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A NEW CHARACTERIZATION OF ABSOLUTELY
PO-PURE AND ABSOLUTELY PURE S-POSETS

R. KHOSRAVI∗ AND M. ROUEENTAN

Abstract. In this paper, we investigate po-purity using finitely
presented S-posets, and give some equivalent conditions under
which an S-poset is absolutely po-pure. We also introduce strongly
finitely presented S-posets to characterize absolutely pure S-posets.
Similar to the acts, every finitely presented cyclic S-posets is iso-
morphic to a factor S-poset of a pomonoid S by a finitely generated
right congruence on S. Finally, the relationships between regular
injectivity and absolute po-purity are considered.

1. Introduction

A pomonoid S is a monoid which it is also a poset whose partial order
≤ is compatible with the binary operation on S. A right S-poset AS

is a right S-act AS equipped with a partial order ≤ and, in addition,
for all s, t ∈ S and a, b ∈ AS, if s ≤ t then as ≤ at, and if a ≤ b
then as ≤ bs. A sub S-poset BS of a right S-poset AS is a subposet
of AS that is closed under the S-action. In this case, AS is said to
be an extension of BS. Moreover, S-morphisms are the functions that
preserve both the action and the order. The class of right S-posets and
S-morphisms form a category, denoted by POS-S, which comprises
the main background of this work. For an account on this category
and categorical notions used in this paper, the reader is referred to [3].
An S-morphism ι : AS −→ BS is a regular monomorphism if and only
if it is an order-embedding, i.e., a ≤ a′ ⇔ ι(a) ≤ ι(a′), for all a, a′ ∈ AS.
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Let S be a pomonoid and I be a nonempty subset of S. Then I is
said top be a right ideal of S, if IS ⊆ S (not necessarily ordered right
ideal). A right poideal of a pomonoid S is a nonempty subset I of S
which is both a right ideal (IS ⊆ I) and a poset ideal (that is, a ≤ b
and b ∈ I imply a ∈ I).

Let AS be a right S-poset. An S-poset congruence θ on A is a right
S-act congruence with the property that the S-act A/θ can be made
into an S-poset in such a way that the natural map AS −→ A/θ is an
S-poset map. For an S-act congruence θ on AS we write a ≤θ a

′ if the
so-called θ-chain

a ≤ a1θb1 ≤ a2θb2 ≤ . . . ≤ anθbn ≤ a′,
from a to a′ exists in AS, where ai, bi ∈ A, 1 ≤ i ≤ n. It can be
shown that an S-act congruence θ on a right S-poset AS is an S-
poset congruence if and only if aθa′ whenever a ≤θ a′ ≤θ a. Let
H ⊆ A × A. Then a ≤α(H) b if and only if a ≤ b or there exist
n ≥ 1, (ci, di) ∈ H, si ∈ S, 1 ≤ i ≤ n such that

a ≤ c1s1 d1s1 ≤ c2s2 . . . dnsn ≤ b.
The relation ν(H) given by a ν(H) b if and only if a ≤α(H) b ≤α(H) a
is the S-poset congruence induced by H. Moreover, [a]ν(H) ≤ [b]ν(H) if
and only if a ≤α(H) b. The relation θ(H) = ν(H ∪H−1) is the S-poset
congruence generated by H. A congruence ρ on an S-poset AS is called
finitely induced (finitely generated) if ρ = ν(H) (ρ = θ(H)) for some
finite subset H of A× A.

