A NEW CHARACTERIZATION OF ABSOLUTELY PO-PURE AND ABSOLUTELY PURE S-POSETS

R. KHOSRAVI* AND M. ROUEENTAN

Abstract

In this paper, we investigate po-purity using finitely presented S-posets, and give some equivalent conditions under which an S-poset is absolutely po-pure. We also introduce strongly finitely presented S-posets to characterize absolutely pure S-posets. Similar to the acts, every finitely presented cyclic S-posets is isomorphic to a factor S-poset of a pomonoid S by a finitely generated right congruence on S. Finally, the relationships between regular injectivity and absolute po-purity are considered.

1. Introduction

A pomonoid S is a monoid which it is also a poset whose partial order \leq is compatible with the binary operation on S. A right S-poset A_{S} is a right S-act A_{S} equipped with a partial order \leq and, in addition, for all $s, t \in S$ and $a, b \in A_{S}$, if $s \leq t$ then $a s \leq a t$, and if $a \leq b$ then as $\leq b s$. A sub S-poset B_{S} of a right S-poset A_{S} is a subposet of A_{S} that is closed under the S-action. In this case, A_{S} is said to be an extension of B_{S}. Moreover, S-morphisms are the functions that preserve both the action and the order. The class of right S-posets and S-morphisms form a category, denoted by POS-S, which comprises the main background of this work. For an account on this category and categorical notions used in this paper, the reader is referred to [3]. An S-morphism $\iota: A_{S} \longrightarrow B_{S}$ is a regular monomorphism if and only if it is an order-embedding, i.e., $a \leq a^{\prime} \Leftrightarrow \iota(a) \leq \iota\left(a^{\prime}\right)$, for all $a, a^{\prime} \in A_{S}$.

MSC(2010): Primary: 06F05; Secondary: 20M30.
Keywords: S-posets, pomonoids, absolutely po-pure, 1-po-pure, regular injective.
Received: 13 April 2019, Accepted: 27 November 2019.

* Corresponding author.

Let S be a pomonoid and I be a nonempty subset of S. Then I is said top be a right ideal of S, if $I S \subseteq S$ (not necessarily ordered right ideal). A right poideal of a pomonoid S is a nonempty subset I of S which is both a right ideal $(I S \subseteq I$) and a poset ideal (that is, $a \leq b$ and $b \in I$ imply $a \in I$).

Let A_{S} be a right S-poset. An S-poset congruence θ on A is a right S-act congruence with the property that the S-act A / θ can be made into an S-poset in such a way that the natural map $A_{S} \longrightarrow A / \theta$ is an S-poset map. For an S-act congruence θ on A_{S} we write $a \leq_{\theta} a^{\prime}$ if the so-called θ-chain

$$
a \leq a_{1} \theta b_{1} \leq a_{2} \theta b_{2} \leq \ldots \leq a_{n} \theta b_{n} \leq a^{\prime}
$$

from a to a^{\prime} exists in A_{S}, where $a_{i}, b_{i} \in A, 1 \leq i \leq n$. It can be shown that an S-act congruence θ on a right S-poset A_{S} is an S poset congruence if and only if $a \theta a^{\prime}$ whenever $a \leq_{\theta} a^{\prime} \leq_{\theta} a$. Let $H \subseteq A \times A$. Then $a \leq_{\alpha(H)} b$ if and only if $a \leq b$ or there exist $n \geq 1,\left(c_{i}, d_{i}\right) \in H, s_{i} \in S, 1 \leq i \leq n$ such that

$$
a \leq c_{1} s_{1} \bar{d}_{1} s_{1} \leq c_{2} s_{2} \ldots d_{n} s_{n} \leq b
$$

The relation $\nu(H)$ given by $a \nu(H) b$ if and only if $a \leq_{\alpha(H)} b \leq_{\alpha(H)} a$ is the S-poset congruence induced by H. Moreover, $[a]_{\nu(H)} \leq[b]_{\nu(H)}$ if and only if $a \leq_{\alpha(H)} b$. The relation $\theta(H)=\nu\left(H \cup H^{-1}\right)$ is the S-poset congruence generated by H. A congruence ρ on an S-poset A_{S} is called finitely induced (finitely generated) if $\rho=\nu(H)(\rho=\theta(H))$ for some finite subset H of $A \times A$.

Recall that an S-poset A_{S} is regular injective if for each regular monomorphism $g: B_{S} \longrightarrow C_{S}$ and S-morphism $f: B_{S} \longrightarrow A_{S}$, there exists an S-morphism $\bar{f}: C_{S} \longrightarrow A_{S}$ such that $\bar{f} g=f$. An S-poset A_{S} is weakly regular injective (fg-weakly regular injective, principally weakly regular injective) if every S-morphism $f: I_{S} \longrightarrow A_{S}$ from a (finitely generated, principal) right ideal I of S can be extended to an S-morphism $\bar{f}: S_{S} \longrightarrow A_{S}$. By a retract of A_{S}, we mean a sub S-poset B_{S} of A_{S} together with an S-morphism from A_{S} to B_{S} which maps B_{S} identically. Clearly, a retract of a regular injective S-poset is also regular injective. Moreover, A_{S} is called an absolute retract if A_{S} is a retract of each of its extensions. In [8], it is shown that all regular injective S-posets are absolute retract. An S-poset $E\left(A_{S}\right)$ is called a regular injective envelope of an S-poset A_{S} if $E\left(A_{S}\right)$ is regular injective and does not contain a proper sub S-poset B_{S} which is a regular injective extension of A_{S}. In [8], it is proved that for each S poset there exists a regular injective envelope. In light of [8, Proposition 2.2], the following corollary is clear which will be needed in the sequel.

