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CLASSICAL 2-ABSORBING SECONDARY
SUBMODULES

FARANAK FARSHADIFAR∗

Abstract. In this work, we introduce the concept of classical
2-absorbing secondary modules over a commutative ring as a gen-
eralization of secondary modules and investigate some basic prop-
erties of this class of modules. Let R be a commutative ring with
identity. We say that a non-zero submodule N of an R-module M
is a classical 2-absorbing secondary submodule of M if whenever
a, b ∈ R, K is a submodule of M and abN ⊆ K, then aN ⊆ K
or bN ⊆ K or ab ∈

√
AnnR(N). This can be regarded as a dual

notion of the 2-absorbing primary submodule.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity
and Z will denote the ring of integers. Let N be a submodule of an
R-module M . For r ∈ R, (N :M r) will denote (N :M r) = {m ∈ M :
rm ∈ N}. Clearly, (N :M r) is a submodule of M containing N .

Let M be an R-module. A proper submodule P of M is called prime
if for any r ∈ R and m ∈ M with rm ∈ P , we have m ∈ P or
r ∈ (P :R M) [13]. A non-zero submodule S of M is said to be second
if for each a ∈ R, the homomorphism S

a→ S is either surjective or zero
[18]. A proper submodule N of M is said to be completely irreducible
if N =

∩
i∈I Ni, where {Ni}i∈I is a family of submodules of M , implies
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that N = Ni for some i ∈ I. It is easy to see that every submodule of
M is an intersection of completely irreducible submodules of M [15].

The notion of 2-absorbing ideals as a generalization of prime ideals
was introduced and studied in [7]. A proper ideal I of R is a 2-absorbing
ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I
or bc ∈ I. In [8], the authors introduced the concept of 2-absorbing
primary ideal which is a generalization of primary ideal. A proper ideal
I of R is called a 2-absorbing primary ideal of R if whenever a, b, c ∈ R
and abc ∈ I, then ab ∈ I or ac ∈

√
I or bc ∈

√
I.

The notion of 2-absorbing ideals was extended to 2-absorbing sub-
modules in [12] and [16]. A proper submodule N of M is called a
2-absorbing submodule of M if whenever abm ∈ N for some a, b ∈ R
and m ∈ M , then am ∈ N or bm ∈ N or ab ∈ (N :R M).

In [6], the authors introduced the dual notion of 2-absorbing sub-
modules (that is, 2-absorbing (resp., strongly 2-absorbing) second sub-
modules) of M , and investigated some properties of these classes of
modules. A non-zero submodule N of M is said to be a 2-absorbing
second submodule of M if whenever a, b ∈ R, L is a completely irre-
ducible submodule of M , and abN ⊆ L, then aN ⊆ L or bN ⊆ L
or ab ∈ AnnR(N). A non-zero submodule N of M is said to be a
strongly 2-absorbing second submodule of M if whenever a, b ∈ R, K
is a submodule of M , and abN ⊆ K, then aN ⊆ K or bN ⊆ K or
ab ∈ AnnR(N).

The notion of 2-absorbing primary submodules as a generalization
of 2-absorbing primary ideals of rings was introduced and studied in
[14]. A proper submodule N of M is said to be a 2-absorbing primary
submodule of M if whenever a, b ∈ R, m ∈ M , and abm ∈ N , then
am ∈ N or bm ∈ N or ab ∈

√
(N :R M).

The purpose of this paper is to introduce the concept of classical
2-absorbing secondary submodules as a dual notion of 2-absorbing pri-
mary submodules and obtain some related results.

2. Main results

We start this section with the following definition.

Definition 2.1. We say that a non-zero submodule N of an R-module
M is a classical 2-absorbing secondary submodule of M if whenever
a, b ∈ R, K is a submodule of M and abN ⊆ K, then aN ⊆ K or bN ⊆
K or ab ∈

√
AnnR(N). This can be regarded as a dual notion of the

2-absorbing primary submodule. By a classical 2-absorbing secondary
module, we mean a module which is a classical 2-absorbing secondary
submodule of itself.
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Example 2.2. Clearly every strongly 2-absorbing second submodule
is a classical 2-absorbing secondary submodule. But the converse is not
true in general. For example, for any prime integer p, let M = Zp∞

and N = ⟨1/p3 + Z⟩. Then N is a classical 2-absorbing secondary
submodule which is not a 2-absorbing second submodule of M .

