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ON SELBERG-TYPE SQUARE MATRICES INTEGRALS

M. ARASHI

Abstract. In this paper we consider Selberg-type square matrices integrals with

focus on Kummer-beta types I & II integrals. For generality of the results for real

normed division algebras, the generalized matrix variate Kummer-beta types I & II

are defined under the abstract algebra. Then Selberg-type integrals are calculated

under orthogonal transformations.

1. Introduction and Some Preliminaries

Selberg-type gamma and beta integrals involving scalar functions of positive definite

symmetric matrices as integrand are considered by several authors, for examples see [1]

and [11]. Mathai [14], (p. 231, 4.1.2) lists Selberg-type gamma integrals containing a

positive signature symmetric matrix. Recently Gupta and Kabe [10] presented some

results on the Selberg-type gamma and beta integrals where the integrand is a scalar

function of squared matrix. They also covered skew symmetric matrices. In this note,

we extend the existing results in the literature for real normed division algebras to

cover real, complex, quaternion and octonion spaces simultaneously. We mainly focus

on Selberg-type square matrices Kummer-gamma and Kummer-beta integrals.

The hypercomplex multivariate analysis distribution theory developed by Kabe [12]

in order to consider real, complex, quaternion and octonion spaces simultaneously.
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Afterward many researchers extended the results in many directions. Among them, the

works of Prof. Jose A. Diaz-Garcia and his colleague should be acknowledged. The

reader is referred to [7], [8], and [6].

A vector-space is always a finite-dimensional module over the field of real numbers.

An algebra F is a vector space that is equipped by a bilinear map m : F × F →
F termed multiplication and a non-zero element 1 ∈ F termed the unit such that

m(1, a) = m(a, 1) = a. As usual abbreviate m(a, b) = ab as ab. Do not assume F is

associative.

An algebra F is a division algebra if given a, b ∈ F , then ab = 0 implies a = 0 or b = 0.

Equivalently, F is a division algebra if the operation of left and right multiplications

by any non-zero element is invertible. A normed division algebra is an algebra F that

is also a normed vector space with ∥ab∥ = ∥a∥∥b∥. This implies that F is a division

algebra and ∥1∥ = 1.

There are exactly four normed division algebras (according to [2]):

(1) Real Numbers (R),
(2) Complex Numbers (C),
(3) Quaternions (Q),

(4) Octonions (O).

Moreover, they are the only alternative division algebras, and all division algebras

have a real dimension of 1, 2, 4 or 8, which is denoted by β, see [2], theorems 1, 2 and

3. The parameter α = 2/β is used, in other mathematical fields, see [5].

Let Lβ
p,n be the linear space of all n × p matrices of rank n ≤ p over F with m

distinct positive singular values, where F denotes a real finite-dimensional normed

division algebra. Let Fn×p be the set of all n × p matrices over F . The dimension

of Fn×p over R is npβ. Let A ∈ Fn×p, then A∗ = Ā
T
denotes the usual conjugate

transpose.

The set of matrices H1 ∈ Fn×p such that H∗
1H1 = Ip is a manifold denoted Vβ

p,n,

is termed the Stiefel manifold (H1 is also known as semi-orthogonal (β = 1), semi-

unitary (β = 2), semi-symplectic (β = 4) and semi-exceptional type (β = 8) matrices,

see [4]. The dimension of Vβ
p,n over R is

(
npβ − 1

2
p(p+ 1)β − p

)
, is the maximal compact

subgroup Uβ(p) of Lβ
p,p and consists of all matrices H ∈ Fp×p such that H∗H = Ip.

Therefore, Uβ(p) is the real orthogonal group O(p) (β = 1), the unitary group U(p)
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(β = 2), compact symplectic group Sp(p) (β = 4), or exceptional type matrices Oo(p)

(β = 8), for F = R,C,Q or O, respectively.

