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GENERALIZATIONS OF δ-LIFTING MODULES

Y. TALEBI∗ AND M. HOSSEINPOUR

Abstract. In this paper we introduce the notions of G∗
1L-module and G∗

2L-module

which are two proper generalizations of δ-lifting modules. We give some character-

izations and properties of these modules. We show that a G∗
2L-module decomposes

into a semisimple submodule M1 and a submodule M2 of M such that every non-zero

submodule of M2 contains a non-zero δ-cosingular submodule.

1. Introduction

Throughout this article, all rings are associative with an identity, and all modules are

unitary right R−modules. Let M be an R-module. By N ≤ M(N ≤⊕ M) we mean

that N is a submodule (direct summand) of M . A submodule N of a module M is

called essential in M if for every nonzero submodule L of M , N ∩ L ̸= 0 (denoted by

N ≤e M) and A submodule N of a module M is called small in M if for every proper

submodule L of M , N +L ̸= M (denoted by N ≪ M). A module M is called hollow if

every proper submodule of M is small in M . M is called a small module if there exists a

module T such that M ≪ T . If N/K ≪ M/K, then K is called a cosmall submodule of

N in M . A submodule N of M is called coclosed if N has no proper cosmall submodule.

Recall that the singular submodule Z(M) of a module M is the set of m ∈ M with

mI = 0 for some essential ideal I of R. If Z(M) = M (Z(M) = 0), then M is called a

singular (non-singular) module. Let K, N be submodules of M . Following [14], as a
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generalization of small submodules, N is called δ-small in M , if M = N+K with M/K

singular implies M = K (denoted by N ≪δ M). K is a δ-supplement of N in M if and

only if M = N +K and N ∩K ≪δ K. Any R-module M is called δ-supplemented if

every submodule of M has a δ-supplement in M . A module M is called a lifting module

if, for every submodule A of M there exists a direct summand N of M with N ⊆ A

and A/N ≪ M/N . A module M is called δ-lifting if, for every submodule A of M

there exists a direct summand N of M with N ⊆ A and A/N ≪δ M/N . Equivalently

for any A ≤ M , there exists a decomposition M = N ⊕ B such that N ≤ A and

A ∩ B ≪δ B. Let ρ be the class of all singular simple modules. For a module M , let

δ(M) = RejM(ρ) =
∩
{N ⊆ M | M/N ∈ ρ} be the reject in M of ρ. Dual to the notion

of singular submodule of a module M , Z(M) is defined by Talebi and Vanaja in [11],

Z(M) =
∩
{Kerg | g : M → N,N is a small module}. If Z(M) = 0 ( Z(M) = M),

then M is called a cosingular (non-cosingular) module.

In [10], inspired by this definition Özcan defined the submodule Zδ(M) of M as

Zδ(M) =
∩
{Kerg | g : M → N,N is a δ-small module}. Clearly, Zδ(M) ⊆ Z(M).

Any module M is called a δ-cosingular (non-δ-cosingular) module if Zδ(M) = 0

(Zδ(M) = M). Every cosingular module is δ-cosingular and every non-δ-cosingular

module is non-cosingular.

In [13], Tribak and Orhan defined G1L-modules and G2L-modules and they inves-

tigated some properties of these modules and in [12], Talebi and Nematollahi defined

C*-modules and studied some properties of such modules.

In this paper, we defines G∗
1L-module and G∗

2L-module that are generalizations of

G1L-module and G2L-module and we discuss more results which are different from the

results of papers [12, 13]

A module M is called G1L-module if, for every submodule N of M , there exists a

direct summand K of M such that K is contained in N and the factor N/K is a small

module. A module M is called G2L-module (or C*-module), if for every submodule N

of M , there exists a direct summand K of M such that K is contained in N and the

factor N/K is a cosingular module.

