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NETS AND SEPARATED S-POSETS

M. HADDADI

Abstract. Nets, useful topological tools, used to generalize certain concepts that

may only be general enough in the context of metric spaces. In this work we introduce

this concept in an S-poset, a poset with an action of a posemigroup S on it which

is a very useful structure in computer sciences and interesting for mathematicians,

and give the concept of S-net. Using S-nets and its convergency we also give some

characterizations of separated S-posets. Also, introducing the net-closure operators,

we investigate the counterparts of topological separation axioms on S-posets and study

their relation to separated S-posets.

1. Introduction

Nets, the useful topological tools, used to generalize certain concepts that may only

be general enough in the context of metric spaces. Nets were first introduced by E. H.

Moore and H. L. Smith in 1922, [9] to generalize the notion of a sequence in topological

spaces. They considered arbitrary directed sets to define nets, rather than countable

linearly ordered sets used to define sequences. This strong notion is helpful in topology,

in particular to characterize Housdorff topological spaces.

General ordered algebraic structures play a role in a wide range of areas, including

analysis, logic, theoretical computer science, and physics. One important of these
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structures is the category of S-posets, the representations of a posemigroup S by order-

preserving maps of partially ordered sets, which is of interest to some mathematicians,

see [2, 3, 4, 5].

A separated S-poset A is an S-poset in which any two distinct points a and b in A

can be separated by at least one s ∈ S, by sa ̸= sb. The class of separated S-posets,

can be considered as a good counterpart of Housdorff topological spaces in the context

of S-posets, since they imply the uniqueness of limits of S-nets.

In this paper we will have a closer look at the interesting class of separated S-posets,

and give some characterizations of them by the help of S-nets. To do so, first we give

some definitions and preliminaries and we then introduce the concept of S-nets in an

S-poset where S is a posemigroup. In the pomonid case the results are in some sense

trivial. Thus we will assume from now on that S is a posemigroup. Also we give a

definition of the convergency of S-nets. Then we characterize the separated S-posets

using the uniqueness of limits of convergent S-nets.

We also introduce a closure operator using convergent S-nets, and give another char-

acterization of separated S-posets.

We then investigate the counterparts of topological separation axioms on S-posets

and we see that many of them are surprisingly equivalent to each other and imply

separateness of S-posets.

2. Preliminaries

In this section we briefly recall some preliminary notions which will be used in the

sequel.

Definition 2.1. (i) For a semigroup S, a left S-act is a non-empty set A together with

a mapping S ×A → A sending (s, a) to sa such that (1) s(ta) = (st)a, and (2) if S has

an identity element 1, 1a = a for all s, t ∈ S and a ∈ A.

(ii) Let A be a left S-act and B ⊆ A be a non-empty subset of A. Then B is called

a subact of A if sb ∈ B, for all s ∈ S and b ∈ B.

(iii) For each two left S-acts A and B a mapping f : A → B is called an act-morphism

(or briefly a morphism) if f(sa) = sf(a), for all s ∈ S and a ∈ A.

(iv) Given a left S-act A, an equivalence relation θ on A is called an S-act congruence

(or briefly a congruence on A), if aθa′ implies (sa)θ(sa′) for every a, a′ ∈ A and s ∈ S.
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A recent and complete discussion of this area is contained in the monograph Monoids,

Acts and Categories by M. Kilp, U. Knauer, and A.V. Mikhalev, see [7].

As the representation theory of a semigroup S by mappings of sets we study the

category of S-acts. Now we consider the representations of a posemigroup S by order-

preserving maps of partially ordered sets which give us S-posets. See the following

definition.

Definition 2.2. (i) A partially ordered set (briefly, a poset) (S,≤) is said to be a

posemigroup if it is a semigroup whose operation is order-preserving. That is for every

s, s1, s2 ∈ S,

s1 ≤ s2 ⇒ ss1 ≤ ss2 and s1s ≤ s2s.

(ii) Let (S,≤) be a posemigroup. Then a poset (A,≤) is called a (left) S-poset if A is

a left S-act such that the action of S, (s, a) 7→ sa, is monotone in both variables, that

is:

a ≤ b, s ≤ t ⇒ sa ≤ tb,

for all a, b ∈ A and s, t ∈ S, see [5]. Since we consider left S-acts and left S-posets in

this paper, the word ‘left’ in the following will be dropped.