Denote by Cβ
p the real vector space of all S ∈ Fp×p such that S = S∗. Let Bβ

p be the

cone of positive definite matrices S ∈ Fp×p; then Bβ
p is an open subset of Cβ

p . Over R,
Cβ
p consists of symmetric matrices; over C, Hermitian matrices; over Q, quaternionic

Hermitian matrices (also termed self-dual matrices) and over O, octonionic Hermitian

matrices. Generically, the elements of Cβ
p are termed Hermitian matrices, irrespective

of the nature of F . The dimension of Cβ
p over R is

(
1
2
[p(p+ 1)β + p]

)
. Let Dβ

p be the

diagonal subgroup of Lβ
p,p consisting of all D ∈ Fp×p, D = diag(d1, . . . , dp).

The surface area or volume of the Stiefel manifold Vβ
p,n is given by

Vol(Vβ
p,n) =

∫
H1∈Vβ

p,n

(H∗
1dH1) =

2pπ
npβ
2

Γβ
p

(
nβ
2

) ,
and therefore

(dH1) =
1

Vol(Vβ
p,n)

(H∗
1dH1) =

Γβ
p

(
nβ
2

)
2pπ

npβ
2

(H∗
1dH1)

is the normalized invariant measure on Vβ
p,n and (dH), i.e. with (n = p), it defines the

normalized Haar measure on Uβ(p) and Γβ
p (a) denotes the multivariate gamma function

for the space Cβ
p , defined by

Γβ
p (a) =

∫
A∈Bβ

p

|A|a−
(p−1)β

2
−1 etr(−A)dA

= π
p(p−1)β

4

p∏
i=1

Γ

(
a− (i− 1)β

2

)
,

where Re(a) > (p−1)β
2

, see [9].

A generalized form of multivariate gamma function is a function of weight κ for the

space Cβ
p with κ = (k1, k2, . . . , kp), k1 ≥ k2 ≥ . . . ≥ kp ≥ 0, Re(a) ≥ (p − 1)β/2 − kp,

which is defined by: (see [9] and [7])

Γβ
p (a, κ) =

∫
A∈Bβ

p

etr(−A)|A|a−
(p−1)β

2
−1qκ(A)dA = (a)βκΓ

β
p (a),

where for A ∈ Cβ
p

qκ(A) = |Ap|kp
p−1∏
i=1

|Ai|ki−ki+1
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with Am = (ars), r, s = 1, 2, . . . ,m, m = 1, 2, . . . , p is termed the highest weight vector.

Also (a)βκ denotes the generalized Pochhammer symbol of weight κ, defined by

(a)βκ =

p∏
i=1

(
a− (i− 1)β

2

)
ki

=
π

p(p−1)β
4

∏p
i=1 Γ

(
a+ ki − (i−1)β

2

)
Γβ
p (a)

=
Γβ
p (a, κ)

Γβ
p (a)

,

where Re(a) > (p− 1)β/2− kp and

(a)i = a(a+ 1) . . . (a+ i− 1),

is the standard Pochhammer symbol. Thus Γβ
p (a, (0, 0, . . . , 0)) = Γβ

p (a)

The multivariate beta function for the space Cβ
p is defined as (see [7])

Bβ
p (a, b) =

∫
0<X<Ip

|X|a−
(p−1)β

2
−1|Ip −X|b−

(m−1)β
2

−1dX

=

∫
Y ∈Bβ

p

|Y |a−
(p−1)β

2
−1|Ip + Y |−(a+b)dY

=
Γβ
p (a)Γ

β
p (b)

Γβ
p (a+ b)

,

where Y = (Ip −X)−1 − Ip, Re(a),Re(b) > (p− 1)β/2. From [13],

(tr(X))k =
∑
κ

Cβ
κ (X),

where Cβ
κ (X) denotes the zonal polynomials.

Fix complex numbers a1, . . . , ar and b1, . . . , bs, and for all 1 ≤ i ≤ q and 1 ≤ j ≤ p

do not allow −bi + (j − 1)β/2 to be a non-negative integer. Then the hypergeometric

function with one matrix argument rF
β
s is defined to be the real-analytic function on

Cβ
p given by the series

rF
β
s (a1, . . . , ar; b1, . . . , bs;X) =

∞∑
k=0

∑
κ

(a1)
β
κ . . . (ar)

β
κ

(b1)
β
κ . . . (bs)

β
κ

Cβ
κ (X)

k!
.

For convergence properties see [9].