A module M is called G∗
1L-module if, for every submodule N of M , there exists a

direct summand K of M such that K is contained in N and the factor N/K is a δ-small

module. A moduleM is called G∗
2L-module if, for every submodule N ofM , there exists

a direct summand K of M such that K is contained in N and the factor N/K is a
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δ-cosingular module. It is easily seen that G∗
1L (G∗

2L)-modules are two generalizations

of δ-lifting modules, we have the following hierarchy:

δ-lifting⇒ G∗
1L-module⇒ G∗

2L-module (The converse is not true. For example see

Example 2.15(3)).

2. General Properties

Proposition 2.1. For an R-module M the following statements are equivalent:

(1) M is G∗
1L (G∗

2L);

(2) For every submodule N of M there is a decomposition M = M1 ⊕M2 such that

M1 ≤ N and N ∩M2 is δ-small (δ-cosingular) module;

(3) For every submodule N of M , N has a decomposition N = N1⊕N2 such that N1

is a direct summand of M and N2 is δ-small (δ-cosingular) module.

Proof. It is obvious. □

Remark 2.2. The class of G∗
1L (G∗

2L)-modules is closed under submodules.

Proposition 2.3. Let M = M1 ⊕M2 where M1 is semisimple and M2 is G∗
1L (G∗

2L).

Then M is a G∗
1L (G∗

2L)-module.

Proof. The proof is similar to [12, Theorem 2.10]. □

Proposition 2.4. Let M be a G∗
2L- module. Then any homomorphic image of M is

G∗
2L- module.

Proof. Let f : M → N be an epimorphism and L a submodule of N . Then there is a

submodule H of M such that L ∼= H/Kerf . Since M is a G∗
2L- module, there are direct

summandsK,K ′ ofM such thatM = K⊕K ′,K ≤ H and thatH/K is δ-cosingular. So

N ∼= M/Kerf = (K/Kerf)⊕(K ′+Kerf)/Kerf . Since (H/Kerf)/(K/Kerf) ∼= H/K

is δ-cosingular, N is a G∗
2L- module. □

A module M is H-supplemented if for every submodule N of M there exists a direct

summand D of M such that (N +D)/N ≪ M/N and (N +D)/D ≪ M/D (see [6]).

We define a module to be H-δ-supplemented if for every submodule N of M there exists

a direct summand D of M such that (N +D)/N ≪δ M/N and (N +D)/D ≪δ M/D.

Proposition 2.5. Let M be a non-δ-cosingular module. Then the following are equiv-

alent:



70 TALEBI AND HOSSEINPOUR

(1) M is δ-lifting;

(2) M is H-δ-supplemented;

(3) M is G∗
1L.

Proof. (1) =⇒ (2) This is easy.

(2) =⇒ (3) Let N ≤ M . By assumption there exists a direct summand D of M such

that (N +D)/D ≪δ M/D and (N +D)/N ≪δ M/N . Since (N +D)/N ∼= D/(N ∩D).

Hence (N + D)/N is both non-δ-cosingular and δ-cosingular, and so N + D = N ,

therefore D ≤ N and N/D ≪δ M/D and M is G∗
1L.

(3) =⇒ (1) This is easy. □

Theorem 2.6. The following statements are equivalent for a ring R:

(1) Every right R-module satisfies G∗
2L;

(2) Every injective right R-module satisfies G∗
2L;

(3) Every right R-module is a direct sum of an injective module and a δ-cosingular

module.

Proof. The proof is similar to [12, Theorem 2.9]. □

Proposition 2.7. If for every module M , Zδ(M) is a direct summand of M and every

non-δ-cosingular module is injective, then every R-module is G∗
2L.

Proof. Let M be an R-module. We have M = Zδ(M) ⊕ N for some submodule N of

M . By [10, Proposition 2.5 (3)], N is δ-cosingular. Therefore Zδ(M) = Z
2

δ(M). Thus

Zδ(M) is non-δ-cosingular. By hypothesis, Zδ(M) is injective. The result follows from

Theorem 2.6. □

Let R be a ring. Recall that R is a right δ-Harada ring (δ-H-ring for short), if

every injective right R-module is δ-lifting. R is a right δ-H-ring if and only if every

right R-module can be expressed as a direct sum of a δ-small R-module and an injective

module. Also R is a Quasi-Frobenius ring (QF -ring for short), if every injective module

is projective if and only if every projective module is injective.

