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PRIMARY ZARISKI TOPOLOGY ON THE PRIMARY
SPECTRUM OF A MODULE

HOMA BIJARI1, KAZEM KHASHYARMANESH1,∗ AND HOSEIN FAZAELI
MOGHIMI2

Abstract. Let R be a commutative ring with identity and let
M be an R-module. We define the primary spectrum of M , de-
noted by PS(M), to be the set of all primary submodules Q of M
such that (radQ : M) =

√
(Q : M). In this paper, we topologize

PS(M) with a topology having the Zariski topology on the prime
spectrum Spec(M) as a subspace topology. We investigate com-
pactness and irreducibility of this topological space and provide
some conditions under which PS(M) is a spectral space.

1. Introduction

Throughout this paper, R denotes a commutative ring with nonzero
identity. We always denote by Spec(R) the set of all prime ideals of R.
It is well know that Spec(R) is a topological space whose closed sets are
V (I) = {p ∈ Spec(R) | p ⊇ I} for each ideal I of R (see, for example,
[4, 7, 10]). Over the past twenty years or so, there have appeared
in the literature, several papers giving many different generalizations
of the Zariski topology over the spectrum of certain modules. Most
of these considerations concern generalizations of prime ideals from
rings to modules or ideals (see, for example, [1, 3, 5, 6, 8, 12, 16]).
Let M be an R-module. A proper submodule P of M is called a
prime (or p-prime) submodule of M , if for every r ∈ R and x ∈ M ,
rx ∈ P implies that r ∈ p = (P : M) = {r ∈ R | rM ⊆ P} or
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x ∈ P . It is easily seen that p = (P : M) is a prime ideal of R. The
prime spectrum of M , denoted by Spec(M), is the set of all prime
submodules of M . Lu [12] introduced and studied a topology over
Spec(M), called the Zariski topology, which is a generalization of the
usual Zariski topology over Spec(R). In that topological space, the
closed sets are V (N) = {P ∈ Spec(M)|(P : M) ⊇ (N : M)} for all R-
modules N . Here, this motivates us to introduce a new generalization
of the Zariski topology from rings to modules, which inherits most of
properties of the Zariski topology over Spec(M). In particular, for an
R-module M , this topological space contains Spec(M) with the Zariski
topology as a topological subspace.

For a proper submodule N of an R-module M , the radical of N ,
denoted by radN , is the intersection of all prime submodules of M
containing N or, in case there are no such prime submodules, radN
is M (see, for example, [5, 8, 10, 9, 11, 13]). For an ideal I of a ring
R, we assume throughout that

√
I denotes the radical of I. A proper

submodule Q of M is called a primary (or p-primary) submodule of
M , if for r ∈ R and x ∈ M , rx ∈ Q implies that r ∈ p =

√
(Q :M)

or x ∈ Q. We call the set of all primary submodules Q of M satisfying
the condition (radQ : M) =

√
(Q :M) the primary spectrum of M

and denote it by PS(M). Clearly Spec(M) ⊆ PS(M). The inclusion
is not strict in general. For example, for a vector space V over a field
F , Spec(V) = PS(V) = the set of all proper subspaces of V, while for
the ring of integers Z as a Z-module, Spec(Z) ⊂ PS(Z). It should be
noted that radQ ̸=M for all Q ∈ PS(M), since

√
(Q :M) is a prime

ideal of R.
In [12], it is shown that for an R-module M , the natural map ψ :

Spec(M) → Spec(R/Ann(M)) defined by ψ(P ) = (P : M)/Ann(M)
is continuous with respect to the Zariski topology, and so Spec(M) is
a connected space. For a submodule N of M , we set ν(N) = {Q ∈
PS(M)|(radQ : M) ⊇ (N : M)}. It is shown that the collection of
these sets satisfies the axioms for closed sets in PS(M) (Theorem 2.1).
We call this topology, the primary Zariski topology, or PZ-topology for
short. A topological space X is a spectral space if X is homeomorphic
to Spec(S) with the Zariski topology for some ring S. Equivalently, the
topological space (X, τ) is spectral if and only if X is a quasi-compact
T0-space, the quasi-compact open subsets of X are closed under finite
intersection and form an open basis for τ , and every nonempty irre-
ducible closed subset of X is the closure of a singleton set with respect
to τ ; see [11]. The topological space Spec(M) equipped with the Zariski
topology has been studied from the point of view of spectral spaces in
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[2, 3, 11, 12, 18]. For example, it has been proved that Spec(M) is a
spectral space if and only if Spec(M) is a finite set or M is a nontorsion
module; see [3, Theorem 3.4].

