we and vm = w. □
2.1.2. Limits of order dense embeddings. Here, we will investigate the
behavior of order dense embeddings with respect to limits.
Proposition 2.4. Mod is closed under products.
Proof. Let (fi : Ai → Bi)i∈I be a family of order dense embeddings.
Consider the commutative diagram �∏

i∈I Ai
f //

pAi

��

∏
i∈I Bi

pBi

��
Ai

fi

// Bi

� which f exists by the universal property of products. It is easily
proved that f is an order embedding. So we show that f is an order
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dense map. We have to show that for each b = (bi)i∈I ∈
∏

i∈I Bi there
exists an element a ∈

∏
i∈I Ai such that b ≤ f(a). Since each fi is

order dense and for each i ∈ I, bi ∈ Bi, there exists ai ∈ Ai, bi ≤ fi(ai).
Now b = (bi)i∈I ≤ f(a) = (fi(ai))i∈I . Hence f is order dense. □

Recall that the pullback of S-poset maps f : A→ C and g : B → C
is the sub-S-poset P = {(a, b) : f(a) = g(b)} of A × B, together with
the restricted projection maps. By substituting “=” in the definition
of pullback P by “≤ ”, the subpullback of f and g is obtained (see [4]).

In the definition of pullback, if A and B are disjoint S-posets, the
pullback of f and g is different from that of g and f .

Recall that a class of morphisms of a category is called subpullback
stable if subpullbacks transfer those morphisms. In the next result, we
prove this property for order dense embeddings of S-posets.

Proposition 2.5. The class Mod is subpullback stable.

Proof. Consider the subpullback diagram

P
pA //

pB
��

A

f
��

B g
// C

where P is the sub-S-poset {(a, b) : f(a) ≤ g(b)} of A×B, and subpull-
back maps pA : P → A, pB : P → B are restrictions of the projection
maps. Assume that f, g ∈Mod. We show that pA, pB ∈Mod. By [10],
pA and pB are order embeddings. Now, let b ∈ B. Then g(b) ∈ C.
Since f is order dense there exists a ∈ A such that g(b) ≤ f(a). Now,
there exists b′ ∈ B such that f(a) ≤ g(b′) since g is order dense. Thus
g(b) ≤ g(b′) and then b ≤ b′ since g is an order embedding. Therefore,
(a, b′) ∈ P and b ≤ b′ = pB(a, b

′) which shows that pB is an order dense
embedding. Similarly, pA ∈Mod. □
Definition 2.6. The subclass M of monomorphisms is closed under
M-subpullbacks if in the following subpullback diagram

P
pA //

pB
��

A

f
��

B g
// C

with g, f ∈M one has gpB, fpA ∈M.
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Corollary 2.7. The class of order dense embeddings is closed under
Mod-subpullbacks.

Proof. Since the composition of order dense embeddings is an order
dense embedding the result holds by the above proposition. □

Let A : I→ Pos-S be a diagram in Pos-S determining the S-posets
Aα, for α ∈ I = Obj(I), and S-poset maps gαβ : Aα → Aβ, for α → β
in Mor(I). Recall that the limit of this diagram is A = lim←−αAα :=∩

α∈I Eα, where Eα = {a = (aα)α∈I ∈
∏

αAα : gαβpα(a) = pβ(a)} and
pα, pβ are the α, βth projection maps of the product. Also, the limit
S-maps are qα =: pα |A: lim←−αAα → Aα.

Proposition 2.8. Mod is closed under limits.

Proof. Let A,B : I → Pos-S be diagrams in Pos-S determining the
S-posets Aα, Bα, for α ∈ I = Obj(I), and S-poset maps gαβ : Aα →
Aβ, g′αβ : Bα → Bβ, for α → β in Mor(I). Consider limits of these
diagrams with limit maps qα : lim←−Aα → Aα, q′α : lim←−Bα → Bα. Let
{fα : Aα → Bα|α ∈ I} be a family of order dense embeddings such
that g′αβfα = fβgαβ. Let f denote lim←−fα : lim←−Aα → lim←−Bα which
exists by the universal property of limits. We show that f belongs to
Mod. Consider the following diagram

lim←−Aα
f //

qα

��

lim←−Bα

q′α
��

Aα
fα

// Bα.