Recall that an S-poset AS is regular injective if for each regular
monomorphism g : BS −→ CS and S-morphism f : BS −→ AS, there
exists an S-morphism f : CS −→ AS such that fg = f . An S-poset
AS is weakly regular injective (fg-weakly regular injective, principally
weakly regular injective) if every S-morphism f : IS −→ AS from a
(finitely generated, principal) right ideal I of S can be extended to
an S-morphism f : SS −→ AS. By a retract of AS, we mean a sub
S-poset BS of AS together with an S-morphism from AS to BS which
maps BS identically. Clearly, a retract of a regular injective S-poset
is also regular injective. Moreover, AS is called an absolute retract if
AS is a retract of each of its extensions. In [8], it is shown that all
regular injective S-posets are absolute retract. An S-poset E(AS) is
called a regular injective envelope of an S-poset AS if E(AS) is regular
injective and does not contain a proper sub S-poset BS which is a
regular injective extension of AS. In [8], it is proved that for each S-
poset there exists a regular injective envelope. In light of [8, Proposition
2.2], the following corollary is clear which will be needed in the sequel.
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Corollary 1.1. If ρ is a congruence relation on E(AS) with ρ ̸=
∆E(AS), then ≤ρ |A ̸=≤ |A.

In the category of S-acts, absolutely pure acts were first considered
by Normak [7] and then studied by Gould in [4]. Moreover, Gould intro-
duced absolutely 1-pure acts under the name of almost pure acts in [5].
For S-posets, recently in [11], the authors generalized purity on S-acts
into the theory of S-posets and introduced the properties of (1-)pure
and absolutely (1-)pure S-posets regardless of their order. Then in [9],
they introduced po-purity of S-posets and characterized absolutely 1-
po-pure S-posets. In the following, we study strongly finitely presented
cyclic S-posets. In Section 2, some general properties of po-purity and
absolute-po-purity for S-posets are studied. Then, we investigate ab-
solutely po-pure S-posets using finitely presented S-posets. Finally,
the relationships between regular injectivity and absolute po-purity
are discussed.

An S-poset AS is free on a set X if and only if AS
∼=

∪
x∈X xS

where for all x, y ∈ X and s, t ∈ S, xs ≤ yt if and only if x = y and
s ≤ t. The concept of finitely presented S-poset was introduced in
[2] which we recall it. It was mentioned by the notion of semi-finitely
presented in [9]. An S-poset AS is said to be finitely presented if it is
isomorphic to a quotient S-poset of a finitely generated free S-poset
by a finitely induced S-poset congruence. In the category of S-acts,
finitely presented S-acts was introduced as a factor S-act of finitely
generated free S-acts by a finitely generated right congruence. Now,
we define it in the category of S-posets as follows.
Definition 1.2. An S-poset AS is said to be strongly finitely pre-
sented if it is isomorphic to F/ρ, where FS is a finitely generated free
S-poset and ρ = θ(H) for some finite subset H ⊆ F × F , i.e. ρ is a
finitely generated congruence on FS.

In the category of S-acts, every finitely presented cyclic S-act is iso-
morphic to a factor S-act of S by a finitely generated right congruence
on S. The following result shows that it is also valid for S-posets,
which is needed to characterize absolutely 1-po-pure S-posets.
Proposition 1.3. Let AS be a cyclic S-poset. Then AS is strongly
finitely presented if and only if it is isomorphic to a factor S-poset of
SS by a finitely generated right congruence on S.
Proof. Necessity. Let FS be a free S-poset generated by {x1, . . . , xn}
and let ρ be a congruence on FS generated by

H = {(xm1s1, xn1t1), . . . , (xmk
sk, xnk

tk)},
so that FS/ρ is cyclic. Assume that FS/ρ = [x1u]ρS for some u ∈ S.
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Let [xi]ρ = [x1u]ρzi, zi ∈ S, 1 ≤ i ≤ n. Set

pi =

{
si mi = 1
uzmi

si mi ̸= 1
and qi =

{
ti ni = 1
uzni

ti ni ̸= 1
for every 1 ≤ i ≤ k. Consider the right congruence

σ = θ({(p1, q1), (p2, q2), . . . , (pk, qk)})
on S. We shall prove that FS/ρ ∼= S/σ, dividing the proof into three
parts:

(a) First, we show that x1piρx1qi for every 1 ≤ i ≤ k. If mi = 1,
clearly xmi

si = x1pi, otherwise using the equalities [xmi
]ρ = [x1u]ρzmi

,
we get that [xmi

si]ρ = [xmi
]ρsi = [x1uzmi

]ρsi = [x1]ρuzmi
si = [x1]ρpi.