Corollary 2.8. If R is QF -ring, Every right R-module satisfies G∗
2L.

Proof. By [8, Corollary 2.11], R is a QF -ring if and only if every R-module is a direct

sum of a projective module and a δ-small module. By definitions, every QF -ring is a

right δ-H-ring. So see Theorem 2.6. □
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Theorem 2.9. Let M be an R-module, then:

(1) Let X be a submodule of M and D a direct summand of M . Assume that M/D

is G∗
2L. If X/(X ∩D) is non-δ-cosingular, then D +X is a direct summand of M .

(2) If M is non-δ-cosingular and M/D is G∗
2L with D a direct summand of M , then

(D +X)/D is a direct summand of M/D for all direct summands X of M .

Proof. (1) Let X be a submodule of M and D a direct summand of M . Consider the

submodule (X + D)/D ≤ M/D. Since M/D is G∗
2L, there exists a direct summand

C/D of M/D such that C/D ⊆ (X + D)/D and (D + X)/C is δ-cosingular. On

the other hand (X + D)/D ∼= X/(X ∩ D) and so (X + D)/D is non-δ-cosingular.

Therefore since every homomorphic images of non-δ-cosingular is non-δ-cosingular ([10,

Propositon 2.4]), (D +X)/C is non-δ-cosingular. Hence D +X = C.

(2) Let M is non-δ-cosingular and M/D is G∗
2L with D a direct summand of M . Let

X be a direct summand of M . Then X/(X ∩D) is non-δ-cosingular by [10, Propositon

2.4]. By (1) D+X is direct summand of M and hence (X+D)/D is a direct summand

of M/D. □

Recall that a module M has the Summand Intersection Property, (SIP) if the inter-

section of any two direct summands of M is again a direct summand (see [5]) and M

has the Summand Sum Property, (SSP) if the sum of any two direct summands of M

is again a direct summand (see [3]). Let M be any module. M is called a (D3)-module

if whenever M1 and M2 are direct summands of M with M = M1 + M2, M1 ∩ M2 is

also a direct summand of M .

Proposition 2.10. Every non-δ-cosingular G∗
2L module has the SSP.

Proof. Let M be a non-δ-cosingular G∗
2L module. Let A and B be two direct summands

of M . Let M = A ⊕ A′ = B ⊕ B′ for some submodules A′, B′. Note that A′ and B′

are G∗
2L modules. Since M/A ∼= A′ and M/B ∼= B′, (A+B)/A is a direct summand of

M/A and (A + B)/B is a direct summand of M/B by Theorem 2.9(2). Hence A + B

is a direct summand of M . □

There exists modules having the SSP and be G∗
2L but not the SIP.



72 TALEBI AND HOSSEINPOUR

Example 2.11. Let F be a filed andR the upper triangular matrix ringR =

(
F 0

F F

)
.

For submodules A =

(
0 0

F F

)
and B =

(
F 0

F 0

)
, A ⊕ (R/B) has the SSP by [3]

and G∗
2L by [9]. But has not the SIP.

Lemma 2.12. Assume that M is (D3). If M has the SSP then M has the SIP.

Proof. By [1, Lemma 19(2)]. □

Corollary 2.13. Let M be non-δ-cosingular module with (D3).Then we have:

M is G∗
2L =⇒ M has SSP=⇒ M has SIP.

Proposition 2.14. Let M be G∗
2L such that Soc(M) ̸= 0. Then for every minimal

submodule N of M , either N is δ-cosingular or N ≤⊕ M .

Proof. LetN ≤ M be minimal. SinceM is aG∗
2L-module, N contains a direct summand

K of M such that N/K is δ-cosingular. Since N is minimal, K = 0 or K = N . If

K = 0, N is δ-cosingular and if K = N , N is a direct summand of M . □

Example 2.15. (1) Let R be a commutative domain which is not a field. Harada

proved [4, Theorem 2] that the module RR is small. Therefore RR is a G∗
1L-module.