In this work, we study PS(M) equipped with the PZ-topology from
the viewpoint of being a spectral space. In Section 2, for an R-module
M , we introduce the map

ϕ : PS(M) → Spec(R/Ann(M))

given by ϕ(Q) = (radQ : M)/Ann(M). It should be noted that
(radQ : M) is a prime ideal of R, since Q is a primary submodule
of R and (radQ : M) =

√
(Q :M). We investigate some conditions

under which ϕ is injective, surjective, open, and closed.
In Section 3, we find a base for the PZ-topology whose elements are

quasi-compact subsets of PS(M) and deduce that the PZ-topology is
quasi-compact (see Theorem 3.3 and Corollary 3.4).

In Section 4, we investigate the irreducibility of PS(M) with respect
to the PZ-topology. Especially, it is shown that there is a bijection
between irreducible components of PS(M) and minimal prime ideals
of Spec(R/Ann(M)) (see Corollary 4.5). We also provide a connection
between the irreducible decomposition of a submodule N of M and the
irreducible decomposition of the closed set ν(N) of PS(M).

Finally, in Section 5, we collect together some observations and re-
sults that concern some conditions under which PS(M) is a spectral
space. In fact, we show that, if ϕ is a surjective map, then PS(M)
is a spectral space if and only if it is a T0-space if and only if ϕ is a
homeomorphism (see Theorem 5.3). In particular, if M is a finitely
generated multiplication module, then the mapping Q 7→ radQ is a
homeomorphism from PS(M) to Spec(M) (Corollary 5.4).

2. Primary Zariski topology

In this section, we first introduce the primary Zariski topology over
the primary spectrum PS(M) and then investigate relationships be-
tween PS(M) and Spec(R/Ann(M)).

Theorem 2.1. Suppose that N and N ′ are submodules of an R-module
M and that (Ni)i∈N is a family of submodules of M , indexed by the set
I. Then

(1) PS(M) = ν(0);
(2) ∅ = ν(M);
(3)

∩
i∈I ν(Ni) = ν(

∑
i∈I(Ni :M)M);

(4) ν(N) ∪ ν(N ′) = ν(N ∩N ′).
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Proof. (1) and (2) are clear.
(3) Suppose that Q ∈

∩
i∈I ν(Ni). Then (radQ : M) ⊇ (Ni : M),

for all i ∈ I, which implies that radQ ⊇ (radQ : M)M ⊇
∑

i∈I(Ni :
M)M . Thus we have (radQ : M) ⊇ (

∑
i∈I(Ni : M)M : M), and so

Q ∈ ν(
∑

i∈I(Ni :M)M).
To establish the reverse inclusion, let Q ∈ ν(

∑
i∈I(Ni : M)M) such

that
(radQ :M) ⊇ (

∑
i∈I

(Ni :M)M :M).

Then, for each i ∈ I, (radQ : M) ⊇ ((Ni : M)M : M) = (Ni : M).
Hence Q ∈

∩
i∈I ν(Ni).

(4) It is clear that ν(N) ∪ ν(N ′) ⊆ ν(N ∩ N ′). Now, assume that
Q ∈ ν(N ∩N ′). Then

(radQ :M) ⊇ (N ∩N ′ :M) = (N :M) ∩ (N ′ :M).

Since (radQ : M) is a prime ideal, (radQ : M) ⊇ (N : M) or (radQ :
M) ⊇ (N ′ :M), which means that Q ∈ ν(N) ∪ ν(N ′). □

In view of Theorem 2.1, the collection {ν(N)|N is a submodule ofM}
satisfies the axioms for closed sets of a topology on PS(M), which is
called the primary Zariski topology, or simply PZ-topology. It can
easily be checked that V (N) = ν(N)

∩
Spec(M), and so Spec(M) with

the Zariski topology is a topological subspace of PS(M) equipped with
the PZ-topology.

Consider ϕ and ψ as described in the Introduction. Also, for p ∈
Spec(R), we set PSp(M) = {Q ∈ PS(M)|(radQ : M) = p}. Recall
that an R-module M is multiplication if each submodule of M has
the form IM for some ideal I of R; see [9]. In this case, we can take
I = (N :M). It is easy to verify that if M is a multiplication module,
then ψ is injective.

Proposition 2.2. Let M be an R-module and let Q,Q′ ∈ PS(M).
Consider the following statements.

(1) If ν(Q) = ν(Q′), then Q = Q′.
(2) |PSp(M)| ≤ 1 for every p ∈ Spec(R).
(3) ϕ is injective.

Then (1) ⇔ (2) ⇔ (3) ⇒ (4). Moreover, if M is multiplication, then
(4) ⇒ (3).

Proof. (1) ⇒ (2) Suppose that Q,Q′ ∈ PSp(M). Then (radQ : M) =
(radQ′ : M) = p, and so ν(Q) = ν(Q′). Thus, by the assumption (1),
Q = Q′.
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(2) ⇒ (3) Suppose that Q,Q′ ∈ PS(M) and ϕ(Q) = ϕ(Q′). Then
(radQ : M) = (radQ′ : M) = p, and so Q,Q′ ∈ PSp(M). Thus the
assumption (2) implies that Q = Q′.
(3) ⇒ (1) It is clear. □

Corollary 2.3. If |PSp(M)| = 1 for every p ∈ Spec(R), then ϕ is a
bijective map.