This means that xmi
siρx1pi. Analogously one can prove that xni

tiρx1qi.
Since xmi

siρxni
ti we have x1piρx1qi.

(b) Second, we show that if x1s ≤ρ x1t for some elements s, t ∈ S,
then s ≤σ t. From x1s ≤ρ x1t it follows that either x1s ≤ x1t and
therefore s ≤ t or there exist m ≥ 1, ci, di ∈ FS, wi ∈ S, 1 ≤ i ≤ m such
that (ci, di) ∈ H ∪H−1 and

x1s ≤ c1w1 d1w1 ≤ c2w2 ... dmwm ≤ x1t.
From the inequality x1s ≤ c1w1 we obtain that c1 ∈ x1S. Then
(c1, d1) = (xmj

sj, xnj
tj) or (xnj

tj, xmj
sj) . In the first case, mj = 1

and so s ≤ sjw1. The second case implies nj = 1, and so s ≤ qjw1.
If d1 = xnj

tj, from the inequality d1w1 ≤ c2w2 we get that c2 ∈ xnj
S,

and if d1 = xmj
sj, then c2 ∈ xmj

S. Now we have again two cases,
(c2, d2) = (xmj′

sj′ , xnj′
tj′) or (xnj′

tj′ , xmj′
sj′) for some 1 ≤ j′ ≤ k. Four

cases may occur:

(i) If d1 = xnj
tj and c2 = xmj′

sj′ , then mj′ = nj. Then we have
tjw1 ≤ sj′w2. Multiplying the last inequality from the left by
uznj

we get the inequality qjw1 ≤ pj′w2. So s ≤ pjw1 qjw1 ≤
pj′w2.

(ii) If d1 = xmj
sj and c2 = xmj′

sj′ , then mj′ = mj. Then we obtain
sjw1 ≤ sjw2, and so w1 ≤ w2. Thus s ≤ qjw1 pjw1 ≤ pj′w2.

(iii) If d1 = xnj
tj and c2 = xnj′

tj′ , then nj′ = nj. Hence tjw1 ≤
tj′w2, and so nj′ = nj. We get tjw1 ≤ tjw2, and so w1 ≤ w2.
Consequently, s ≤ pjw1 qjw1 ≤ qj′w2.

(iv) If d1 = xmj
sj and c2 = xnj′

tj′ , then nj′ = mj. So sjw1 ≤ tj′w2.
Multiplying the last inequality from the left by uzmj

we get the
inequality pjw1 ≤ qj′w2. Thus s ≤ qjw1 pjw1 ≤ qj′w2.

Continuing in this process we reach to the sequence of inequalities
s ≤ c′1w1 d

′
1w1 ≤ c′2w2 ... d

′
mwm ≤ t,

where for every 1 ≤ i ≤ m, (c′i, d
′
i) = (pj, qj) or (qj, pj) for some

1 ≤ j ≤ k which means that s ≤σ t.
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(c) Finally, we will prove that SS/σ ∼= FS/ρ. Since [x1]ρ = [x1u]ρz1
using part (b) we have [1]σ = [u]σz1 which means that SS/σ = [u]σS.
Define a mapping f : SS/σ −→ FS/ρ by f([u]σs) = [x1u]ρs for every
s ∈ S. Suppose [u]σs ≤ [u]σt for s, t ∈ S, i.e. us ≤σ ut. Then either
us ≤ ut and therefore (x1us) ≤ρ (x1ut) or

us ≤ c1w1 d1w1 ≤ c2w2 . . . dmwm ≤ ut,
where for every 1 ≤ i ≤ m, (ci, di) = (pj, qj) or (qj, pj) for some
1 ≤ j ≤ k. Consider elements (ci, di) = (pj, qj) or (qj, pj), it follows
from part (a) that c1w1 ≤ρ d1w1. We get

x1us ≤ x1c1w1 ≤ρ x1d1w1 ≤ x1c2w2 ≤ρ · · · ≤ρ x1dmwm ≤ x1ut.
This means that f is well-defined. Clearly, f is a surjective S-morphism.
Suppose f([u]σs) ≤ f([u]σt), s, t ∈ S, i.e. [x1u]ρs ≤ [x1u]ρt or x1us ≤ρ

x1ut. By part (b), [u]σs ≤ [u]σt. Hence f is order-embedding and
therefore an isomorphism.