Example 2.3. Clearly every secondary submodule is a classical 2-
absorbing secondary submodule. But the converse is not true in gen-
eral. For example, let p, q be two prime numbers, N = ⟨1/p+ Z⟩, and
K = ⟨1/q2 + Z⟩. Then N ⊕ K is not a secondary submodule of the
Z-module Zp∞ ⊕ Zq∞ . But N ⊕K is a classical 2-absorbing secondary
submodule of the Z-module Zp∞ ⊕ Zq∞ .

Theorem 2.4. Let N be a non-zero submodule of an R-module M .
The following statements are equivalent:

(a) N is a classical 2-absorbing secondary submodule of M ;
(b) If IJN ⊆ K for some ideals I, J of R and a submodule K of

M , then IN ⊆ K or JN ⊆ K or IJ ⊆
√
AnnR(N);

(c) For each a, b ∈ R, we have abN = aN or abN = bN or ab ∈√
AnnR(N).

Proof. (a) ⇒ (b). Let N be a classical 2-absorbing secondary submod-
ule of M and let IJN ⊆ K for some ideals I, J of R and a submodule
K of M . Suppose IJ ̸⊆

√
AnnR(N). Then for some a ∈ I and b ∈ J ,

ab ̸∈
√

AnnR(N). Now since abN ⊆ K, aN ⊆ K or bN ⊆ K. We
show that either IN ⊆ K or JN ⊆ K. On contrary, we assume that
IN ̸⊆ K and JN ̸⊆ K. Then there exist a1 ∈ I, b1 ∈ J such that
a1N ̸⊆ K and b1N ̸⊆ K. Since a1b1N ⊆ K and N is a classical
2-absorbing secondary submodule, a1b1 ∈

√
AnnR(N). We have the

following three cases:
Case I: Suppose aN ⊆ K but bN ̸⊆ K. Since a1bN ⊆ K and bN ̸⊆

K and a1N ̸⊆ K, we have a1b ∈
√

AnnR(N). Now, (a+a1)bN ⊆ K and
aN ⊆ K but a1N ̸⊆ K, therefore (a+ a1)N ̸⊆ K. As (a+ a1)bN ⊆ K

and bN ̸⊆ K, then (a + a1)N ̸⊆ K implies (a + a1)b ∈
√

AnnR(N).
Thus a1b ∈

√
AnnR(N) implies that ab ∈

√
AnnR(N), a contradiction.

Case II: Suppose bN ⊆ K but aN ̸⊆ K. Then similar to the Case I,
we get a contradiction.

Case III: Suppose aN ⊆ K and bN ⊆ K. Now bN ⊆ K and
b1N ̸⊆ K imply (b + b1)N ̸⊆ K. Since a1(b + b1)N ⊆ K and (b +

b1)N ̸⊆ K and a1N ̸⊆ K, we get a1(b + b1) ∈
√

AnnR(N). Since
a1b1 ∈

√
AnnR(N), we have a1b ∈

√
AnnR(N). Again, aN ⊆ K

and a1N ̸⊆ K imply (a + a1)N ̸⊆ K. Since (a + a1)b1N ⊆ K and
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(a + a1)N ̸⊆ K and b1N ̸⊆ K, we have (a + a1)b1 ∈
√

AnnR(N).
Now as a1b1 ∈

√
AnnR(N) we get ab1 ∈

√
AnnR(N). Since (a +

a1)(b + b1)N ⊆ K and (a + a1)N ̸⊆ K and (b + b1)N ̸⊆ K, we have
(a + a1)(b + b1) ∈

√
AnnR(N). Since ab1, a1b, a1b1 ∈

√
AnnR(N), we

have ab ∈
√

AnnR(N), a contradiction. Hence IN ⊆ K or JN ⊆ K.
(b) ⇒ (c). Let a, b ∈ R. Then abN ⊆ abN implies that aN ⊆ abN

or bN ⊆ abN or ab ∈
√

AnnR(N). Thus abN = aN or abN = bN or
ab ∈

√
AnnR(N).