Corollary 1.1. If ρ is a congruence relation on $E\left(A_{S}\right)$ with $\rho \neq$ $\Delta_{E\left(A_{S}\right)}$, then $\leq\left._{\rho}\right|_{A} \neq \leq\left.\right|_{A}$.

In the category of S-acts, absolutely pure acts were first considered by Normak [7] and then studied by Gould in [4]. Moreover, Gould introduced absolutely 1-pure acts under the name of almost pure acts in [5]. For S-posets, recently in [11], the authors generalized purity on S-acts into the theory of S-posets and introduced the properties of (1-)pure and absolutely (1-)pure S-posets regardless of their order. Then in [9], they introduced po-purity of S-posets and characterized absolutely 1-po-pure S-posets. In the following, we study strongly finitely presented cyclic S-posets. In Section 2, some general properties of po-purity and absolute-po-purity for S-posets are studied. Then, we investigate absolutely po-pure S-posets using finitely presented S-posets. Finally, the relationships between regular injectivity and absolute po-purity are discussed.

An S-poset A_{S} is free on a set X if and only if $A_{S} \cong \bigcup_{x \in X} x S$ where for all $x, y \in X$ and $s, t \in S, x s \leq y t$ if and only if $x=y$ and $s \leq t$. The concept of finitely presented S-poset was introduced in [2] which we recall it. It was mentioned by the notion of semi-finitely presented in [9]. An S-poset A_{S} is said to be finitely presented if it is isomorphic to a quotient S-poset of a finitely generated free S-poset by a finitely induced S-poset congruence. In the category of S-acts, finitely presented S-acts was introduced as a factor S-act of finitely generated free S-acts by a finitely generated right congruence. Now, we define it in the category of S-posets as follows.
Definition 1.2. An S-poset A_{S} is said to be strongly finitely presented if it is isomorphic to F / ρ, where F_{S} is a finitely generated free S-poset and $\rho=\theta(H)$ for some finite subset $H \subseteq F \times F$, i.e. ρ is a finitely generated congruence on F_{S}.

In the category of S-acts, every finitely presented cyclic S-act is isomorphic to a factor S-act of S by a finitely generated right congruence on S. The following result shows that it is also valid for S-posets, which is needed to characterize absolutely 1-po-pure S-posets.

Proposition 1.3. Let A_{S} be a cyclic S-poset. Then A_{S} is strongly finitely presented if and only if it is isomorphic to a factor S-poset of S_{S} by a finitely generated right congruence on S.
Proof. Necessity. Let F_{S} be a free S-poset generated by $\left\{x_{1}, \ldots, x_{n}\right\}$ and let ρ be a congruence on F_{S} generated by

$$
H=\left\{\left(x_{m_{1}} s_{1}, x_{n_{1}} t_{1}\right), \ldots,\left(x_{m_{k}} s_{k}, x_{n_{k}} t_{k}\right)\right\},
$$

so that F_{S} / ρ is cyclic. Assume that $F_{S} / \rho=\left[x_{1} u\right]_{\rho} S$ for some $u \in S$.

Let $\left[x_{i}\right]_{\rho}=\left[x_{1} u\right]_{\rho} z_{i}, z_{i} \in S, 1 \leq i \leq n$. Set

$$
p_{i}=\left\{\begin{array}{ll}
s_{i} & m_{i}=1 \\
u z_{m_{i}} s_{i} & m_{i} \neq 1
\end{array} \text { and } q_{i}= \begin{cases}t_{i} & n_{i}=1 \\
u z_{n_{i}} t_{i} & n_{i} \neq 1\end{cases}\right.
$$

for every $1 \leq i \leq k$. Consider the right congruence

$$
\sigma=\theta\left(\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right), \ldots,\left(p_{k}, q_{k}\right)\right\}\right)
$$