Sufficiency is obvious. □

2. Absolutely pure and (1-)po-pure

In this section, we investigate (po-)pure properties. First we give
some general properties of S-posets satisfying such properties. Then,
we use finitely presented S-posets to give a necessary and sufficient
condition for a right S-poset to be absolutely pure or absolutely po-
pure. We say that two elements x, y of an S-poset AS are comparable
if x ≤ y or y ≤ x and denote this relation by x ∦ y. Let us recall from
[9] and [11] the notions related to (1-) po-purity and purity.

Definition 2.1. Let AS be an S-poset.

(i) Consider the system Σ consisting of inequations of the following
four forms

xs ≤ xt, xs ≤ yt, xs ≤ a, a ≤ xs,
where s, t ∈ S and a ∈ AS and x, y ∈ X, where X is a set. We
call x, y variables, s, t coefficients, a a constant and Σ a system
of inequations with constants from AS. We briefly use xs ∦ a
for two last inequations. Systems of inequations will be written
as

Σ = {xsi ∦ ai| si ∈ S, ai ∈ A, 1 ≤ i ≤ n}.
If we can map the variables of Σ onto a subset of an S-poset

BS such that the inequations turn into inequalities in BS then
such subset of BS is called a solution of the system Σ in BS. In
this case, Σ is called solvable in BS.

(ii) If Σ has a solution in an S-poset BS containing AS then Σ is
called a consistent system of inequations.
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(iii) A sub S-poset AS of an S-poset BS is called po-pure in BS

if every finite system of inequations with constants from AS

which has a solution in BS has a solution in AS. An S-poset
AS is called absolutely po-pure if every finite consistent system
of inequations with constants from AS has a solution in AS.

(iv) A sub S-poset AS of an S-poset BS is called 1-po-pure in BS if
every finite system of inequations in one variable with constants
from AS which has a solution in BS has a solution in AS. An S-
poset AS is called absolutely 1-po-pure if every finite consistent
system of inequations in one variable with constants from AS

has a solution in AS.
Replacing the term inequations by equations in the foregoing defini-

tion the concept of pure, absolutely pure and absolutely 1-pure can be
defined, as [11, Definitions 6,7,8]. In our opinion the term extension
po-pure would be more appropriate in the ordered case, and we first
study some properties of po-purity.

By [9, Proposition 2.1], we deduce the following corollary.
Corollary 2.2. If an S-poset AS is po-pure (1-po-pure) in its regular
injective envelope E(AS), then AS is absolutely po-pure (1-po-pure).

By [11, Proposition 16], we get the following result is.
Lemma 2.3. If an S-poset AS is absolutely 1-po-pure, then for any
s1, . . . , sn ∈ S there exists a ∈ AS such that a = as1 = · · · = asn.

Definition 2.4. We say that a pomonoid S has local left zeros if for
any s1, . . . , sn ∈ S there exists s ∈ S such that s = ss1 = · · · = ssn.

The following lemma is a direct consequence of Lemma 2.3.
Lemma 2.5. If SS is absolutely 1 -po-pure then S has local left zeros.
Lemma 2.6. The following hold for a pomonoid S.

(i) Θ is absolutely (1-) po-pure.
(ii) A retract of an absolutely (1-) po-pure S-poset is absolutely (1-)

po-pure.
Proof. (i) is obvious. (ii). Let BS be a retract of AS by an S-
morphism g : AS −→ BS and AS is absolutely po-pure. Clearly E(BS)
is a sub S-poset of E(AS). Suppose that Σ is a finite system of inequa-
tions with constants from BS which has a solution in E(BS). So Σ has
a solution in E(AS). Since AS is absolutely po-pure, Σ has a solution
in AS. If {a1, ...an} is a solution of Σ in AS, then {g(a1), ..., g(an)} is a
solution of Σ in BS. Therefore, BS is absolutely po-pure.