Then we have

0F
β
0 (X) =

∞∑
k=0

∑
κ

Cβ
κ (X)

k!
= etr(X).

For more details and results the interested reader is referred to [6], [3], and [9].
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Analogous to [15], define the confluent hypergeometric function Ψβ of p × p matrix

X ∈ Bβ
p as

Ψβ(a, c;X) =
1

Γβ
p (a)

∫
Y ∈Bβ

p

etr(−XY )

×|Y |a−
(p−1)β

2
−1|Ip + Y |c−a− (p−1)β

2
−1dY ,

where Re(a) > (p− 1)β/2.

2. Matrix Variate Distributions

In this study we consider some matrix variate distribution for our purpose. Consider

the following definitions (see also [7] and [8]).

Definition 2.1. Let X ∈ Lβ
p,n be a random matrix, and Σ ∈ Bβ

p and Θ ∈ Bβ
n be

parameter matrices.

1. (Matrix Variate Normal ) The random matrix X is said to have a matrix

variate normal distribution denoted by X ∼ Nβ
n×p(µ,Σ,Θ), with mean µ and

Cov(vecX∗) = Θ⊗Σ, if its density function is given by

β
βpn
2

(2π)
βpn
2 |Σ|βn2 |Θ|βp2

etr

{
−β

2
Σ−1(X − µ)∗Θ−1(X − µ)

}
.

2. (Wishart) Let X ∼ Nβ
n×p(0,Σ, In) and define S = X∗X, then S is said to

have a central Wishart distribution S ∼ W β
p (n,Σ) with n degrees of freedom

and parameter matrix Σ. Moreover, its density function is given by

β
βpn
2

2
βpn
2 Γβ

p

(
βn
2

)
|Σ|βn2

|S|
β(n−p+1)

2
−1 etr

{
−β

2
Σ−1S

}
,

where n ≥ p− 1.

3. (Matrix Variate T Type II) The random matrix X is said to have a matrix

variate T -distribution of type II denoted by X ∼ T β
n,p(ν, Ip), if its density

function is given by

Γβ
p

(
β(n+ν)

2

)
π

βpn
2 Γβ

p

(
βν
2

) |Ip +X∗X|−
β(n+ν)

2 , ν > p.

This distribution is also termed as matrix variate Pearson Type VII distribution.
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4. (Gegenbauer Type II) The random matrix X is said to have a Gegenbauer

Type II distribution X ∼ Gβ
n,p(ν, Ip), if its density function is given by

Γβ
p

(
β(n+ν)

2

)
π

βpn
2 Γβ

p

(
βν
2

) |Ip −X∗X|
β(ν−p+1)

2
−1, ν > p− 1.

This distribution is known in statistical bibliography as the matrix variate in-

verted T or matrix variate Pearson Type II distribution.

5. (T-Laguerre Type II Ensemble) The random matrix X is said to have a

T-Laguerre Type II ensemble distribution X ∼ TLβ
n,p(ν), if its density function

is given by

1

Bβ
p

(
βν
2
, βn

2

) |X∗X|
β(n−p+1)

2
−1|Ip +X∗X|−

β(n+ν)
2 ,

where ν ≥ p− 1, n ≥ p− 1.

This distribution is also known as the Studentized Wishart distribution

6. (Gegenbauer-Laguerre Type II Ensemble) The random matrix X is said

to have a Gegenbauer-Laguerre type II ensemble distribution X ∼ GLβ
n,p(ν), if

its density function is given by

1

Bβ
p

(
βν
2
, βn

2

) |X∗X|
β(n−p+1)

2
−1|Ip −X∗X|

β(ν−p+1)
2

−1,

where ν ≥ p− 1, n ≥ p− 1.

The following result directly obtains from Definition 2.1 and Proposition 4 of [6].

Theorem 2.2. (1) Let X ∼ T β
n,p(ν, Ip). Define S1 = X∗X ∈ Bβ

p . Then S1 has

the following density

1

Bβ
p

(
βν
2
, βn

2

) |S1|
β(n−p+1)

2
−1|Ip + S1|−

β(n+ν)
2 ,

where n ≥ p.