(c) ⇒ (a). This is clear. □

Let N be a submodule of an R-module M . Then, part (c) of Theorem
2.4 shows that N is a classical 2-absorbing secondary submodule of M
if and only if N is a classical 2-absorbing secondary module.

Afterwards, we frequently use the following basic fact without further
comment.

Remark 2.5. Let N and K are two submodules of an R-module M . To
prove N ⊆ K, it is enough to show that if L is a completely irreducible
submodule of M such that K ⊆ L, then N ⊆ L.

Theorem 2.6. Let N be a classical 2-absorbing secondary submodule
of an R-module M . Then AnnR(N) is a 2-absorbing primary ideal of
R.

Proof. Let a, b, c ∈ R and abc ∈ AnnR(N). Suppose that ab ̸∈ AnnR(N)

and bc ̸∈
√

AnnR(N). We show that ac ∈
√

AnnR(N). There exist
completely irreducible submodules L1 and L2 of M such that abN ̸⊆ L1

and bcN ̸⊆ L2. Since abcN = 0 ⊆ L1 ∩ L2, acN ⊆ (L1 ∩ L2 :M b).
Thus baN ⊆ L1 ∩ L2 or cbN ⊆ L1 ∩ L2 or ac ∈

√
AnnR(N). If

baN ⊆ L1 ∩ L2 or cbN ⊆ L1 ∩ L2, then baN ⊆ L1 or cbN ⊆ L2 which
are contradictions. Therefore, ac ∈

√
AnnR(N). □

Corollary 2.7. Let N be a classical 2-absorbing secondary submodule
of an R-module M . Then

√
AnnR(N) is a 2-absorbing ideal of R.

Proof. By Theorem 2.6, AnnR(N) is a 2-absorbing primary ideal of R.
Thus, by [8, Theorem 2.2],

√
AnnR(N) is a 2-absorbing ideal of R. □

The following example shows that the converse of Theorem 2.6 is not
true in general.

Example 2.8. Consider M = Zpq ⊕ Q as a Z-module, where p, q are
two prime integers. Then AnnR(M) = 0 is a 2-absorbing primary ideal
of Z. But M is not a classical 2-absorbing secondary Z-module.
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M is said to be a comultiplication module if for every submodule N
of M there exists an ideal I of R such that N = (0 :M I), equivalently,
for each submodule N of M , we have N = (0 :M AnnR(N)) [3].

In the following theorem, we characterize classical 2-absorbing sec-
ondary submodules of a comultiplication module over a Dedekind do-
main.

Theorem 2.9. Let R be a Dedekind domain and M be a comultiplica-
tion R-module. If N is a classical 2-absorbing secondary submodule of
M , then N = (0 :M Annn

R(K)) or N = (0 :M Annn
R(K1)Ann

m
R (K2)),

where K, K1, K2 are minimal submodules of M and n,m are positive
integers.

Proof. By Theorem 2.6, for any classical 2-absorbing secondary sub-
module N of M , we have AnnR(N) is a 2-absorbing primary ideal of
R. By using [8, Theorem 2.11], we have either AnnR(N) = In or
AnnR(N) = In1 I

m
2 , where I, I1, I2 are maximal ideals of R. First as-

sume that AnnR(N) = In. If (0 :M I) = 0, then (0 :M In) = 0,
and so N = 0, a contradiction. Now by [4, Theorem 3.2], since I is
a maximal ideal of R, we have (0 :M I) is a minimal submodule of
M . This implies that N = (0 :M Annn

R(K)), where K = (0 :M I).
Now assume that AnnR(N) = In1 I

m
2 . If (0 :M I1) = 0 and (0 :M

I2) = 0, then we can conclude that N = 0, a contradiction. Thus
either (0 :M I1) ̸= 0 or (0 :M I2) ̸= 0. Hence, one can see that ei-
ther N = (0 :M Annn

R(K1)Ann
m
R (K2)) or N = (0 :M Annm

R (K2)) or
N = (0 :M Annn

R(K1)), where K1 = (0 :M I1) and K2 = (0 :M I2) are
minimal submodules of M . □

Let M be an R-module. For a submodule N of M the second radical
(or second socle) of N is defined as the sum of all second submodules
of M contained in N and it is denoted by sec(N) (or soc(N)). In case
N does not contain any second submodule, the second radical of N is
defined to be (0) (see [11] and [1]).