□
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Now, we consider the relationship between po-purity and tensor
products.
Proposition 2.7. [9, Proposition 2.20] If AS is a po-pure sub S-
poset of an S-poset BS, then the mapping AS ⊗S C −→ BS ⊗S C is a
regular monomorphism for every left S-poset SC.

Using the previous proposition we get the following corollary.
Corollary 2.8. If all right S-posets are absolutely po-pure, then all
left S-posets are po-flat.

To give an equivalent condition for absolutely po-purity, we need the
conditions over which an S-poset is po-pure in its extensions.
Proposition 2.9. An S-poset AS is a po-pure sub S-poset of BS if
and only if for every finitely presented S-poset CS, every S-morphism
φ : CS −→ BS and every finite subset {c1, . . . , cn| φ(ci) ∦ ai ∈ A} of
CS there exists an S-morphism ψ : CS −→ AS such that ψ(ci) ∦ ai for
i = 1, . . . , n.
Proof. Necessity. Suppose that AS is a po-pure sub S-poset of
BS. Let CS be finitely presented and φ : CS −→ BS be such that
c1, . . . , cn ∈ C and φ(ci) ∦ ai ∈ AS. Without loss of generality assume
that CS = F/ρ where F is a free S-poset generated by {f1, . . . , fm}
and

ρ = ν({(fk1s1, fl1t1), . . . , (fkrsr, flrtr)}).
Let ci = [fqi ]pi for 1 ≤ i ≤ n, and φ(ci) ∦ ai ∈ A. If φ([fj]) = bj
for j = 1, . . . ,m, then bkjsj = φ([fkj ])sj ≤ φ([flj ])tj = blj tj and
ai ∦ φ(ci) = φ([fqi ]pi) = bqipi. Hence there exist a′j ∈ AS, 1 ≤ j ≤ m,
such that a′kjsj ≤ a′lj tj for 1 ≤ j ≤ r and ai ∦ a′qipi for 1 ≤ i ≤ n. Now
define a mapping ψ : CS −→ AS by ψ([fis]) = a′is. It is easily checked
that ψ is an S-morphism such that ψ(ci) = ψ([fqi ]pi) = a′qipi ∦ ai for
i = 1, ..., n.

Sufficiency. Suppose that Σ = {xkjsj ≤ xlj tj, ai ∦ xqipi| 1 ≤
i ≤ n, 1 ≤ j ≤ r} is a system of inequations which has a solution
{b1, . . . , bm}. Let FS be a free S-posets generated by {f1, . . . , fm}, and

ρ = ν({(fk1s1, fl1t1), . . . , (fkrsr, flrtr}).
So C = F/ρ is finitely presented. Define φ : CS −→ BS by φ([fjs]) =
bjs. It is clear that φ is an S-morphism and φ(ci) ∦ ai ∈ AS where
ci = [fqi ]pi for 1 ≤ i ≤ n. By assumption there exists an S-morphism
ψ : CS −→ AS such that ψ(ci) ∦ ai for i = 1, . . . , n. Therefore,
{ψ([f1]), . . . , ψ([fm])} is a solution of Σ in AS, as desired. □

Replacing ν(H) and ∦ by θ(H) and =, respectively, in the proof of
the previous proposition, one can prove the following proposition.



34 KHOSRAVI AND ROUEENTAN

Proposition 2.10. An S-poset AS is a pure sub S-poset of BS if and
only if for every CS = FS/ρ where FS is a finitely generated free S-poset
and ρ is a finitely generated congruence on FS, for every S-morphism
φ : CS −→ BS and for every finite subset {c1, . . . , cn| φ(ci) = ai ∈ AS}
of CS there exists an S-morphism ψ : CS −→ AS such that ψ(ci) =
φ(ci) for i = 1, . . . , n.