Let f(a) ≤ f(a′), a, a′ ∈ lim←−Aα. Then fαqα(a) = q′αf(a) ≤ q′αf(a
′) =

fαq
′
α(a

′) and so qα(a) ≤ qα(a
′) since for each α, fα is an order em-

bedding. Hence (aα)α ≤ (a′α)α which means that f is an order em-
bedding. Now, let (bα)α ∈ lim←−Bα. Since for each α, fα is order
dense, for each α there exists aα ∈ Aα such that bα ≤ fα(aα). Then
q′α((bα)) ≤ fα(qα(aα)α) = q′αf((aα)α) and hence (bα)α ≤ f((aα)α).
Therefore, f is an order dense embedding. □

2.1.3. Colimits of order dense embeddings. This subsubsection is de-
voted to the study of the behavior of order dense embeddings with
respect to colimits.

Proposition 2.9. Mod is closed under coproducts.
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Proof. Consider the commutative diagram

Ai
fi //

ui

��

Bi

u′
i

��⨿
i∈I Ai

f
//
⨿

i∈I Bi

in which {fi : Ai → Bi}i∈I is a family of order dense embeddings. We
want to show that the coproduct morphism f =

⨿
i∈I fi :

⨿
i∈I Ai →⨿

i∈I Bi (which uniquely exists by the universal property of coproducts)
is an order dense embedding. By Proposition 5 of [10], f is an order
embedding thus it is enough to show that f is order dense. For, let
b ∈

⨿
i∈I Bi. Then there exists i ∈ I, bi ∈ Bi such that b = u′i(bi) =

(bi, i). Since fi is order dense, there exists ai ∈ Ai with bi ≤ fi(ai).
Now, b = (bi, i) = u′i(bi) ≤ u′ifi(ai) = fui(ai) = f(ai, i). Hence f is
order dense. □

The following is an immediate corollary of Proposition 2.4.

Corollary 2.10. Mod is closed under direct sums.

Definition 2.11. The categoryA is said to satisfy theM-transferability
property, for a subclass M of monomorphisms, if for all f ∈ A and
m ∈M with common domain there is a commutative diagram

• f //

m

��

•
u

��
• g

// •

with u ∈M.

Remark 2.12. The notion ofM-transferability property is used by uni-
versal algebrists whereas category theorists prefer “M’s are preserved
by pushouts” or “pushouts transfer M’s” which is the same, provided
that pushouts exist and M is left cancellable.

First recall from [4] that the pushout of S-poset maps f : A → B
and g : A → C is the quotient of the coproduct B ⊔ C = ({1} ×
B) ∪ ({2} × C) by the S-poset congruence θ(H) generated by H =
{((1, f(a)), (2, g(a))) : a ∈ A} with S-poset maps qB = πuB : B →
(B ⊔C)/θ, qC = πuC : C → (B ⊔C)/θ, where π : B ⊔C → (B ⊔C)/θ
is the natural epimorphism, and uB : B → B ⊔C, uC : C → B ⊔C are
coproduct injections.

Recall the following lemma from [14].
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Lemma 2.13. In the category Pos-S, pushouts transfer order dense
embeddings.

Note that since the composition of order dense embeddings is an
order dense embedding, one has the following corollary.
Corollary 2.14. The pushout of order dense embeddings belongs to
Mod.

Recalling the following lemma from [10] we have the following result.
Lemma 2.15. Multiple pushouts transfer order embeddings.
Proposition 2.16. Multiple pushouts transfer order dense embeddings.
Also, multiple pushout of order dense embeddings is an order dense
embedding.

Proof. Let (Q, (Ai
qi→ Q)i∈I) be the multiple pushout of a family {fi :

A→ Ai|i ∈ I} of order dense embeddings. Recall that Q = (
⨿
Ai)/θ,

where θ = θ(H) is the S-poset congruence on
⨿
Ai generated by H =

{(ui(fi(a)), uj(fj(a)))|a ∈ A, i, j ∈ I}, and qi = πui, i ∈ I, where
π :

⨿
Ai → Q and ui : Ai →

⨿
Ai are the natural epimorphism

and coproduct injections, respectively. We take α ∈ I and prove that
qα is an order dense embedding. By Lemma 2.15, it is enough to
show that qα is an order dense map. Let [x]θ ∈ (