(2) Let Y ∼ Gβ
n,p(ν, Ip). Define S2 = Y ∗Y ∈ Bβ

p . Then S2 has the following

density

1

Bβ
p

(
βν
2
, βn

2

) |S2|
β(n−p+1)

2
−1|Ip − S2|

β(ν−p+1)
2

−1,

where n ≥ p.
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The following definitions are analogous to the results of [16] and [17] respectively for

real normed division algebras.

Definition 2.3. (Kummer-Beta Type I) The random matrix X is said to have a

Kummer-beta type I distribution X ∼ KB1βp (α1, α2,Σ), where Σ ∈ Bβ
p if its density

function is given by

K1(α1, α2, β,Σ) etr (−ΣX) |X|α1− (p−1)β
2

−1|Ip −X|α2− (p−1)β
2

−1,

where 0 < X < Ip, α1 ≥ (p − 1)β/2 and α2 ≥ (p − 1)β/2. The normalizing constant

is given by

{K1(α1, α2, β,Σ)}−1

=

∫
0<Y <Ip

etr (−ΣY ) |Y |α1− (p−1)β
2

−1|Ip − Y |α2− (p−1)β
2

−1dY

= Bβ
p (α1, α2) 1F

β
1 (α1, α1 + α2;−Σ).

Definition 2.4. (Kummer-Beta Type II) The random matrix X is said to have a

Kummer-beta type II distribution X ∼ KB2βp (α1, α2,Σ), where Σ ∈ Bβ
p if its density

function is given by

K2(α1, α2, β,Σ) etr (−ΣX) |X|α1− (p−1)β
2

−1|Ip +X|−α2 , X > 0,

where using the confluent hypergeometric function, the normalizing constant is given

by

{K2(α1, α2, β,Σ)}−1 =

∫
Y ∈Bβ

p

etr (−ΣY )

×|Y |α1− (p−1)β
2

−1|Ip + Y |−α2dY

= Γβ
p (α1)Ψ

β

(
α1, α1 − α2

(p− 1)β

2
+ 1;Σ

)
.

The following result is an extension to Theorem 3.1 of [16] for real normed division

algebras.

Lemma 2.5. Let U ∼ KB1βp (α1, α2,Σ). Then for the given matrices Ψ ∈ Cβ
p , Ω ∈ Bβ

p

and Ω−Ψ ∈ Bβ
p (Ω > Ψ), the random matrix X defined by

X = (Ω−Ψ)
1
2U(Ω−Ψ)

1
2 +Ψ
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has generalized matrix variate Kummer-beta type I distribution with the following den-

sity function

C1(α1, α2, β,Θ,Ω,Ψ) etr(−ΘX)|X −Ψ|α1− (p−1)β
2

−1|Ω−X|α2− (p−1)β
2

−1,

where Ψ < X < Ω, Θ = (Ω−Ψ)−
1
2Σ(Ω−Ψ)−

1
2 and

C1(α1, α2, β,Θ,Ω,Ψ) = K1(α1, α2, β, (Ω−Ψ)
1
2Θ(Ω−Ψ)

1
2 )

× etr(ΘΨ)|Ω−Ψ|−(α1+α2)+
(p−1)β

2
+1.

In this case we use the notation X ∼ GKB1βp (α1, α2,Θ,Ω,Ψ).

Proof. The proof directly follows by Definition 2.3 and the fact that the Jacobian of

transformation is J(U → X) = |Ω−Ψ|−
β(p−1)

2
−1. □

The following result is an extension to Theorem 2.2 of [17] for real normed division

algebras.

Lemma 2.6. Let U ∼ KB2βp (α1, α2,Σ). Then for the given matrices Ψ ∈ Cβ
p , Ω ∈ Bβ

p

and Ω+Ψ ∈ Bβ
p , the random matrix X defined by

X = (Ω+Ψ)
1
2U(Ω+Ψ)

1
2 +Ψ

has generalized matrix variate Kummer-beta type II with the following density function

C2(α1, α2, β,Θ,Ω,Ψ) etr(−ΘX)|X −Ψ|α1− (p−1)β
2

−1|Ω+X|−α2 ,

where Ψ < X, Θ = (Ω+Ψ)−
1
2Σ(Ω+Ψ)−

1
2 and

C2(α1, α2, β,Θ,Ω,Ψ) = K2(α1, α2, β, (Ω+Ψ)
1
2Θ(Ω+Ψ)

1
2 )

× etr(ΘΨ)|Ω+Ψ|−α1+α2 .