Theorem 2.10. Let M be a finitely generated comultiplication R-
module. If N is a classical 2-absorbing secondary submodule of M ,
then sec(N) is a strongly 2-absorbing second submodule of M .

Proof. Let N be a classical 2-absorbing secondary submodule of M . By
Corollary 2.7,

√
AnnR(N) is a 2-absorbing ideal of R. By [2, Theorem

2.12], AnnR(sec(N)) =
√

AnnR(N). Therefore, AnnR(sec(N)) is a
2-absorbing ideal of R. Now the result follows from [6, Theorem 3.10].

□
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Recall that an R-module M is said to be sum-irreducible precisely
when it is nonzero and cannot be expressed as the sum of two proper
submodules of itself [10, Definition and Exercise 7.2.8].
Theorem 2.11. Let N be a classical 2-absorbing secondary submodule
of an R-module M . Then aN = a2N for all a ∈ R \

√
AnnR(N). The

converse holds, if N is a sum-irreducible submodule of M .

Proof. Let a ∈ R \
√

AnnR(N). Then a2 ∈ R \
√

AnnR(N). Thus
aN = a2N by Theorem 2.4 (a) ⇒ (c). Conversely, let N be a sum-
irreducible submodule of M and abN ⊆ K for some a, b ∈ R and a
submodule K of M . Assume that, ab ̸∈

√
AnnR(N). We show that

aN ⊆ K or bN ⊆ K. As ab ̸∈
√

AnnR(N), we have a, b ̸∈
√

AnnR(N).
Thus aN = a2N by assumption. Let x ∈ N . Then ax ∈ aN = a2N .
Hence ax = a2y for some y ∈ N . This implies that x− ay ∈ (0 :N a) ⊆
(K :N a). Thus x = x − ay + ay ∈ (K :N a) + (K :N b). Therefore,
N ⊆ (K :N a) + (K :N b). Clearly, (K :N a) + (K :N b) ⊆ N . Thus as
N is sum-irreducible, (K :N a) = N or (K :N b) = N , as needed. □

An R-module M is said to be a multiplication module if for every
submodule N of M there exists an ideal I of R such that N = IM [9].
Theorem 2.12. Let N be a submodule of an R-module M . Then we
have the following.

(a) If N is a classical 2-absorbing secondary submodule of M , then
IN is a classical 2-absorbing secondary submodule of M for all
ideals I of R with I ̸⊆ AnnR(N).

(b) If M is a multiplication classical 2-absorbing secondary module,
then every non-zero submodule of M is a classical 2-absorbing
secondary submodule of M .

Proof. (a) Let I be an ideal of R with I ̸⊆ AnnR(N). Then IN is a
non-zero submodule of M . Let a, b ∈ R, K be a submodule of M , and
abIN ⊆ K. Then abN ⊆ (K :M I). Thus aIN ⊆ K or bIN ⊆ K or
ab ∈

√
AnnR(N) ⊆

√
AnnR(IN), as needed.

(b) This follows from part (a). □

Theorem 2.13. Let f : M → Ḿ be a monomorphism of R-modules.
Then we have the following.

(a) If N is a classical 2-absorbing secondary submodule of M , then
f(N) is a classical 2-absorbing secondary submodule of Ḿ .

(b) If Ń is a classical 2-absorbing secondary submodule of f(M),
then f−1(Ń) is a classical 2-absorbing secondary submodule of
M .
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Proof. (a) Since N ̸= 0 and f is a monomorphism, we have f(N) ̸= 0.
Let a, b ∈ R, Ḱ be a submodule of Ḿ , and abf(N) ⊆ Ḱ. Then
abN ⊆ f−1(Ḱ). As N is classical 2-absorbing secondary submodule,
aN ⊆ f−1(Ḱ) or bN ⊆ f−1(Ḱ) or ab ∈

√
AnnR(N). Therefore,

af(N) ⊆ f(f−1(Ḱ)) = f(M) ∩ Ḱ ⊆ Ḱ

or
bf(N) ⊆ f(f−1(Ḱ)) = f(M) ∩ Ḱ ⊆ Ḱ

or ab ∈
√
AnnR(f(N)), as needed.