on S. We shall prove that $F_{S} / \rho \cong S / \sigma$, dividing the proof into three parts:
(a) First, we show that $x_{1} p_{i} \rho x_{1} q_{i}$ for every $1 \leq i \leq k$. If $m_{i}=1$, clearly $x_{m_{i}} s_{i}=x_{1} p_{i}$, otherwise using the equalities $\left[x_{m_{i}}\right]_{\rho}=\left[x_{1} u\right]_{\rho} z_{m_{i}}$, we get that $\left[x_{m_{i}} s_{i}\right]_{\rho}=\left[x_{m_{i}}\right]_{\rho} s_{i}=\left[x_{1} u z_{m_{i}}\right]_{\rho} s_{i}=\left[x_{1}\right]_{\rho} u z_{m_{i}} s_{i}=\left[x_{1}\right]_{\rho} p_{i}$. This means that $x_{m_{i}} s_{i} \rho x_{1} p_{i}$. Analogously one can prove that $x_{n_{i}} t_{i} \rho x_{1} q_{i}$. Since $x_{m_{i}} s_{i} \rho x_{n_{i}} t_{i}$ we have $x_{1} p_{i} \rho x_{1} q_{i}$.
(b) Second, we show that if $x_{1} s \leq_{\rho} x_{1} t$ for some elements $s, t \in S$, then $s \leq_{\sigma} t$. From $x_{1} s \leq_{\rho} x_{1} t$ it follows that either $x_{1} s \leq x_{1} t$ and therefore $s \leq t$ or there exist $m \geq 1, c_{i}, d_{i} \in F_{S}, w_{i} \in S, 1 \leq i \leq m$ such that $\left(c_{i}, d_{i}\right) \in H \cup H^{-1}$ and

$$
x_{1} s \leq c_{1} w_{1} d_{1} w_{1} \leq c_{2} w_{2} \ldots d_{m} w_{m} \leq x_{1} t
$$

From the inequality $x_{1} s \leq c_{1} w_{1}$ we obtain that $c_{1} \in x_{1} S$. Then $\left(c_{1}, d_{1}\right)=\left(x_{m_{j}} s_{j}, x_{n_{j}} t_{j}\right)$ or $\left(x_{n_{j}} t_{j}, x_{m_{j}} s_{j}\right)$. In the first case, $m_{j}=1$ and so $s \leq s_{j} w_{1}$. The second case implies $n_{j}=1$, and so $s \leq q_{j} w_{1}$. If $d_{1}=x_{n_{j}} t_{j}$, from the inequality $d_{1} w_{1} \leq c_{2} w_{2}$ we get that $c_{2} \in x_{n_{j}} S$, and if $d_{1}=x_{m_{j}} s_{j}$, then $c_{2} \in x_{m_{j}} S$. Now we have again two cases, $\left(c_{2}, d_{2}\right)=\left(x_{m_{j^{\prime}}} j_{j^{\prime}}, x_{n_{j^{\prime}}} t_{j^{\prime}}\right)$ or $\left(x_{n_{j^{\prime}}} t_{j^{\prime}}, x_{m_{j^{\prime}}} s_{j^{\prime}}\right)$ for some $1 \leq j^{\prime} \leq k$. Four cases may occur:
(i) If $d_{1}=x_{n_{j}} t_{j}$ and $c_{2}=x_{m_{j^{\prime}}} s_{j^{\prime}}$, then $m_{j^{\prime}}=n_{j}$. Then we have $t_{j} w_{1} \leq s_{j^{\prime}} w_{2}$. Multiplying the last inequality from the left by $u z_{n_{j}}$ we get the inequality $q_{j} w_{1} \leq p_{j^{\prime}} w_{2}$. So $s \leq p_{j} w_{1} q_{j} w_{1} \leq$ $p_{j^{\prime}} w_{2}$.
(ii) If $d_{1}=x_{m_{j}} s_{j}$ and $c_{2}=x_{m_{j^{\prime}}} s_{j^{\prime}}$, then $m_{j^{\prime}}=m_{j}$. Then we obtain $s_{j} w_{1} \leq s_{j} w_{2}$, and so $w_{1} \leq w_{2}$. Thus $s \leq q_{j} w_{1} p_{j} w_{1} \leq p_{j^{\prime}} w_{2}$.
(iii) If $d_{1}=x_{n_{j}} t_{j}$ and $c_{2}=x_{n_{j^{\prime}}} t_{j^{\prime}}$, then $n_{j^{\prime}}=n_{j}$. Hence $t_{j} w_{1} \leq$ $t_{j^{\prime}} w_{2}$, and so $n_{j^{\prime}}=n_{j}$. We get $t_{j} w_{1} \leq t_{j} w_{2}$, and so $w_{1} \leq w_{2}$. Consequently, $s \leq p_{j} w_{1} q_{j} w_{1} \leq q_{j^{\prime}} w_{2}$.
(iv) If $d_{1}=x_{m_{j}} s_{j}$ and $c_{2}=x_{n_{j^{\prime}}} t_{j^{\prime}}$, then $n_{j^{\prime}}=m_{j}$. So $s_{j} w_{1} \leq t_{j^{\prime}} w_{2}$. Multiplying the last inequality from the left by $u z_{m_{j}}$ we get the inequality $p_{j} w_{1} \leq q_{j^{\prime}} w_{2}$. Thus $s \leq q_{j} w_{1} p_{j} w_{1} \leq q_{j^{\prime}} w_{2}$.