(iii) A poset (B,≤B) is said to be an S-subposet of an S-poset (A,≤A ) if B is a

subact of A and ≤B = ≤A ∩B2.

(iv) A morphism f : A → B from an S-poset A to an S-poset B is called an S-poset

morphism, if it is order-preserving and S-act morphism. More explicitly, f(sa) = sf(a)

and f(a) ≤ f(a′) in B, if a ≤ a′ in A.

(v) For any binary relation θ on an S-poset A, one can define the relation ≤θ on A

as follows:

a ≤θ b ⇔ ∃a1, · · · , an, b1, · · · , bn; a ≤ a1θb1 ≤ · · · ≤ anθbn ≤ b.

Then, an S-act congruence θ on an S-poset A is an S-poset congruence if and only if

aθb whenever a ≤θ b ≤θ a.

The family of S-posets and the morphisms between them form a category which is

denoted by S-Pos.

Note 2.3. We should note that the category of S-posets is not obtained by taking acts in

the category of posets. Because in this case we will have the family of unary operations
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{λs : A → A}s∈S in which each λs : A → A maps every a ∈ A to sa, for every poset

A, as the order-preserving maps with the property that λs ◦ λt = λst, but there is no

order-relation between λs’s. That is, although by taking acts in the category of posets

we will get the property that if a ≤ a′ ∈ A then sa ≤ sa′ for every s ∈ S but not the

property that if s ≤ t ∈ S then sa ≤ ta, for every a ∈ A. But if one takes the action

as λ : S × A → A and defining the order on S × A component-wise, then for λ to be

order preserving means:

[(s, a) ≤ (t, b) ⇔ s ≤ tand a ≤ b] ⇒ [λ(s, a) ≤ λ(t, b) ⇔ sa ≤ tb]

3. Nets in the context of S-poset

In this section we are going to introduce the notion of S-nets in an S-poset, and

study the concept of convergent S-nets

Definition 3.1. Let S be a posemigroup.

(i) A monotone S-net (or an S-net) in an S-poset A is a monotone S-act map α from

the posemigroup S, as an S-poset, to the S-poset A. The posemigroup S is called the

index set of the net. We sometimes write an S-net α : S → A in the form (as)s∈S,

which expresses the fact that the element s ∈ S is mapped to the element as in A by

α. Hence, with this notation we have as ≤ at if s ≤ t and ast = sat, for every s, t ∈ S.

(ii) Let S be a posemigroup and A be an S-poset. Then for every a ∈ A, consider

ρa : S → A which maps every s ∈ S to sa. Since ρa : S → A preserves the order and

the S-action, ρa : S → A is an S-net and we call it the S-net induced by a.

(iii) We say that the S-net (as)s∈S converges to a ∈ A whenever sa = as, for every

s ∈ S. The element a is called the limit of (as)s∈S and let lim(as)s∈S denote the set of

all limits of the S-net (as)s∈S.

Remark 3.2. (1) An S-net (as)s∈S does not necessarily have a unique limit. For exam-

ple, if we take the semigroup S to be the set of natural number together with taking

minimum as its operation, (N,min), and consider the chain of natural numbers N as

an S-poset with the action µ : N× N → N sending each (n,m) to m− 1 if m ̸= 1 and

(n, 1) to 1, for every n ∈ N. Here the constant N-net (an = 1)n∈N has two limits 1 and

2.
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(2) Let A be an S-poset and a ∈ A. Then the S-net induced by a, as in Definition

3.1 (ii), converges to a. Also for every fixed (zero) element a ∈ A, the S-net induced

by a is the constant S-net (as = a)s∈S converging to a.

(3) The convergency notion is compatible with the morphisms in the category S-Pos.

In fact, if f : A → B is an S-poset morphism, then given any point a in A and any

S-net in A converging to a, the composition of f with this S-net converges to f(a).

4. Separated S-posets

In the present section we give a characterization of separated S-posets. We also

show that how one can make an S-poset into a separated one. We then introduce the

net-closure operator and give another characterization of separated S-posets.

In the following theorem we give a characterization of S-posets in which limits of

S-nets are unique. But first recall that an S-poset A is called separated whenever for

every a, b ∈ A with sa = sb, for every s ∈ S, then a = b [7].

Theorem 4.1. Let S be a posemigroup and A be an S-poset. Then, the limit of an

S-net in A is unique if and only if A is a separated S-poset.