In this case we use the notation X ∼ GKB2βp (α1, α2,Θ,Ω,Ψ).

Proof. The proof directly follows by Definition 2.4 and the fact that the Jacobian of

transformation is J(U → X) = |Ω+Ψ|−
β(p−1)

2
−1. □
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3. Selberg Type Square Matrices Integrals

In this section we are interested in evaluating the integrals of the form∫
h(Λ)

p∏
i<j

(λi − λj)
βdΛ, (3.1)

where Λ = Diag(λ1, . . . , λp), λ1 > . . . > λp > 0, for some function h. In this regard,

we need the following essential result due to [7]. Note that similar results can also be

found in [8] for general form of the distributions defined in Definition 2.1. However the

purpose of this study is to evaluate integrals of the form (3.1).

Theorem 3.1. Let X ∈ Bβ
p be a random matrix with density function f(X). Then the

joint density function of the eigenvalues λ1, . . . , λp of X is

g(λ1, . . . , λp) =
π

1
2
p2β+ϱ

Γβ
p

(
pβ
2

) p∏
i<j

(λi − λj)
β

∫
H∈Uβ(p)

f(HΛH∗)(dH),

where (dH) is the normalized Haar measure and

ϱ =


0, β = 1;

−p, β = 2;

−2p, β = 4;

−4p, β = 8.

Lemma 3.2. Let X ∈ Bβ
p be a random matrix with density function f(X). Then we

have ∫
H∈Uβ(p)

(∫
Λ

f(HΛH∗)

p∏
i<j

(λi − λj)
βdΛ

)
(dH) =

Γβ
p

(
pβ
2

)
π

1
2
p2β+ϱ

.

Proof. Since
∫
Λ
g(λ1, . . . , λp)dΛ = 1, by making use of Theorem 3.1 and changing the

order of integration, the result follows. □

In sequel we proceed by giving some examples of gamma and beta integrals for real

normed division algebras.

3.1. Examples. In this part, we give some examples of Selberg-type integrals.

Example 3.3. Based on Definition 2.1, and the fact that H∗H = Ip, we have the

following results using Lemma 3.1
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(1:1) Suppose that X ∼ W β
p (n, Ip), then using the density of S given in Definition

2.1(2), we have (extension to [14])∫
Λ

|Λ|
β(n−p+1)

2
−1 etr

{
−β

2
Λ

} p∏
i<j

(λi − λj)
βdΛ =

2
βpn
2

[
Γβ
p

(
pβ
2

)]2
β

βpn
2 π

1
2
p2β+ϱ

(1:2) Suppose that X ∼ T β
n,p(ν, Ip), then from the density of S1 = X∗X given in

Definition 2.1(3), we have (extension to [11])∫
Λ

|Λ|
β(n−p+1)

2
−1|Ip +Λ|−

β(n+ν)
2

p∏
i<j

(λi − λj)
βdΛ =

Γβ
p

(
pβ
2

)
Bβ

p

(
βν
2
, βn

2

)
π

1
2
p2β+ϱ

.

In the same fashion

(1:3) Suppose that X ∼ Gβ
n,p(ν, Ip), then from the density of S2 = X∗X given in

Definition 2.1(4), we have∫
Λ

|Λ|
β(n−p+1)

2
−1|Ip −Λ|

β(ν−p+1)
2

−1

p∏
i<j

(λi − λj)
βdΛ =

Γβ
p

(
pβ
2

)
Bβ

p

(
βν
2
, βn

2

)
π

1
2
p2β+ϱ

.