Continuing in this process we reach to the sequence of inequalities

$$
s \leq c_{1}^{\prime} w_{1} d_{1}^{\prime} w_{1} \leq c_{2}^{\prime} w_{2} \ldots d_{m}^{\prime} w_{m} \leq t
$$

where for every $1 \leq i \leq m,\left(c_{i}^{\prime}, d_{i}^{\prime}\right)=\left(p_{j}, q_{j}\right)$ or $\left(q_{j}, p_{j}\right)$ for some $1 \leq j \leq k$ which means that $s \leq_{\sigma} t$.
(c) Finally, we will prove that $S_{S} / \sigma \cong F_{S} / \rho$. Since $\left[x_{1}\right]_{\rho}=\left[x_{1} u\right]_{\rho} z_{1}$ using part (b) we have $[1]_{\sigma}=[u]_{\sigma} z_{1}$ which means that $S_{S} / \sigma=[u]_{\sigma} S$. Define a mapping $f: S_{S} / \sigma \longrightarrow F_{S} / \rho$ by $f\left([u]_{\sigma} s\right)=\left[x_{1} u\right]_{\rho} s$ for every $s \in S$. Suppose $[u]_{\sigma} s \leq[u]_{\sigma} t$ for $s, t \in S$, i.e. $u s \leq_{\sigma} u t$. Then either $u s \leq u t$ and therefore $\left(x_{1} u s\right) \leq_{\rho}\left(x_{1} u t\right)$ or
$u s \leq c_{1} w_{1} d_{1} w_{1} \leq c_{2} w_{2} \ldots d_{m} w_{m} \leq u t$,
where for every $1 \leq i \leq m,\left(c_{i}, d_{i}\right)=\left(p_{j}, q_{j}\right)$ or $\left(q_{j}, p_{j}\right)$ for some $1 \leq j \leq k$. Consider elements $\left(c_{i}, d_{i}\right)=\left(p_{j}, q_{j}\right)$ or $\left(q_{j}, p_{j}\right)$, it follows from part (a) that $c_{1} w_{1} \leq_{\rho} d_{1} w_{1}$. We get
$x_{1} u s \leq x_{1} c_{1} w_{1} \leq_{\rho} x_{1} d_{1} w_{1} \leq x_{1} c_{2} w_{2} \leq_{\rho} \cdots \leq_{\rho} x_{1} d_{m} w_{m} \leq x_{1} u t$.
This means that f is well-defined. Clearly, f is a surjective S-morphism. Suppose $f\left([u]_{\sigma} s\right) \leq f\left([u]_{\sigma} t\right), s, t \in S$, i.e. $\left[x_{1} u\right]_{\rho} s \leq\left[x_{1} u\right]_{\rho} t$ or $x_{1} u s \leq_{\rho}$ $x_{1} u t$. By part (b), $[u]_{\sigma} s \leq[u]_{\sigma} t$. Hence f is order-embedding and therefore an isomorphism.

Sufficiency is obvious.

2. AbSOLUTELY PURE AND (1-)PO-PURE

In this section, we investigate (po-)pure properties. First we give some general properties of S-posets satisfying such properties. Then, we use finitely presented S-posets to give a necessary and sufficient condition for a right S-poset to be absolutely pure or absolutely popure. We say that two elements x, y of an S-poset A_{S} are comparable if $x \leq y$ or $y \leq x$ and denote this relation by $x \nVdash y$. Let us recall from [9] and [11] the notions related to (1-) po-purity and purity.

Definition 2.1. Let A_{S} be an S-poset.
(i) Consider the system Σ consisting of inequations of the following four forms

$$
x s \leq x t, x s \leq y t, x s \leq a, a \leq x s
$$

where $s, t \in S$ and $a \in A_{S}$ and $x, y \in X$, where X is a set. We call x, y variables, s, t coefficients, a a constant and Σ a system of inequations with constants from A_{S}. We briefly use $x s \nVdash a$ for two last inequations. Systems of inequations will be written as

$$
\Sigma=\left\{x s_{i} \nVdash a_{i} \mid s_{i} \in S, a_{i} \in A, 1 \leq i \leq n\right\} .
$$

If we can map the variables of Σ onto a subset of an S-poset B_{S} such that the inequations turn into inequalities in B_{S} then such subset of B_{S} is called a solution of the system Σ in B_{S}. In this case, Σ is called solvable in B_{S}.
(ii) If Σ has a solution in an S-poset B_{S} containing A_{S} then Σ is called a consistent system of inequations.
(iii) A sub S-poset A_{S} of an S-poset B_{S} is called po-pure in B_{S} if every finite system of inequations with constants from A_{S} which has a solution in B_{S} has a solution in A_{S}. An S-poset A_{S} is called absolutely po-pure if every finite consistent system of inequations with constants from A_{S} has a solution in A_{S}.
(iv) A sub S-poset A_{S} of an S-poset B_{S} is called 1-po-pure in B_{S} if every finite system of inequations in one variable with constants from A_{S} which has a solution in B_{S} has a solution in A_{S}. An S poset A_{S} is called absolutely 1-po-pure if every finite consistent system of inequations in one variable with constants from A_{S} has a solution in A_{S}.