The following two theorems give some equivalent conditions for ab-
solute purity and absolute po-purity
Theorem 2.11. The following statements are equivalent for any
S-poset AS:

(i) AS is absolutely pure;
(ii) for every strongly finitely presented S-poset MS = FS/ρ, every

finitely generated S-poset NS, every regular monomorphism ι :
NS −→MS, and every S-morphism f : NS −→ AS there exists
an S-morphism g :MS −→ AS such that gι = f .

Proof. (i)⇒ (ii). Suppose that MS, NS, ι : NS −→ MS, and f :
NS −→ AS are as stated in the assumption of part (ii). Consider AS as
a sub S-poset of E(AS), we have f : NS −→ E(AS). Regular injectivity
of E(AS) implies the existence of h :MS −→ E(AS) such that hι = f .
Assume that NS is generated by {b1, . . . , bn}. So h(bi) ∈ AS for each
1 ≤ i ≤ n. Now, applying Proposition 2.10, we get g :MS −→ AS such
that g(bi) = h(bi) for each 1 ≤ i ≤ n. Hence gι = f and we have done.

(i)⇒ (ii). It suffices to show that AS is pure in E(AS). Using
Proposition 2.10, suppose that CS = FS/ρ where FS is a finitely gen-
erated free S-poset and ρ is a finitely generated congruence on FS,
φ : CS −→ E(AS) is an S-morphism and {c1, . . . , cn| φ(ci) ∈ A} ⊆ CS.
Let NS be generated by {c1, . . . , cn}. Then f = φ|N : NS −→ AS and
by assumption there exists an S-morphism g : CS −→ AS such that
gι = f . Thus g(ci) = f(ci) = φ(ci) for i = 1, . . . , n, and the result
follows. □
Theorem 2.12. The following statements are equivalent for any
S-poset AS:

(i) AS is absolutely po-pure;
(ii) for every finitely presented S-poset MS, every finitely generated

sub S-poset NS ⊆MS and every S-morphism f : NS −→ E(AS)
such that Im(f) ⊆ {c| c ∦ a ∈ A} there exists an S-morphism
g :MS −→ AS such that for each b ∈ N we have g(b) ∦ a ∦ f(b)
for some a ∈ AS.

Proof. (i) ⇒ (ii). Let MS be a finitely presented S-poset, NS be its
finitely generated sub S-poset and f : NS −→ E(AS) an S-morphism
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such that Im(f) ⊆ {c| c ∦ a ∈ A}. Regular injectivity of E(AS) implies
the existence of h : MS −→ E(AS) such that h|N = f . Let L =
{b1, . . . , bn} be a finite set of generating elements of NS. Now h(bi) ∦
ai ∈ AS and Proposition 2.9 implies the existence of an S-morphism
g : MS −→ AS with g(bi) ∦ ai for any 1 ≤ i ≤ n. So for each bis ∈ N
we have g(bis) ∦ ais ∦ f(bi)s.

(ii)⇒ (i). By assumption and using Proposition 2.9, AS is po-pure
in E(AS), and so AS is absolutely po-pure. □

We conclude this section by considering the relationship between
regular injectivity and absolute po-purity. In [9], the authors gave
another characterization of regular injective S-posets.

Proposition 2.13. [9, Theorem 2.5] An S-poset is regular injective
if and only if any consistent system of inequations with constants from
AS has a solution in AS.

In view of the previous proposition we deduce that every regular in-
jective S-poset is absolutely po-pure. Recall from [10] that a pomonoid
S is called right (po-)Noetherian if it satisfies the ascending chain con-
dition on right (po)ideals. Equivalently, all right (po)ideals of S are
finitely generated.

In [9] it is shown that if every absolutely po-pure S-poset is weakly
regular injective, then the pomonoid S is right po-Noetherian.

Proposition 2.14. Every absolutely 1-po-pure S-poset over a right
po-Noetherian pomonid is regular injective.