⨿
Ai)/θ, then there

exists i ∈ I and ai ∈ Ai such that [x]θ = [(i, ai)]θ. If i = α, we
have [x]θ = [(α, aα)]θ ≤ [(α, aα)]θ = qα(aα), and so the result holds.
Otherwise, since fi is an order dense embedding, there exists a ∈ A such
that ai ≤ fi(a) and hence [(i, ai)]θ = qi(ai) ≤ qi(fi(a)) = qα(fα(a)).
Therefore, qα is an order dense embedding. □
Definition 2.17. We say that a category A hasM-bounds if for every
set indexed family {mi : A → Ai|i ∈ I} of M-morphisms there is an
M-morphism m : A→ B which factors over all mi, i ∈ I; that is there
are di : Ai → B with dimi = m.
Proposition 2.18. Pos-S has Mod-bounds.
Proof. Let {hα : A→ Bα|α ∈ I} be a set indexed family of order dense
embeddings and h : A → B = (

⨿
αBα)/θ be the multiple pushout of

hα, α ∈ I. Then h factors over all hα, α ∈ I, and is an order dense
embedding, by Proposition 2.16. □
Definition 2.19. We say that a category A has M-amalgamation
property, if the morphism m in the definition of M-bounds factors
over all mi, i ∈ I, through members of M; that is di, i ∈ I, belongs to
M.
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Proposition 2.20. Pos-S has Mod-amalgamation property.

Proof. Since, by Proposition 2.16, multiple pushouts transfer order
dense embeddings, we get the result. □

Finally, we study directed colimit of order dense embeddings in Pos-
S. Recall that a directed system of S-posets and S-poset maps is a
family (Ai)i∈I of S-posets indexed by an up-directed set I endowed
by a family (ψij : Ai → Aj)i≤j∈I of S-poset maps such that given
i ≤ j ≤ k ∈ I, ψik = ψjkψij, and ψii = id. Also the pair (lim−→Ai, {αi :

Ai → lim−→Ai}) or in abbreviation, lim−→Ai is called the directed colimit
(or direct limit) of the directed system ((Ai)i∈I , (ψij)i≤j) if for every
i ≤ j ∈ I, αjψij = αi, and for every (B, fi : Ai → B) with fjψij =
fi, i ≤ j ∈ I, there exists a unique S-poset map v : lim−→Ai → B such
that vαi = fi, for every i ∈ I.

Recall from [3] that the directed colimit of a directed system
((Ai)i∈I , (ψij)i≤j) of S-posets exists, and may be represented as
(A/θ, (ψi = γθui : Ai → A/θ)i∈I), where γθ :

⨿
Ai → (

⨿
Ai)/θ is

the natural epimorphism and ui is coproduct injection and
(i) A =

⨿
Ai;

(ii) aθa′(a ∈ Ai, a
′ ∈ Aj) if and only if ∃k ≥ i, j : ψik(a) = ψjk(a

′);
(iii) [a]θ ≤ [a′]θ(a ∈ Ai, a

′ ∈ Aj) if and only if ∃k ≥ i, j : ψik(a) ≤
ψjk(a

′);
(iv) for each i ∈ I and a ∈ Ai, ψi(a) = [a]θ.

Proposition 2.21. Pos-S has Mod-directed colimits.

Proof. Let h : A → lim−→Bα =
⨿

αBα/ρ be a directed colimit of
((Bα)α∈I , (gαβ)α≤β) in Pos-S and {hα : A → Bα}α∈I be a family of
order dense embeddings, with directed S-poset maps gαβ : Bα → Bβ

(α ≤ β) and the colimit maps gα : Bα → lim−→αBα. Recall that, for each
β ∈ I, h = lim−→hα = gβhβ. By [10], h is an order embedding. Also, h
is order dense. For, let b ∈ lim−→αBα, then there exists xα ∈ Bα such
that b = [xα]ρ and, since hα is order dense, there exists an element
a ∈ A with xα ≤ hα(a). Then b = [xα]ρ = gα(xα) ≤ gαhα(a) = h(a) as
required. □
Theorem 2.22. Let I be an up-directed set and {hα : Aα → Bα|α ∈ I}
be a directed family of order dense embeddings. Then the directed colimit
homomorphism h : lim−→Ai → lim−→Bi is an order dense embedding.