Replacing the term inequations by equations in the foregoing definition the concept of pure, absolutely pure and absolutely 1-pure can be defined, as [11, Definitions 6,7,8]. In our opinion the term extension po-pure would be more appropriate in the ordered case, and we first study some properties of po-purity.

By [9, Proposition 2.1], we deduce the following corollary.
Corollary 2.2. If an S-poset A_{S} is po-pure (1-po-pure) in its regular injective envelope $E\left(A_{S}\right)$, then A_{S} is absolutely po-pure (1-po-pure).

By [11, Proposition 16], we get the following result is.
Lemma 2.3. If an S-poset A_{S} is absolutely 1-po-pure, then for any $s_{1}, \ldots, s_{n} \in S$ there exists $a \in A_{S}$ such that $a=a s_{1}=\cdots=a s_{n}$.
Definition 2.4. We say that a pomonoid S has local left zeros if for any $s_{1}, \ldots, s_{n} \in S$ there exists $s \in S$ such that $s=s s_{1}=\cdots=s s_{n}$.

The following lemma is a direct consequence of Lemma 2.3.
Lemma 2.5. If S_{S} is absolutely 1 -po-pure then S has local left zeros.
Lemma 2.6. The following hold for a pomonoid S.
(i) Θ is absolutely (1-) po-pure.
(ii) A retract of an absolutely (1-) po-pure S-poset is absolutely (1-) po-pure.
Proof. (i) is obvious. (ii). Let B_{S} be a retract of A_{S} by an S morphism $g: A_{S} \longrightarrow B_{S}$ and A_{S} is absolutely po-pure. Clearly $E\left(B_{S}\right)$ is a sub S-poset of $E\left(A_{S}\right)$. Suppose that Σ is a finite system of inequations with constants from B_{S} which has a solution in $E\left(B_{S}\right)$. So Σ has a solution in $E\left(A_{S}\right)$. Since A_{S} is absolutely po-pure, Σ has a solution in A_{S}. If $\left\{a_{1}, \ldots a_{n}\right\}$ is a solution of Σ in A_{S}, then $\left\{g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right\}$ is a solution of Σ in B_{S}. Therefore, B_{S} is absolutely po-pure.

Now, we consider the relationship between po-purity and tensor products.

Proposition 2.7. [9, Proposition 2.20] If A_{S} is a po-pure sub S poset of an S-poset B_{S}, then the mapping $A_{S} \otimes_{S} C \longrightarrow B_{S} \otimes_{S} C$ is a regular monomorphism for every left S-poset ${ }_{S} C$.

Using the previous proposition we get the following corollary.
Corollary 2.8. If all right S-posets are absolutely po-pure, then all left S-posets are po-flat.

To give an equivalent condition for absolutely po-purity, we need the conditions over which an S-poset is po-pure in its extensions.
Proposition 2.9. An S-poset A_{S} is a po-pure sub S-poset of B_{S} if and only if for every finitely presented S-poset C_{S}, every S-morphism $\varphi: C_{S} \longrightarrow B_{S}$ and every finite subset $\left\{c_{1}, \ldots, c_{n} \mid \varphi\left(c_{i}\right) \nVdash a_{i} \in A\right\}$ of C_{S} there exists an S-morphism $\psi: C_{S} \longrightarrow A_{S}$ such that $\psi\left(c_{i}\right) \nVdash a_{i}$ for $i=1, \ldots, n$.
Proof. Necessity. Suppose that A_{S} is a po-pure sub S-poset of B_{S}. Let C_{S} be finitely presented and $\varphi: C_{S} \longrightarrow B_{S}$ be such that $c_{1}, \ldots, c_{n} \in C$ and $\varphi\left(c_{i}\right) \nVdash a_{i} \in A_{S}$. Without loss of generality assume that $C_{S}=F / \rho$ where F is a free S-poset generated by $\left\{f_{1}, \ldots, f_{m}\right\}$ and

$$
\rho=\nu\left(\left\{\left(f_{k_{1}} s_{1}, f_{l_{1}} t_{1}\right), \ldots,\left(f_{k_{r}} s_{r}, f_{l_{r}} t_{r}\right)\right\}\right) .
$$