Proof. Let S be a po-Noetherian pomonid and AS be absolutely
po-pure. To reach the contrary, suppose that b ∈ E(AS) \ AS. Let
I = {s ∈ S|(∃a ∈ A)( bs ≤ a)}. If I = ∅, then ≤ρB |A =≤ |A
where B = [bS], is the convex ideal generated by b, and ρB is a Rees
congruence on B, which is contradiction to Corollary 1.1. Now, suppose
that I ̸= ∅. Clearly, I is a poideal of S. Since S is po-Noetherian, we
may assume that I is generated by the set {s1, . . . , sn}. Now, consider
the finite system Σ = {xsi ≤ bsi| 1 ≤ i ≤ n} of inequations which has
a solution b in E(AS). So the system Σ has a solution a ∈ A. Take
σ = ν(a, b). Let a1, a2 ∈ A such that a1 ≤σ a2. Then

a ≤ at1 bt1 ≤ at2 bt2 ≤ at3 . . . btm ≤ a2,
where ti ∈ S for 1 ≤ i ≤ m. It is obvious that ti ∈ I which implies
that ati ≤ bti, and so a1 ≤ a2. Thus ≤σ |A =≤ |A, which is again
a contradiction by Corollary 1.1. Therefore, AS = E(AS) is regular
injective. □
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In [9, Corollary 2.5], it is shown that absolute 1-purity implies fg-
weakly regular injectivity.

The following examples illustrate that weak regular injectivity does
not imply absolute 1-po-purity and also absolute po-purity does not
imply weak regular injectivity.
Example 2.15. Weak regular injectivity does not imply absolute 1-
po-purity. Similar to [6, Example 3.6.17], let S = T 1, where T = {x, y}
is the two-element right zero semigroup with trivial order, then S is
weakly regular injective. But since S does not have any local left zeros,
SS cannot be absolutely 1-po-pure.
Example 2.16. Absolute po-purity does not imply weak regular
injectivity. Indeed, let S = (N,min)∪̇ε, where ε denotes the externally
adjoined identity with the order 1 < 2 < 3 < · · · < ε. Then KS =
S \ {ε} is a right ideal of S which is absolutely po-pure, but KS is not
weakly regular injective.

The following relations exist between absolute purity properties and
regular injectivity of S-posets.

regular injective⇒ abs. po− pure⇒ abs. 1− po− pure
⇓ ⇓

abs. pure ⇒ abs. 1− pure
⇓

fg − w. regular injective
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A NEW CHARACTERIZATION OF ABSOLUTELY PO-PURE AND
ABSOLUTELY PURE S-POSETS

R. KHOSRAVI AND M. ROUEENTAN

مطلق po-خالص و مطلق خالص مرتب S-مجموعه های از جدید توصیف یک

رویین تن٢ محمد و خسروی١ رقیه
ایران فسا، فسا، دانشگاه علوم، دانشکده ریاضی، ١گروه

ایران لامرد، لامرد، عالی آموزش ٢مرکز

را متناهی نمایش دارای مرتب S-مجموعه های از استفاده با po-خلوص مفهوم ما مقاله، این در
می باشد مطلق po-خالص مرتب، S-مجموعه ی یک آن تحت که معادلی شرایط بیان به و می کنیم تحقیق
وسیله ی به تا می کنیم معرفی را متناهی نمایش دارای قویاً مرتب S-مجموعه های همچنین می پردازیم.
S-مجموعه ی هر سیستم ها، رسته ی با مشابه کنیم. توصیف را مطلق خالص مرتب S-مجموعه های آن
به هم نهشتی رابطه ی یک روی بر مرتب تکواره ی یک از تصویری با متناهی نمایش دارای دوری مرتب
po-خلوص و بودن منظم انژکتیو ویژگی بین روابط پایان، در می باشد. یکریخت شده تولید متناهی طور

می دهیم. قرار بررسی مورد را مطلق

انژکتیو ١ -po-خالص، مطلق، po-خلوص مرتب، تکواره های مرتب، S-مجموعه های کلیدی: کلمات
منظم.
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