Proof. Let (lim−→Ai, fi), (lim−→Bi, gi) be directed colimits of directed sys-
tems ((Ai)i∈I , (ψij)i≤j) and ((Bi)i∈I , (φij)i≤j) with the colimit maps
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fi = γθui : Ai → lim−→iAi =
⨿

α∈I Ai/θ, gi = γθ′u
′
i : Bi → lim−→iBi =⨿

i∈I Bi/θ
′, respectively and {hi : Ai → Bi|i ∈ I} be a directed family

of order dense embeddings such that for every i ≤ j, fjψij = fi and
gjφij = gi. Then gjhjψij = gjφijhi = gihi. Thus h = lim−→hi exists
by the universal property of colimits. Consider lim−→Ai = (

⨿
Ai)/θ and

lim−→Bi = (
⨿
Bi)/θ

′. By Theorem 3 of [10], it is enough to show that h
is an order dense map. Let [x]θ′ ∈ (

⨿
Bi)/θ

′. Then [x]θ′ = [(α, bα)]θ′
for some α ∈ I and bα ∈ Bα. Since hα is order dense, there exists
aα ∈ Aα, bα ≤ hα(aα). Then [x]θ′ = [(α, bα)]θ′ = gα(bα) ≤ gαhα(aα) =
hfα(aα), as desired. □

Definition 2.23. We say that a category A fulfills the M-chain con-
dition if for every directed system ((Aα)α∈I , (fαβ)α≤β∈I) whose index
set I is a well-ordered chain with the least element 0, and f0α ∈M for
all α, there is a (so called “upper bound”) family (gα : Aα → A)α∈I
with g0 ∈M and gβfαβ = gα.

Proposition 2.24. Pos-S fulfills the Mod-chain condition.

Proof. Take A = lim−→αAα and let gα : Aα → A be the colimit maps.
Then applying Proposition 2.21, we get the result. □

2.2. Order dense essentiality and the behavior of order dense
injectivity. In this subsection, the notion of essentiality with respect
to order dense embeddings in the category of S-posets is studied. There
are three different definitions of essentiality usually used in literature
with respect to a subclass of monomorphisms. We study these kinds
of essentiality with respect to the class of all order dense embeddings
of S-posets, and investigate their relations to order dense injectivity.
More precisely, it is proved that order dense injectivity well behaves
regarding all of these essentialities.

As we mentioned, in the category Pos-S, one has the following dif-
ferent definitions for essentialness. An order dense embedding M m→ X
is called:

(Me1-essential) M
m→ X

f→ Y ∈Mod ⇒ f ∈Mod.

(Me2-essential) M
m→ X

f→ Y ∈Mono⇒ f ∈Mono.

(Me3-essential) M
m→ X

f→ Y ∈Mod ⇒ f ∈Mono,
whereMono andMei, for i = 1, 2, 3, are the classes of all monomor-

phisms andMei-essential monomorphism, respectively, in Pos-S. One
can easily see that Me1 and Me2 are subclasses of Me3. In the next
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section, it will be shown that Me1 is a proper subclass of Me2 and
Me2 =Me3.
Lemma 2.25. The composition of Mei-essential monomorphisms is
an Mei-essential monomorphism, for i=1, 2, 3.
Lemma 2.26. Suppose that A is an order dense sub-S-poset of B
and B is an order dense sub-S-poset of C. Then A is Mei-essential,
for i = 1, 2, 3, in C if and only if A is Mei-essential in B and B is
Mei-essential in C.

As we know theM-Banaschewski’s condition with respect to a sub-
class M of monomorphisms in a category plays an important role in
the behavior ofM-injectivity. In the following, we investigate the men-
tioned condition for the classesMei, for i = 1, 2, 3, in Pos-S and then
study the behavior of order dense injectivity of S-posets.
Definition 2.27. We say that the category Pos-S fulfills Mei-
Banaschewski’s condition, for i = 1, 2, 3, if for every f ∈Mod, there is
an S-poset map g with gf ∈Mei.
Lemma 2.28. The category Pos-S fulfillsMei-Banaschewski’s condi-
tion, for i = 1, 2, 3.
Proof. We only prove thatMe1-Banaschewski’s condition is satisfied in
Pos-S. Recall from [11] that the category Pos-S fulfills Banaschewski’s
condition for regular essential monomorphisms. Thus for every order
dense embedding f : A → B there exists an S-poset map g : B →
C such that gf is regular essential. Now, we claim that gf is Me1-
essential. Let h : C → D be an S-poset map such that hgf is an order
dense embedding. Since gf is regular essential, h is an order embedding
as desired. It is clear that h is order dense. □

Now, we recall the definition of order dense injective S-posets.
Definition 2.29. (1) We call an S-poset A order dense injective or
briefly od-injective if it is injective with respect to order dense embed-
dings B → C.