Let $c_{i}=\left[f_{q_{i}}\right] p_{i}$ for $1 \leq i \leq n$, and $\varphi\left(c_{i}\right) \nVdash a_{i} \in A$. If $\varphi\left(\left[f_{j}\right]\right)=b_{j}$ for $j=1, \ldots, m$, then $b_{k_{j}} s_{j}=\varphi\left(\left[f_{k_{j}}\right]\right) s_{j} \leq \varphi\left(\left[f_{l_{j}}\right]\right) t_{j}=b_{l_{j}} t_{j}$ and $a_{i} \nVdash \varphi\left(c_{i}\right)=\varphi\left(\left[f_{q_{i}}\right] p_{i}\right)=b_{q_{i}} p_{i}$. Hence there exist $a_{j}^{\prime} \in A_{S}, 1 \leq j \leq m$, such that $a_{k_{j}}^{\prime} s_{j} \leq a_{l_{j}}^{\prime} t_{j}$ for $1 \leq j \leq r$ and $a_{i} \nVdash a_{q_{i}}^{\prime} p_{i}$ for $1 \leq i \leq n$. Now define a mapping $\psi: C_{S} \longrightarrow A_{S}$ by $\psi\left(\left[f_{i} s\right]\right)=a_{i}^{\prime} s$. It is easily checked that ψ is an S-morphism such that $\psi\left(c_{i}\right)=\psi\left(\left[f_{q_{i}}\right] p_{i}\right)=a_{q_{i}}^{\prime} p_{i} \nVdash a_{i}$ for $i=1, \ldots, n$.

Sufficiency. Suppose that $\Sigma=\left\{x_{k_{j}} s_{j} \leq x_{l_{j}} t_{j}, a_{i} \nVdash x_{q_{i}} p_{i} \mid 1 \leq\right.$ $i \leq n, 1 \leq j \leq r\}$ is a system of inequations which has a solution $\left\{b_{1}, \ldots, b_{m}\right\}$. Let F_{S} be a free S-posets generated by $\left\{f_{1}, \ldots, f_{m}\right\}$, and

$$
\rho=\nu\left(\left\{\left(f_{k_{1}} s_{1}, f_{l_{1}} t_{1}\right), \ldots,\left(f_{k_{r}} s_{r}, f_{l_{r}} t_{r}\right\}\right)\right.
$$

So $C=F / \rho$ is finitely presented. Define $\varphi: C_{S} \longrightarrow B_{S}$ by $\varphi\left(\left[f_{j} s\right]\right)=$ $b_{j} s$. It is clear that φ is an S-morphism and $\varphi\left(c_{i}\right) \nVdash a_{i} \in A_{S}$ where $c_{i}=\left[f_{q_{i}}\right] p_{i}$ for $1 \leq i \leq n$. By assumption there exists an S-morphism $\psi: C_{S} \longrightarrow A_{S}$ such that $\psi\left(c_{i}\right) \nVdash a_{i}$ for $i=1, \ldots, n$. Therefore, $\left\{\psi\left(\left[f_{1}\right]\right), \ldots, \psi\left(\left[f_{m}\right]\right)\right\}$ is a solution of Σ in A_{S}, as desired.

Replacing $\nu(H)$ and \nVdash by $\theta(H)$ and $=$, respectively, in the proof of the previous proposition, one can prove the following proposition.

Proposition 2.10. $A n S$-poset A_{S} is a pure sub S-poset of B_{S} if and only if for every $C_{S}=F_{S} / \rho$ where F_{S} is a finitely generated free S-poset and ρ is a finitely generated congruence on F_{S}, for every S-morphism $\varphi: C_{S} \longrightarrow B_{S}$ and for every finite subset $\left\{c_{1}, \ldots, c_{n} \mid \varphi\left(c_{i}\right)=a_{i} \in A_{S}\right\}$ of C_{S} there exists an S-morphism $\psi: C_{S} \longrightarrow A_{S}$ such that $\psi\left(c_{i}\right)=$ $\varphi\left(c_{i}\right)$ for $i=1, \ldots, n$.

The following two theorems give some equivalent conditions for absolute purity and absolute po-purity

Theorem 2.11. The following statements are equivalent for any S-poset A_{S} :
(i) A_{S} is absolutely pure;
(ii) for every strongly finitely presented S-poset $M_{S}=F_{S} / \rho$, every finitely generated S-poset N_{S}, every regular monomorphism ι : $N_{S} \longrightarrow M_{S}$, and every S-morphism $f: N_{S} \longrightarrow A_{S}$ there exists an S-morphism $g: M_{S} \longrightarrow A_{S}$ such that $g \iota=f$.
Proof. (i) \Rightarrow (ii). Suppose that $M_{S}, N_{S}, \iota: N_{S} \longrightarrow M_{S}$, and $f:$ $N_{S} \longrightarrow A_{S}$ are as stated in the assumption of part (ii). Consider A_{S} as a sub S-poset of $E\left(A_{S}\right)$, we have $f: N_{S} \longrightarrow E\left(A_{S}\right)$. Regular injectivity of $E\left(A_{S}\right)$ implies the existence of $h: M_{S} \longrightarrow E\left(A_{S}\right)$ such that $h \iota=f$. Assume that N_{S} is generated by $\left\{b_{1}, \ldots, b_{n}\right\}$. So $h\left(b_{i}\right) \in A_{S}$ for each $1 \leq i \leq n$. Now, applying Proposition 2.10, we get $g: M_{S} \longrightarrow A_{S}$ such that $g\left(b_{i}\right)=h\left(b_{i}\right)$ for each $1 \leq i \leq n$. Hence $g \iota=f$ and we have done.
$(\mathrm{i}) \Rightarrow$ (ii). It suffices to show that A_{S} is pure in $E\left(A_{S}\right)$. Using Proposition 2.10, suppose that $C_{S}=F_{S} / \rho$ where F_{S} is a finitely generated free S-poset and ρ is a finitely generated congruence on F_{S}, $\varphi: C_{S} \longrightarrow E\left(A_{S}\right)$ is an S-morphism and $\left\{c_{1}, \ldots, c_{n} \mid \varphi\left(c_{i}\right) \in A\right\} \subseteq C_{S}$. Let N_{S} be generated by $\left\{c_{1}, \ldots, c_{n}\right\}$. Then $f=\left.\varphi\right|_{N}: N_{S} \longrightarrow A_{S}$ and by assumption there exists an S-morphism $g: C_{S} \longrightarrow A_{S}$ such that $g \iota=f$. Thus $g\left(c_{i}\right)=f\left(c_{i}\right)=\varphi\left(c_{i}\right)$ for $i=1, \ldots, n$, and the result follows.