Proof. (⇒) Suppose that the limit of S-nets in A is unique and sa = sb for a pair

a, b ∈ A, for every s ∈ S. So the induced S-nets by a and by b, see Definition 3.1 (ii),

coincide. Then the uniqueness of the limit implies that a = b.

(⇐) Let a and b be two limits of an S-net (as)s∈S in a separated S-poset A. Then

sa = as = sb, for every s ∈ S. Now since A is separated, a = b. □

Remark 4.2. Theorem 4.1 shows that if we are looking for a unique limit for an S-net

in A, we should make A separated. The congruence defined by

aθb ⇔ sa = sb; ∀s ∈ S

on an S-act A makes A/θ into a separated S-act. The following theorem shows how we

can make an S-poset separated.

Theorem 4.3. Let A be an S-poset.Then the above equivalence relation θ is a congru-

ence on A and A/θ is a separated S-poset. Moreover, if S = S2 then the set of limits

of a given S-net α : S → A in A is exactly the class [a]θ in which [a]θ is the unique

limit of the S-net π ◦ α : S → A → A/θ in A/θ.
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Proof. First we note that θ is an S-poset congruence, see Definition 2.1 (v). Suppose

that a ≤θ b ≤θ a, and therefore

a ≤ a1θb1 ≤ · · · ≤ anθbn ≤ b; for some a1, · · · , an, b1, · · · , bn and,

b ≤ a′1θb
′
1 ≤ · · · ≤ a′nθb

′
n ≤ a; for some a′1, · · · , a′n, b′1, · · · , b′n.

So, for every s ∈ S we have:

sa ≤ sa1 = sb1 ≤ · · · ≤ san = sbn ≤ sb and,

sb ≤ sa′1 = sb′1 ≤ · · · ≤ sa′n = b′n ≤ sa.

That is sa = sb, for every s ∈ S, and hence aθb.

Now let S = S2 and consider the S-nets α : S → A in A and π ◦ α : S → A → A/θ

in A/θ. Also let [a]θ be the unique limit of π ◦ α. So s[a]θ = [sa]θ = [as]θ, for every

s ∈ S. We show that each b ∈ [a]θ is a limit of (as)s∈S. Indeed, for every s ∈ S, since

s = s1s2 we have sb = s1s2b = s1s2a = s1as2 = as1s2 = as. The second equation is true,

since [a]θ = [b]θ and the third is for [s2a]θ = [as2 ]θ. So b ∈ lim(as)s∈S. The converse is

obviously true by the properties of congruences in S-posets. □

Now we want to define the concept of the set of boundary points of a subset B of an

S-post A as well as the boundary of a subset Y of a topological space X, and introduce

the net-closure operator Cnet on S-posets to construct a topology on an S-poset for

investigating the separation axioms on that in the next section.

First recall the definition of the categorical closure operator from [10] on a category

A which is given by a family cl = (clA)A∈A of maps from the class of subojects of A to

itself which satisfies the following conditions for all subobjects X, Y ≤ A:

(i) X ≤ clA(X) (clA is extensive)

(ii) X ≤ Y ⇒ clA(X) ≤ clA(Y ) (clA is monoton)

(iii) f(clA(X)) ≤ clA(f(X)) (clA is continuous)

in which f is a morphism from X to Y . Also the subobject X of A is called cl-closed

in A whenever clA(X) = X.

Now we are ready to give the definition of net-closure as follows:
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Definition 4.4. (1) The set of the boundary points of a subset X of an S-poset is

defined to be the set

X ′ = {a ∈ A | there exists an S-net α : S → X; a ∈ lim(α)}.

(2) In the category S-Pos we define the family Cnet = (CnetA)A∈S−Pos and call it a

net-closure as follows: given S-poset A,

CnetA : S-subposet(A) → S-subposet(A)

maps each S-subposet X ≤ A to CnetA(X) = X ∪X ′.

Lemma 4.5. The above defined Cnet is a closure operator.

Proof. First note that for every S-poset A and an S-subposet X of A, the set X ∪X ′

is an S-subposet of A. Because, for every a ∈ X ′ which is a limit of an S-net such

as α : S → X and every t ∈ S, ta is a limit of the net β = α ◦ λt : S → S → X

in which λt : S → S maps each s ∈ S to st, since β(s) = α(st) = ast = sat = sta.