Recall the followings from [14].
Remark 2.30. (1) Clearly one can take B in the above definition of
order dense injectivity to be an order dense sub-S-poset of C.

(2) If A is a regular injective S-poset then it is order dense injective,
but the converse is not necessarily true.

(3) An S-poset P is regular injective if and only if it is dc-injective
(injective with respect to down closed embeddings) as well as order
dense injective.
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(4) Every non-trivial order dense injective S-poset has a zero which
is the bottom element, but the converse is not true in general. To see
this, take a poset P = {a, b, c, d, e, f} with the order a ≤ b, c ≤ d,
and a, b, c, d, e ≤ f as an S-poset with trivial actions. Then by [13], P
is down closed injective since it has a top element. If P which has a
bottom element a is order dense injective it must be regular injective
by (3), but it is not regular injective since it is not a complete poset
(See [1]).

(5) An S-poset A is order dense injective if and only if it is a retract
of each of its extensions in which it is order dense.
Theorem 2.31. (First Theorem of Well-Behavior)
For a pomonoid S and every S-poset A, the followings are equivalent:

(i) A is order dense injective.
(ii) A is order dense absolute retract.
(iii) A has no proper Me3-essential extensions.
(iv) A has no proper Me2-essential extensions.
(v) A has no proper Me1-essential extensions.

Proof. (i)⇔(ii) is clear by Remark 2.30(5).
(ii)⇒(iii) Let B be anMe3-essential extension of A. Then, A is order

dense in B and so by (ii), there exists an order dense retraction g : B →
A. Thus g |A, which is equal to idA, is an order dense embedding. But,
A is Me3-essential in B, so g has to be a monomorphism. Now, for
b ∈ B, g(g(b)) = g(b) since g(b) ∈ A, and this implies g(b) = b which
gives b ∈ A. Thus B = A.

(v)⇒(ii) let B be an order dense extension of A. Then, by Lemma
2.28, there exists an S-poset map g : B → C such that g |A is Me1-
essential. Applying (v), g |A is an isomorphism. Now, g(g |A)−1 is a
retraction and so A is an order dense retract of B. □

Definition 2.32. Let A be an S-poset. Then
(1) By a maximal Mei-essential extension of A, for i = 1, 2, 3, we
mean an Mei-essential extension B of A such that every S-poset map
h : B → C from B to an Mei-essential extension C of A, for which
h |A is the inclusion map, is an isomorphism.
(2) By a minimal order dense injective extension of A we mean an order
dense extension B of A such that B is order dense injective, and every
order dense embedding k : C → B from an order dense injective order
dense extension C of A which maps A identically is an isomorphism.
Lemma 2.33. If B is an Mei-essential extension of A, for i= 1, 2, 3,
and A is order dense embedded into some regular injective S-poset E,
then B can be order dense embedded into E as well.
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Considering P , the set of all Mei-essential extensions of A, for i =
1, 2, 3, as a poset with the inclusion as its order, Zorn’s lemma gives
the existence of a maximal element in P which is clearly a maximal
Mei-essential extension of A. This guarantees the existence of order
dense injective hull of S-posets.
Proposition 2.34. Every S-poset has a maximalMei-essential exten-
sion, for i= 1, 2, 3.
Definition 2.35. By an Mei-injective hull of an S-poset A, for i =
1, 2, 3, we mean an Mei-essential extension of A which is order dense
injective.
Remark 2.36. For an S-poset A,Mei-injective hull of A, for i = 1, 2, 3,
is unique up to isomorphism (if it exists). To see this, let B and C
both be Mei-injective hull of A. Then there exists an S-poset map
h : B → C such that h |A= idA, because C is order dense injective
and A is order dense in B. From the fact that A isMei-essential in B,
we get that h is an Mei-essential monomorphism. But, by Theorem
2.31, B has no proper Mei-essential extension, since it is order dense
injective. So, h is an isomorphism, as required.