Theorem 2.12. The following statements are equivalent for any S-poset A_{S} :
(i) A_{S} is absolutely po-pure;
(ii) for every finitely presented S-poset M_{S}, every finitely generated sub S-poset $N_{S} \subseteq M_{S}$ and every S-morphism $f: N_{S} \longrightarrow E\left(A_{S}\right)$ such that $\operatorname{Im}(\mathrm{f}) \subseteq\{\mathrm{c} \mid \mathrm{c} \nmid \mathrm{a} \in \mathrm{A}\}$ there exists an S-morphism $g: M_{S} \longrightarrow A_{S}$ such that for each $b \in N$ we have $g(b) \nVdash a \nVdash f(b)$ for some $a \in A_{S}$.
Proof. (i) \Rightarrow (ii). Let M_{S} be a finitely presented S-poset, N_{S} be its finitely generated sub S-poset and $f: N_{S} \longrightarrow E\left(A_{S}\right)$ an S-morphism
such that $\operatorname{Im}(\mathrm{f}) \subseteq\{\mathrm{c} \mid \mathrm{c} \sharp \mathrm{a} \in \mathrm{A}\}$. Regular injectivity of $E\left(A_{S}\right)$ implies the existence of $h: M_{S} \longrightarrow E\left(A_{S}\right)$ such that $\left.h\right|_{N}=f$. Let $L=$ $\left\{b_{1}, \ldots, b_{n}\right\}$ be a finite set of generating elements of N_{S}. Now $h\left(b_{i}\right) \nVdash$ $a_{i} \in A_{S}$ and Proposition 2.9 implies the existence of an S-morphism $g: M_{S} \longrightarrow A_{S}$ with $g\left(b_{i}\right) \nVdash a_{i}$ for any $1 \leq i \leq n$. So for each $b_{i} s \in N$ we have $g\left(b_{i} s\right) \nVdash a_{i} s \nVdash f\left(b_{i}\right) s$.
(ii) \Rightarrow (i). By assumption and using Proposition 2.9, A_{S} is po-pure in $E\left(A_{S}\right)$, and so A_{S} is absolutely po-pure.

We conclude this section by considering the relationship between regular injectivity and absolute po-purity. In [9], the authors gave another characterization of regular injective S-posets.

Proposition 2.13. [9, Theorem 2.5] An S-poset is regular injective if and only if any consistent system of inequations with constants from A_{S} has a solution in A_{S}.

In view of the previous proposition we deduce that every regular injective S-poset is absolutely po-pure. Recall from [10] that a pomonoid S is called right (po-)Noetherian if it satisfies the ascending chain condition on right (po)ideals. Equivalently, all right (po)ideals of S are finitely generated.

In [9] it is shown that if every absolutely po-pure S-poset is weakly regular injective, then the pomonoid S is right po-Noetherian.

Proposition 2.14. Every absolutely 1-po-pure S-poset over a right po-Noetherian pomonid is regular injective.

Proof. Let S be a po-Noetherian pomonid and A_{S} be absolutely po-pure. To reach the contrary, suppose that $b \in E\left(A_{S}\right) \backslash A_{S}$. Let $I=\{s \in S \mid(\exists a \in A)(b s \leq a)\}$. If $I=\emptyset$, then $\leq\left._{\rho_{B}}\right|_{A}=\leq\left.\right|_{A}$ where $B=[b S]$, is the convex ideal generated by b, and ρ_{B} is a Rees congruence on B, which is contradiction to Corollary 1.1. Now, suppose that $I \neq \emptyset$. Clearly, I is a poideal of S. Since S is po-Noetherian, we may assume that I is generated by the set $\left\{s_{1}, \ldots, s_{n}\right\}$. Now, consider the finite system $\Sigma=\left\{x s_{i} \leq b s_{i} \mid 1 \leq i \leq n\right\}$ of inequations which has a solution b in $E\left(A_{S}\right)$. So the system Σ has a solution $a \in A$. Take $\sigma=\nu(a, b)$. Let $a_{1}, a_{2} \in A$ such that $a_{1} \leq_{\sigma} a_{2}$. Then
$a \leq a t_{1} b t_{1} \leq a t_{2} b t_{2} \leq a t_{3} \ldots b t_{m} \leq a_{2}$,
where $t_{i} \in S$ for $1 \leq i \leq m$. It is obvious that $t_{i} \in I$ which implies that $a t_{i} \leq b t_{i}$, and so $a_{1} \leq a_{2}$. Thus $\leq\left._{\sigma}\right|_{A}=\leq\left.\right|_{A}$, which is again a contradiction by Corollary 1.1. Therefore, $A_{S}=E\left(A_{S}\right)$ is regular injective.