That is CnetA(X) is an S-subposet of A. Also the conditions (i) and (ii) for a closure

operator are clearly satisfied. For the third condition, let f : X → Y be an S-poset

morphism from an S-subposet X to an S-subposet Y and a ∈ X ′. So there exists an

S-net α : S → X such that a ∈ lim(as)s∈S. Then sf(a) = f(sa) = f(as) = α ◦ f(s). So
f(a) is a boundary point of f(X). □

Remark 4.6. In [6, 8] where the authors take the semigroup S to be the chain of

natural numbers N together with taking minimum as its operation, a closure operation

Cs defined by Cs(X) = {a ∈ A | sa ∈ X, for all s ∈ N}, for every S-poset X of A.

Thus every element a of Cs(X) is a limit of the induced S-net by a in X, and every

element a of Cnet(X) which is a limit of some S-net in X belongs to Cs. That is, in

N-posets, Cnet is exactly Cs.

Given an S-poset A one can consider a net-topology with respect to the net-closed

S-subposets. Also every directed complete poset, that is a poset containing the join of

directed subsets, is equipped with a topology which is called the Scott-topology [1]. In a

directed complete poset P , a subset A of P is Scott-closed if and only if it is a lower set

and is closed under supremum of directed subsets. Now what is the relation between

Scott-topology and the net-topology? See the following theorem.
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Theorem 4.7. Let S be a directed posemigroup and A be a directed S-poset. Then the

Scott-topology is finer than the net-topology, that is, every Scott-closed S-subposet of A

is a net-closed one, whenever sa ≤ b, for every s ∈ S, if a ≤ b.

Proof. Let A be a directed S-poset, B be a Scott-closed S-subposet of A, α : S → B

be an S-net in B, and a ∈ lim(as)s∈S. Since (as)s∈S is a directed family and B is

Scott-closed, the family (as)s∈S has a supremum in B, namely b. So sa = as ≤ b for

every s ∈ S, and hence a ∈ B. □

The following theorem gives another characterization of separated S-posets.

Theorem 4.8. An S-poset A is separated if and only if the diagonal ∆A = {(a, a) | a ∈
A} is Cnet-closed in A× A.

Proof. (⇒) Let A be separated, α : S → ∆A be an S-net in ∆A, and (a, b) ∈ lim(α).

Then α(s) = s(a, b) = (sa, sb), for each s ∈ S. Since α is an S-net in ∆A, we have

(sa, sb) = α(s) ∈ ∆A, for each s ∈ S. Therefore sa = sb, for each s ∈ S and hence

a = b. That is (a, b) ∈ ∆A.

(⇐) For the converse, let sa = sb, for every s ∈ S. Then consider the S-net induced

by (a, b), that is ρ(a,b) : S → ∆A, which converges to (a, b). Now, since ∆A is Cnet-closed,

a = b. □

As a corollary of the above theorem and Theorem 4.1, we have the following theorem:

Theorem 4.9. For an S-poset A, the following are equivalent:

(i) Limits of nets in A are unique.

(ii) A is separated.

(iii) The diagonal ∆A is Cnet-closed S-subposet of A× A.

5. Separation axioms and Separated S-posets

In this section we want to study some of the counterparts of topological separation

axioms for S-posets. But before that, we remark that since in this section we are

working only with a fixed S-poset A, we denote CnetA simply by Cnet.

Definition 5.1. An S-poset is said to be:

(1) T0 if for every pair of distinct element a, b ∈ A there exists a Cnet-closed S-

subposet Fa containing a but not b, or there exists a Cnet-closed S-subposet Fb contain-

ing b but not a.
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(2) T1 if for every pair of distinct element a, b ∈ A there exists a Cnet-closed S-

subposet Fa containing a but not b, and there exists a Cnet-closed S-subposet Fb con-

taining b but not a.

(3) T2 if for every pair of distinct element a, b ∈ A there exists a Cnet-closed S-

subposet Fa containing a but not b, and there exists a Cnet-closed S-subposet Fb con-

taining b but not a such that Fa ∩ Fb = ∅.
(4) T3 if for each a ∈ A, the S-subposet S1a is the least Cnet-closed S-subposet

containing a, in which S1a means the union of Sa and the singleton set {a} which is

an S-subposet.