Now, we give the third theorem of well-behavior of order dense in-
jectivity, which is about the relation between Mei-injective hulls and
Mei-essential extensions, for i = 1, 2, 3.
Theorem 2.37. Let S be a pomonoid and A be an S-poset. The
followings are equivalent for an order dense extension B of A:

(i) B is the Me1-injective hull of A.
(ii) B is the Me3-injective hull of A.
(iii) B is the Me2-injective hull of A.
(iv) B is a maximal Me1-essential extension of A.
(v) B is a maximal Me3-essential extension of A.
(vi) B is a maximal Me2-essential extension of A.
(vii) B is a minimal order dense injective extension of A.

Proof. (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v), (vi) ⇒ (vii) are clear.
(i) ⇒ (iv) Suppose B is the Me1-injective hull of A. Let C be

an order dense extension of B and an Me1-essential extension of A.
Then, applying Lemma 2.26, C is an Me1-essential extension of B.
But, by Theorem 2.31, B being order dense injective has no proper
Me1-essential extension and so C = B.

(iv) ⇒ (i) Suppose B is a maximal Me1-essential extension of A.
Then it has no properMe1-essential extension by Lemma 2.26 and the
result holds by Theorem 2.31.
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(iv) ⇒ (vii) Suppose B is a maximal Me1-essential extension of A.
Then it has no proper Me1-essential extension by Lemma 2.26 and so
it is order dense injective by Theorem 2.31. Let k : C → B be an order
dense embedding from an order dense injective order dense extension
C of A which maps A identically. Since A is Me1-essential in B, it
is concluded by Lemma 2.26 that the same is true for k(C) and then,
since k(C) ∼= C is order dense injective, applying Theorem 2.31, we get
B = k(C). Therefore, k is an isomorphism.

(vii) ⇒ (i) By Proposition 2.34, there exists a sub-S-poset E of B
which is a maximal Me1-essential extension of A. Then by Theorem
2.31, E is order dense injective and so E = B. Hence B is an Me1-
essential extension of A. Therefore, B is the Me1-injective hull of
A. □

The second theorem of well-behavior of order dense injectivity is
about the existence of Mei-injective hulls, for i = 1, 2, 3, which is
proved in the following for S-posets.
Corollary 2.38. (Second Theorem of Well-Behavior) Each S-poset
has the Mei-injective hull, for i = 1, 2, 3.
Proof. By Proposition 2.34 and Theorem 2.37, the proof is obvious.

□

Definition 2.39. Let A be an S-poset. Then
(1) By a largest Mei-essential extension of A, for i = 1, 2, 3, we mean
anMei-essential extension B of A such that for eachMei-essential ex-
tension C of A there exists an S-poset map h : C → B such that h |A
is the order dense inclusion map.
(2) By a smallest order dense injective extension of A we mean an order
dense injective order dense extension B of A such that for each order
dense injective order dense extension C of A there exists a monomor-
phism g : B → C such that g |A is the order dense inclusion map.
Note 2.40. If gf is Mei-essential and g is a monomorphism then g is
Mei-essential, for i = 1, 2, 3.

Some other conditions can be added to the equivalent conditions
given in the preceding theorem.
Theorem 2.41. The following conditions are equivalent to the condi-
tions of Theorem 2.37:

(viii) B is a largest Me1-essential extension of A.
(ix) B is a largest Me2-essential extension of A.
(x) B is a largest Me3-essential extension of A.
(xi) B is an smallest order dense injective extension of A.
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Proof. Recalling the notations of Theorem 2.37, we have:
(i)⇒(viii) It is clear by Lemma 2.33.
(viii)⇒(xi) Take Ee1(A) to be the Me1-injective hull of A which

exists by Corollary 2.38. Since Ee1(A) is anMe1-essential extension of
A and B is a largestMe1-essential extension of A, we obtain an S-poset
map h : Ee1(A) → B such that h |A is the order dense inclusion map.
Now, since A isMe1-essential in Ee1(A), h is an order dense embedding
and so, since B is an Me1-essential extension of A, Note 2.40 implies
that h isMe1-essential. But, Ee1(A) is order dense injective, and so, by
Theorem 2.31, has no proper Me1-essential extension. Hence, h is an
isomorphism. Therefore, B is order dense injective. So, B is evidently
an smallest order dense injective extension of A.