In [9, Corollary 2.5], it is shown that absolute 1-purity implies fgweakly regular injectivity.

The following examples illustrate that weak regular injectivity does not imply absolute 1-po-purity and also absolute po-purity does not imply weak regular injectivity.
Example 2.15. Weak regular injectivity does not imply absolute 1-po-purity. Similar to [6, Example 3.6.17], let $S=T^{1}$, where $T=\{x, y\}$ is the two-element right zero semigroup with trivial order, then S is weakly regular injective. But since S does not have any local left zeros, S_{S} cannot be absolutely 1-po-pure.
Example 2.16. Absolute po-purity does not imply weak regular injectivity. Indeed, let $S=(N, \min) \cup \cup$, where ε denotes the externally adjoined identity with the order $1<2<3<\cdots<\varepsilon$. Then $K_{S}=$ $S \backslash\{\varepsilon\}$ is a right ideal of S which is absolutely po-pure, but K_{S} is not weakly regular injective.

The following relations exist between absolute purity properties and regular injectivity of S-posets.

$$
\begin{array}{r}
\text { regular injective } \Rightarrow \text { abs. po }- \text { pure } \Rightarrow \text { abs. } 1-\text { po }- \text { pure } \\
\Downarrow \\
\Downarrow \\
\text { abs. pure } \Rightarrow \\
\Rightarrow \text { abs. } 1-\text { pure } \\
\Downarrow
\end{array}
$$

Acknowledgments

The authors would like to give many thanks to the anonymous referee for his/her invaluable comments and suggestions.

References

1. S. Bulman-fleming, D. Gutermuth, A. Glimour and M. Kilp, Flatness properties of S-posets, Comm. Algebra, 34 (2006), 1291-1317.
2. S. Bulman-fleming and V. Laan, Lazard's Theorem for S-posets, Math. Nachr., 278 (2005), 1743-1755.
3. S. Bulman-Fleming and M. Mahmoudi, The category of S-posets, Semigroup Forum, 71 (2005), 443-461.
4. V. Gould, The characterization of monoids by properties of their S-systems, Semigroup Forum, 32 (1985), 251-265.
5. V. Gould, Completely right pure monoids, Proc. Roy. Irish Acad. Sect. A, 87 (1987), 73-82.
6. M. Kilp, U. Knauer and A. Mikhalev, Monoids, Acts and Categories, De Gruyter, Berlin, 2000.
7. P. Normak, Purity in the category of M-sets, Semigroup Forum, 20 (1980), 157-170.
8. H. Rasouli and H. Barzegar, The regular-injective envelope of S-posets, Semigroup Forum, 92 (2016), 186-197.
9. H. Rasouli, H. Barzegar and L. Shahbaz, Purity in the category of S-posets, Comm. Algebra, 45 (2017), 5053-5067.
10. L. Shahbaz and M. Mahmoudi, Various kinds of regular injectivity for S-posets, Bull. Iran. Math. Society, 40 (2014), 243-261.
11. C. Xia and Z. Xia, Investigations of S-posets by 1-pure properties, http://www.paper.edu.cn.

Roghaieh Khosravi

Department of Mathematics, Faculty of Sciences, Fasa University, P.O. Box: 7461781189, Fasa, Iran.
Email: khosravi@fasau.ac.ir

Mohammad Roueentan

Lamerd Higher Education Center, Lamerd, Iran.
Email: m.rooeintan@yahoo.com

Journal of Algebraic Systems

A NEW CHARACTERIZATION OF ABSOLUTELY PO-PURE AND ABSOLUTELY PURE S-POSETS

R. KHOSRAVI AND M. ROUEENTAN

$$
\begin{gathered}
\text { يك توصيف جديد از S-مجموعههاى مرتب خالص مطلق و po-خالص مطلق }
\end{gathered}
$$

در اين مقاله، ما مفهوم po-خلوص با استفاده از S-مجموعههاى مرتب دارانى نمای نمايش متناهى را

 طور متناهى توليد شده يكريخت مىباشد. در پايان، روابط بين وين ويزگى انزكتيو منظم بودن و po-خلوص مطلق را مورد بررسى قرار مىدهيمـ

كلمات كليدى: S-مجموعههاى مرتب، تكوارههاى مرتب، po-خلوص مطلق، 1-po-خالص، انزكتيو منظم.