(5) T4 if for every S-subposet B and every b ∈ B there exists a Cnet-closed S-subposet

Fb with b ∈ Fb ⊆ B.

Remark 5.2. One can see that:

T4 ⇔ T3 and T2 ⇒ T1 ⇒ T0

The implication T4 ⇒ T3 is because of the fact that S1a is the least S-subposet con-

taining a, so, by T4, it should be closed. The other implications are gotten directly by

definitions.

For the converse of the other implications the following theorem is helpful.

Theorem 5.3. For an S-poset A the following are equivalent:

(1) A is T1.

(2) For distinct element a, b we have a /∈ Cnet(Sb) and b /∈ Cnet(Sa).

(3) For each element a ∈ A, Sa = {a}.
(4) The intersection of all the Cnet-closed S-subposets containing an element a ∈ A

is {a}.

Proof. (1) ⇒ (2) We can consider the Cnet-closed S-subposet Fa containing a but not b

and the Cnet-closed S-subposet Fb containing b but not a, since A is T1. Then we have

Sa ⊆ S1a ⊆ Fa and b /∈ Fa. Hence Cnet(Sa) ⊆ Fa and b /∈ Cnet(Sa). By the same way

one can see that a /∈ Cnet(Sb).

(2) ⇒ (3) For each a ∈ A and s ∈ S if sa ̸= a then sa /∈ Cnet(Sa) and this is a

contradiction.

(3)⇒ (1) If each element of A is a fixed point then every singleton set {a} is Cnet-

closed. Because, first of all {a} is an S-subposet and the only net in {a} is the constant



42 HADDADI

S-net (as)s∈S = (a) and the only limit of this S-net is a. So every distinct pair a, b in

A can be separated by Cnet-closed S-subposets.

(1)⇒ (4) Let the intersection of all the Cnet-closed S-subposets containing an element

a ∈ A have another element such as b ̸= a. Then, since A is T1, there is a Cnet-closed

S-subposet Fa containing a but not b and this is a contradiction.

(4)⇒ (1) Since the intersection of Cnet-closed S-subposets is a Cnet-closed S-subposet,

{a} is Cnet-closed and hence every two distinct points a, b of A can be separated by {a}
and {b}. □

Corollary 5.4. (1) Now the above theorem results that:

T4 ⇔ T3 ⇔ T2 ⇔ T1 ⇒ T0

For T3 ⇔ T2, we note that T3 ⇔ T1 ⇔ T2.

(2) The third statement of Theorem 5.3 ensures that every T1 S-poset is separated.

(3) We should note that Axiom T2 is not the topological Hausdorff property. Because

the requirement for the topological Hausdorff axiom in terms of closed sets is that their

union to be the whole space. Here using Theorem 4.9 we reserve the term of Hausdorff

S-posets for the separated ones.

Note 5.5. As it is mentioned in Corollary 5.4, every T1 S-poset is T0 but the converse

is not necessarily true. For example, take S to be N and A to be the chain 2 = {x, y}
in which x ≤ y and sx = x for every s ∈ S and 1y = x and sy = y for each 1 ≨ s.

Then A is T0 but not T1.

Theorem 5.6. Let S be a commutative semigroup and A be a T1 S-poset. Then the

only S-nets in A are the constant S-nets. Moreover, every S-net has a unique limit.

Proof. Let α : S → A be a nonconstant S-net in A. Then for each pair s, t ∈ S, by

the third statement in Theorem 5.3, we know that as and at are fixed. So we have

as = tas = ats = ast = sat = at. Hence α is a constant S-net (as = a)s∈S, for

some a ∈ A and it converges to a. Further more, since every T1 S-poset is separated,

Corollary 5.4 (2), so the limit of S-nets are unique, Theorem 4.1. □

Theorem 5.7. Every T0 S-poset is separated.

Proof. To prove this, we use Theorem 4.1 and show that the limits of S-nets are unique.

Suppose that α : S → A is an S-net in the S-poset A which is T0. Also suppose that
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α : S → A converges to a and b. If a ̸= b then there exists a Cnet-closed Fa containing

a but not b. Since a is a limit of α, so as = sa ∈ Fa, for every s ∈ S. That is (as)s∈S

is an S-net in Fa. Now since Fa is Cnet-closed and b ∈ lim(as)s∈S, we have b ∈ Fa and

this is a contradiction. Hence a = b. □
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