(2) Let R be a right semisimple ring and M be a nonzero right R-module. Then M

is nonsingular and semisimple. Every submodule of M(even M itself) is δ-small in M .

So M is δ-lifting and G∗
1L-module.

(3) Consider the Z-module M = Z/2Z ⊕ Z/8Z. Then M is a G∗
1L-module. On the

other hand, by [7, Example 2.8], M is not δ-lifting.

Proposition 2.16. Every δ-cosingular module (and so every δ-small module) is G∗
2L.

We have the following implications:

small =⇒ δ − small =⇒ G∗
1L

⇓ ⇓ ⇓
cosingular =⇒ δ − cosingular =⇒ G∗

2L
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Lemma 2.17. Every non-δ-cosingular submodule of a G∗
2L-module M is a direct sum-

mand of M .

Proof. Let N ≤ M be a non-δ-cosingular submodule. By assumption, N contains a

direct summand K of M such that N/K is δ-cosingular. Since N is non-δ-cosingular,

N/K is non-δ-cosingular. Hence N = K is a direct summand of M . □

Proposition 2.18. Let M be a G∗
2L-module. Then Z

2

δ(M) = Zδ(Zδ(M)) is non-δ-

cosingular and it is a direct summand of M .

Proof. Since Zδ(M) is a submodule of M and M is a G∗
2L-module, there exists a

decomposition M = K ⊕K ′ such that Zδ(M)/K is δ-cosingular. This gives Z
2

δ(M) +

K = K. Thus Z
2

δ(M) ⊆ K. But Z
2

δ(M) = Z
2

δ(K) ⊕ Z
2

δ(K
′). Then Z

2

δ(M) = Z
2

δ(K).

Since Zδ(M)/Z
2

δ(M) is δ-cosingular, so isK/Z
2

δ(M). Thus Zδ(K/Z
2

δ(K) = 0. It follows

that Zδ(K) + Z
2

δ(K) = Z
2

δ(K). Therefore Zδ(K) = Z
2

δ(K) = Z
2

δ(M). So Z
2

δ(M) is

non-δ-cosingular and by Lemma 2.17 is a direct summand of M . □

Example 2.19. (1) Let M be the Z-module Zp∞ , where p is a prime. M is a G∗
2L-

module since it is a hollow module.

(2) By Proposition 2.3, the Z-module M = Zp∞ ⊕Z/qZ, where p and q are primes is

a G∗
2L-module

(3) For every module M , the factor module M/Zδ(M) is a G∗
2L-module since it is

δ-cosingular.

(4) R is semiperfect if and only if the right (left) R-module R is lifting [9, Corollary

4.42]. Hence every semiperfect ring R, as a right(left) R-module is G∗
2L.

3. The Main Results

In this section we consider some important properties of G∗
2L-module. We show that a

G∗
2L-module decomposes into a semisimple submodule M1 and a submodule M2 of M

such that every non-zero submodule of M2 contains a non-zero δ-cosingular submodule.

Let R be any ring. Let M be a module. We denote the sum of all δ-cosingular

submodules of M by Socδ(M).

Proposition 3.1. Let M be any G∗
2L-module. Then the module

M/Socδ(M) is semisimple.
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Proof. Let N/Socδ(M) be a submodule of M/Socδ(M). Then there exist submodules

K and K ′ of M such that M = K ⊕ K ′, K ≤ N and N/K is δ-cosingular. Hence

N = K⊕(N ∩K ′) and N ∩K ′ is δ-cosingular. Thus N ∩K ′ ⊆ Socδ(M), and we deduce

that M/Socδ(M) = (N/Socδ(M))⊕ [(K ′ + Socδ(M))/Socδ(M)]. That is, N/Socδ(M)

is a direct summand of M/Socδ(M). So M/Socδ(M) is semisimple. □

Corollary 3.2. Let R be a ring such that every simple R-module is δ-cosingular and

M any G∗
2L-module. Then Socδ(M) is an essential submodule of M .