(xi)⇒(i) Suppose Ee1(A) is theMe1-injective hull of A which exists
by Corollary 2.38. Then, since Ee1(A) is order dense injective and
B is a smallest order dense injective extension of A, there exists a
monomorphism g : B → Ee1(A) such that g |A is the order dense
inclusion map. Also, since B is anMe1-essential extension, we get that
g is Me1-essential (by Note 2.40). But, B is order dense injective and
so has no proper Me1-essential extension. Thus, g is an isomorphism.
Hence, B is an Me1-essential extension and so it is an Me1-injective
hull of A. □

2.3. Interrelations of different kinds of essentiality and more
on order dense injective hulls. This subsection is devoted to study
the interrelations of different classes of essentialities. Moreover, some
characterizations regarding the Mei-essential extensions and also the
Mei-injective hull of S-posets, for i = 1, 2, 3, under some conditions
are presented.

Theorem 2.42. For an order dense embedding f : A → B in the
category Pos-S, the following implications hold:
Me1-essential ⇒ Me2-essential ⇔ Me3-essential.

Proof. We only prove Me3-essential ⇒ Me2-essential. Let an order
dense embedding f : A → B be Me3-essential and g : B → C be
an S-poset map for which gf is a monomorphism. Consider an Me1-
injective hull h : B → Ee1(B) where h is Me1-essential, which exists
by Theorem 2.38. Clearly, hf ∈ Me3. Let (Q, p, q) be the pushout of
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g and h in the following diagram:

B

h
��

g // C

q

��
Ee1(B) p

// Q

Using Lemma 2.13, pushouts transfer order dense embeddings, we get
that q is an order dense embedding. Then phf = qgf is a monomor-
phism. Since hf ∈ Me3 and p is a monomorphism. Thus qg = ph
is a monomorphism and hence g is a monomorphism and hence f is
Me2-essential. □
Remark 2.43. The class of Me1-essential extensions of an S-poset A
is strictly smaller than the class of its Me2-essential extensions. For,
take a non-empty S-poset A without zero element. We claim that
the inclusion map i : A → A ⊔ {0} is Me2-essential but not Me1-
essential, where A ⊔ {0} obtained by adjoining a zero element 0 to
A. To prove i is Me2-essential, let g : A ⊔ {0} → B be an S-poset
map such that g|A is a monomorphism. Then we show that g itself
is one-one. Indeed, if g(a) = g(0) for some a ∈ A, then for every
s ∈ S, g(as) = g(a)s = g(0)s = g(0s) = g(0) = g(a) and so as = a
which means that a is a zero element of A, a contradiction. Finally,
it remains to show that i is not Me1-essential. For this, let {0} ⊕ A
be the S-poset obtained by adjoining a zero bottom element 0 to A.
Note that the identity map id : A ⊔ {0} → {0} ⊕ A is not an order
embedding whereas id ◦ i is clearly an order dense embedding.

One can find the characterization for Me2 and Me1-essentialities in
the following two theorems.
Theorem 2.44. For an order dense embedding f : A→ B, the follow-
ings are equivalent:

(i) f is an Me2-essential.
(ii) For every epimorphism g : B → C such that gf is a monomor-

phism, g is itself a monomorphism.
(iii) For every S-poset congruence θ on B such that for the canonical

epimorphism π : B → B/θ, πf is a monomorphism, one gets θ = ∆B.
(iv) For every monogenic congruence θ on B such that for the canon-

ical epimorphism π : B → B/θ, πf is a monomorphism, one gets
θ = ∆B.
Proof. It is clear that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).
(iv) ⇒ (i) Let g : B → C be an S-poset map such that gf is a
monomorphism, and g(b1) = g(b2). Then, since θ(b1, b2) ⊆ kerg, by
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decomposition theorem, g can be factorized through B/θ(b1, b2), and
hence πf is a monomorphism, where π : B → B/θ(b1, b2). So, by (iv),
θ(b1, b2) = ∆B, and thus b1 = b2. □
Theorem 2.45. For an order dense embedding f : A→ B, the follow-
ings are equivalent:

(i) f is an Me1-essential.
(ii) For every epimorphism g : B → C such that gf is an order

embedding, g is itself an order embedding.
(iii) For every S-poset congruence θ on B such that for the canonical

epimorphism π : B → B/θ, πf is an order embedding, one gets θ ⊆≤B.
(iv) For every monogenic congruence θ on B such that for the canon-

ical epimorphism π : B → B/θ(b1, b2), πf is an order embedding, one
gets θ(b1, b2) ⊆≤B.
Proof. It is clear that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).
(iv) ⇒ (i) Let g : B → C be an S-poset map such that gf is an order
embedding, and g(b1) ≤ g(b2). Then, since θ(b1, b2) ⊆ Kg, where Kg is
the subkernel of an S-poset map g, by decomposition theorem, g can be
factorized through B/θ(b1, b2), and hence πf is an order embedding,
where π : B → B/θ(b1, b2). So, by (iv), θ(b1, b2) ⊆≤B, and thus
b1 ≤ b2. □

Recalling the definitions of regular-essentialness and mono-
essentialness, one has the following corollary.

Corollary 2.46. An order embedding f isMe1-essential (Me2-essential)
if and only if it is regular-essential (mono-essential) as well as order
dense.

As a corollary of Theorem 2.42, the above corollary and Proposition
2.2 of [11], one has the following proposition which gives a characteri-
zation of different kinds of essentiality with respect to the class Mod,
in terms of congruences.

Proposition 2.47. Let (A,≤|A) be an order dense sub-S-poset of an
S-poset (B,≤). Then the followings hold:

(i) If B is anMe1-essential extension of A, then for any ρ ∈ Con(B)
with ρ ̸= ∆B, one has ≤ρ|A ̸= ≤|A.
Conversely, if for any preorder relation β on B with β ̸= ≤ one has
≤β|A ̸= ≤|A, then B is an Me1-essential extension of A.
(ii) B is an Me2-essential extension of A if and only if for any

ρ ∈ Con(B) with ρ ̸= ∆B, one has ρ |A ̸= ∆A.
(iii) B is an Me3-essential extension of A if and only if for any

ρ ∈ Con(B) with ρ ̸= ∆B, one has ≤ρ|A ̸= ≤|A.
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Recall from [1] that an extension E of a poset P is called join dense
(meet dense) if for each element e of E, e =

∨
{p ∈ P : p ≤ e}

(e =
∧
{p ∈ P : e ≤ p}). By Corollary 3.9 of [11] one gets the following

characterization of Me1-essential extensions over pogroups.

Corollary 2.48. Let S be a pogroup and A be an S-poset. Each order
dense extension E of A is Me1-essential if and only if E is both meet
and join dense.
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ترتیبی چگال انژکتیو رفتار و ترتیبی چگال بودن اساسی

شهباز لیلا
ایران مراغه، مراغه، دانشگاه پایه، علوم دانشکده ریاضی، گروه

به نسبت S-Pos رسته ی در هم حد و حد مانند رسته ای و جبری ویژگی های مطالعه ی به مقاله، این در
مورد نویسنده توسط تکریختی ها از کلاس این به نسبت انژکتیوی می پردازیم. ترتیبی چگال نشاننده های
مورد ترتیبی نشاننده های به نسبت انژکتیوی مورد در اطلاعاتی آوردن دست به برای و گرفته قرار مطالعه
رسته ی در ترتیبی چگال نشاننده های کلاس به نسبت بودن اساسی نوع سه سپس است. گرفته قرار استفاده
با می شود مشاهده شد. خواهد مطرح ترتیبی چگال انژکتیوی با آنها ارتباط و می شود مطالعه S-Pos
چگال انژکتیوی به نسبت ولی نیستند معادل هم با لزوماً بودن ها اساسی نوع سه این تمامی که این وجود
ارايه مرتب گروه های روی بودن ها اساسی این از دسته بندی هایی نهایت، در دارند. یکسانی رفتار ترتیبی

شد. خواهد

ترتیبی، چگال انژکتیوی ترتیبی، چگال مرتب S-مجموعه ی زیر مرتب، S-مجموعه ی کلیدی: کلمات
ترتیبی. چگال بودن اساسی
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