Example 3.4. (2:1) Suppose that X ∼ KB1βp (α1, α2,Σ), then by Definition 2.3 we

get ∫
H

∫
Λ

etr (ΣHΛH∗) |Ip −Λ|α1− (p−1)β
2

−1|Λ|α2− (p−1)β
2

−1

p∏
i<j

(λi − λj)
βdΛ(dH)

=
Γβ
p

(
pβ
2

)
Bβ

p (α1, α2)

π
1
2
p2β+ϱ

1F
β
1 (α1, α1 + α2;−Σ). (3.2)

It is easily seen that taking Σ = 0, α1 = νβ
2

and α2 = nβ
2

in (3.2) gives item

(1:3) in the above. Further, for the case Σ = Ip, we have that∫
Λ

etr (Λ) |Ip −Λ|α1− (p−1)β
2

−1|Λ|α2− (p−1)β
2

−1

p∏
i<j

(λi − λj)
βdΛ

=
Γβ
p

(
pβ
2

)
Bβ

p (α1, α2)

π
1
2
p2β+ϱ

1F
β
1 (α1, α1 + α2;−Ip).

Note that the integral in (3.2) is not of required form, thus making use of (see

[7]) ∫
H

etr (ΣHΛH∗) (dH) =
∞∑
k=0

1

k!

∫
H

Cκ(ΣHΛH∗)(dH)
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=
∞∑
k=0

Cκ(Σ)Cκ(Λ)

k!Cκ(Ip)
(3.3)

we obtain
∞∑
k=0

Cκ(Σ)

k!Cκ(Ip)

∫
Λ

|Ip −Λ|α1− (p−1)β
2

−1|Λ|α2− (p−1)β
2

−1

×Cκ(Λ)

p∏
i<j

(λi − λj)
βdΛ

=
Γβ
p

(
pβ
2

)
Bβ

p (α1, α2)

π
1
2
p2β+ϱ

1F
β
1 (α1, α1 + α2;−Σ). (3.4)

(2:2) Suppose that X ∼ KB2βp (α1, α2,Σ), then by Definition 2.4 we get∫
H

∫
Λ

etr (ΣHΛH∗) |Λ|α1− (p−1)β
2

−1|Ip +Λ|−α2

p∏
i<j

(λi − λj)
βdΛ(dH)

=
Γβ
p

(
pβ
2

)
Γβ
p (α1)

π
1
2
p2β+ϱ

Ψβ

(
α1, α1 − α2

(p− 1)β

2
+ 1;Σ

)
.

It is also interesting to see that for the case Σ = Ip we get∫
Λ

etr (Λ) |Λ|α1− (p−1)β
2

−1|Ip +Λ|−α2

p∏
i<j

(λi − λj)
βdΛ

=
Γβ
p

(
pβ
2

)
Γβ
p (α1)

π
1
2
p2β+ϱ

Ψβ

(
α1, α1 − α2

(p− 1)β

2
+ 1; Ip

)
.

(2:3) Suppose that X ∼ GKB1βp (α1, α2,Θ,Ω,Ψ), then by Lemma 2.5 we have∫
H

∫
Λ

etr (−ΘHΛH∗) |HΛH∗ −Ψ|α1− (p−1)β
2

−1

|Ω−HΛH∗|α2− (p−1)β
2

−1

p∏
i<j

(λi − λj)
βdΛ(dH)

=
Γβ
p

(
pβ
2

)
Bβ

p (α1, α2)

π
1
2
p2β+ϱ

1F
β
1 (α1, α1 + α2;−Σ)

× etr(−ΘΨ)|Ω−Ψ|α1+α2− (p+1)β
2

−1,

where Σ = (Ω−Ψ)
1
2Θ(Ω−Ψ)

1
2 .

(2:4) Suppose that X ∼ GKB2βp (α1, α2,Θ,Ω,Ψ), then by Lemma 2.6 we have∫
H

∫
Λ

etr (−ΘHΛH∗) |HΛH∗ −Ψ|α1− (p−1)β
2

−1
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|Ω+HΛH∗|−α2

p∏
i<j

(λi − λj)
βdΛ(dH)

=
Γβ
p

(
pβ
2

)
Γβ
p (α1)

π
1
2
p2β+ϱ

etr(−ΘΨ)|Ω+Ψ|α1−α2

×Ψβ

(
α1, α1 − α2

(p− 1)β

2
+ 1; (Ω+Ψ)

1
2Θ(Ω+Ψ)

1
2

)
.
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