Proof. Let N be any submodule of M such that N ∩ Socδ(M) = 0. So N can be

embedded in M/Socδ(M). By Proposition 3.1, N is semisimple, so that, by hypothesis,

N ⊆ Socδ(M). Hence N = 0. Thus Socδ(M) is an essential submodule of M . □

Lemma 3.3. Let M be a G∗
2L-module and N be any submodule of M . Then N contains

a non-zero δ-cosingular submodule or N is a semisimple direct summand of M .

Proof. Suppose that N does not contain a δ-cosingular. Let P be any submodule of

N . By Proposition 2.1, P = K ⊕L for some direct summand K of M and δ-cosingular

submodule L of M . But L = 0, and hence, P = K. By [2, Theorem 9.6], N is a

semisimple direct summand of M . □

Proposition 3.4. Let M be a G∗
2L-module. Then there exist a semisimple submodule

M1 and a submodule M2 of M such that M = M1 ⊕M2 and every non-zero submodule

of M2 contains a non-zero δ-cosingular submodule.

Proof. Let A = {N ≤ M such that N does not contain a non-zero δ-cosingular

submodule}. By Zorn’s Lemma, A contains a maximal element M1. By Lemma 3.3,

M1 is a semisimple direct summand of M . So there exists a submodule M2 such that

M = M1 ⊕ M2. Let N be a non-zero submodule of M2. Then M1 ⊕ N contains a

non-zero δ-cosingular submodule K, by the choice of M1. Note that K ∩ M1 is a δ-

cosingular submodule and hence K ∩ M1 = 0. Thus K can be embedded in N and

hence N contains a non-zero δ-cosingular submodule. □

An internal direct sum ⊕i∈IXi of submodules of a module M is called a local sum-

mand of M if, given any finite subset F of the index set I, the direct sum ⊕i∈FXi is a

direct summand of M .
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Theorem 3.5. Every non-δ-cosingular G∗
2L module is a direct sum of indecomposable

modules.

Proof. Let M be a non-δ-cosingular G∗
2L module and X = ⊕i∈IXi a local summand

of M . Since each Xi is a direct summand of M , and Xi = Zδ(Xi) ≤ Zδ(X). Then

Zδ(X) = Zδ(⊕i∈IXi) = ⊕i∈IZδ(Xi) = ⊕i∈IXi = X. So X is non-δ-cosingular. It

follows that X ≤⊕ M . Hence every local summand is summand. Therefore by [9,

Theorem 2.17] , M is a direct sum of indecomposable modules. □

Recall that an R-module M is an extending module if for every submodule A of M

there exists a direct summand B of M such that A ≤e B.

Proposition 3.6. Let M be an extending module. Then M is G∗
2L if and only if every

submodule of M is a direct sum of an extending module and a δ-cosingular module.

Proof. Suppose that M be G∗
2L. Let N ≤ M . Then N = N1 ⊕ N2 where N1 ≤⊕ M

and N2 is δ-cosingular. It follows that N1 is extending. Conversely, Suppose that every

submodule of M is a direct sum of an extending module and a δ-cosingular module.

Let L be any submodule of M . Then L = L1 ⊕ L2 for some extending module L1 and

δ-cosingular module L2. Since L1 is extending, there exists a direct summand K of M

such that L1 ≤e K. It follows that K ∩L2 = 0 and L = K ⊕L2. Hence M is G∗
2L. □

It is well known that there are Z-modules which are not extending, for example

M = Z/2Z⊕ Z/8Z. But by Example 2.15, M is G∗
2L.

Proposition 3.7. The following are equivalent for a ring R.

(1) Every right R-module is G∗
2L;

(2) Every extending right R-module is G∗
2L;

(3) Every quasi-injective right R-module is G∗
2L;

(4) Every injective right R-module is G∗
2L;

(5) Every right R-module is a direct sum of an extending module and a δ-cosingular

module;

(6) Every right R-module is a direct sum of an injective module and a δ-cosingular

module.

Proof. (1) ⇐⇒ (4) ⇐⇒ (6) By Theorem 2.6. (1) =⇒ (2) =⇒ (3) =⇒ (4) Clear.

(2) ⇐⇒ (5) By Proposition 3.6. □
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