(b) If f−1(Ń) = 0, then f(M) ∩ Ń = ff−1(Ń) = f(0) = 0. Thus
Ń = 0, a contradiction. Therefore, f−1(Ń) ̸= 0. Now let a, b ∈ R, K
be a submodule of M , and abf−1(Ń) ⊆ K. Then

abŃ = ab(f(M) ∩ Ń) = abff−1(Ń) ⊆ f(K).

As Ń is classical 2-absorbing secondary submodule, aŃ ⊆ f(K) or
bŃ ⊆ f(K) or ab ∈

√
AnnR(Ń). Hence af−1(Ń) ⊆ f−1f(K) = K or

bf−1(Ń) ⊆ f−1f(K) = K or ab ∈
√

AnnR(f−1(Ń)), as desired. □

Theorem 2.14. Let M be an R-module. If E is an injective R-
module and N is a 2-absorbing primary submodule of M such that
HomR(M/N,E) ̸= 0, then HomR(M/N,E) is a classical 2-absorbing
secondary R-module.

Proof. Let a, b ∈ R. Since N is a 2-absorbing primary submodule of
M , we can assume that (N :M ab) = (N :M a) or (N :M (ab)n) = M for
some positive integer n. Since E is an injective R-module, by replacing
M with M/N in [5, Theorem 3.13 (a)], we have

HomR(M/(N :M a), E) = aHomR(M/N,E).

Therefore,
abHomR(M/N,E) = HomR(M/(N :M ab), E) =

HomR(M/(N :M a), E) = aHomR(M/N,E)

or
(ab)nHomR(M/N,E) = HomR(M/(N :M (ab)n), E) =

HomR(M/M,E) = 0,

as needed □
Example 2.15. Let R be a Noetherian ring and let E = ⊕m∈Max(R)E(R/m).
Then for each 2-absorbing primary ideal P of R, (0 :E P ) is a classical
2-absorbing secondary submodule of E.
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Proof. By using [17, p. 147], HomR(R/P,E) ̸= 0. Now the result
follows from the fact that (0 :E P ) ∼= HomR(R/P,E) and Theorem
2.14. □
Theorem 2.16. Let M be a classical 2-absorbing secondary R-module
and F be a right exact linear covariant functor over the category of
R-modules. Then F (M) is a classical 2-absorbing secondary R-module
if F (M) ̸= 0.
Proof. This follows from [5, Theorem 3.14] and Theorem 2.4 (a) ⇒
(c). □
Corollary 2.17. Let M be an R-module, S be a multiplicative subset
of R and N be a classical 2-absorbing secondary submodule of M .
Then S−1N is a classical 2-absorbing secondary submodule of S−1M if
S−1N ̸= 0.
Proof. This follows from Theorem 2.16. □
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کلاسیک ٢ -جاذب ثانویه زیرمدول های

فرشادی فر فرانک
ایران تهران، فرهنگیان، دانشگاه ریاضی، گروه

تعمیمی عنوان به جابه جایی حلقه های روی را کلاسیک ٢ -جاذب ثانویه مدول های مفهوم ما مقاله این در
یک می دهیم. قرار بحث مورد را مدول ها از دسته این اولیه خواص و کرده معرفی ثانویه مدول های از
یک K ،a, b ∈ R هرگاه گوییم کلاسیک ٢ -جاذب ثانویه زیرمدول را M R-مدول از N زیر مدول

مفهوم این .ab ∈
√
AnnR(N) یا bN ⊆ K یا aN ⊆ K آنگاه ،abN ⊆ K و M از زیرمدول

گرفت. نظر در ٢ -جاذب اولیه زیرمدول های دوگان می توان را

کلاسیک. ٢ -جاذب ثانویه مدول اولیه، ٢ -جاذب ایده آل ثانویه، مدول کلیدی: کلمات
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