Proof. By Proposition 2.2, it is easily proved. □
Proposition 2.4. Let M be a nonzero R-module. Consider the follow-
ing statements.

(1) M is finitely generated.
(2) ψ is surjective.
(3) ϕ is surjective and Sp(pM) is a p-prime submodule of M for

every p ∈ V (Ann(M)).
Then (1) ⇒ (2) ⇔ (3). Moreover, if M is multiplication, then all of
the above statements are equivalent.

Proof. (1) ⇒ (2) This is immediate from [14, Theorem 2.1].
(2) ⇔ (3) Clearly ϕ is surjective. The second statement follows from

[14, Propositions 4.4 and 4.5].
(2) ⇒ (1) This is immediate from [14, Proposition 3.8]. □
Throughout the rest of the paper, for an R-module M , the symbol

R denotes the ring R/Ann(M), and I denotes the ideal I/Ann(M) of
R.

Proposition 2.5. Let M be an R-module. Then ϕ−1(V (I)) = ν(IM),
for every ideal I ∈ V (Ann(M)), and therefore ϕ is continuous.

Proof. Suppose that Q ∈ ϕ−1(V (I)). Then ϕ(Q) ∈ V (I), and so
(radQ : M) ⊇ I. It follows that radQ ⊇ (radQ : M)M ⊇ IM .
Hence Q ∈ ν(IM). Therefore ϕ−1(V (I)) ⊆ ν(IM). For the reverse
inclusion, let Q ∈ ν(IM). Then

ϕ(Q) = (radQ :M) ⊇ (IM :M) ⊇ I.

Hence Q ∈ ϕ−1(V (I)).
□

It is immediate from [12, Theorem 3.6] that if ψ is surjective, then
ψ(V (N)) = V (N :M) and ψ(Spec(M)−V (N)) = Spec(R)−V ((N :M))
for every submodule N of M , which means that ψ is both closed and
open. Thus ψ is a bijection if and only if ψ is a homeomorphism. In
the following theorem, we obtain similar results for ϕ.
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Theorem 2.6. Let M be an R-module. If ϕ is a surjection, then
ϕ(ν(N)) = V ((N :M)) and ϕ(PS(M)−ν(N)) = Spec(R)−V ((N :M))
for every submodule N of M , which means that the map ϕ is both closed
and open.

Proof. In view of Proposition 2.5, for every submodule N of M , we
have

ϕ−1(V ((N :M))) = ν((N :M)M) = ν(N).

This implies that ϕ(ν(N)) = ϕ(ϕ−1(V ((N :M)))) = V ((N :M)). For
the last part, consider the following equality:

ϕ(PS(M)− ν(N)) =ϕ(ϕ−1(Spec(R))− ϕ−1(V ((N :M))))

=Spec(R)− V ((N :M)).

□

Corollary 2.7. Let M be an R-module. Then ϕ is a bijection if and
only if ϕ is a homeomorphism.

Theorem 2.8. Let M be an R-module and let ϕ be a surjective map.
Then the following statements are equivalent:

(1) R is an indecomposable ring;
(2) PS(M) with the PZ-topology is a connected space;
(3) Spec(M) with the Zariski topology is a connected space.

Proof. (1) ⇒ (2) Let R be an indecomposable ring. We suppose that
PS(M) is not connected with respect to the PZ-topology and seek a
contradiction. Then there exist two nonempty disjoint open sets ν(N1)

c

and ν(N2)
c such that PS(M) = ν(N1)

c ∪ ν(N2)
c. Since ϕ is surjective,

by Theorem 2.6, we have

Spec(R) = ϕ(ν(N1)
c) ∪ ϕ(ν(N2)

c) = V ((N1 :M))
c
∪ V ((N2 :M))

c
.

It is easy to see that V ((Ni :M))
c
̸= ∅, since ν(Ni)

c ̸= ∅ for i = 1, 2.
Also, we have ν(N1 ∩N2)

c = (ν(N1) ∪ ν(N2))
c = ν(N1)

c ∩ ν(N2)
c = ∅,

and thus

Spec(R) = ϕ(PS(M)) = ϕ(ν(N1 ∩N2))

= V ((N1 ∩N2 :M))

= V ((N1 :M) ∩ (N2 :M)).
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It follows that
V ((N1 :M))

c
∩ V ((N2 :M))

c
= (V ((N1 :M)) ∪ V ((N2 :M)))c

= (V ((N1 :M) ∩ (N2 :M))c

= V ((N1 ∩N2 :M))c = ∅.

Thus Spec(R) is not a connected space, in contradiction to [7, Corollary
2, p 104].

(2) ⇒ (3) Assume by way of contradiction that Spec(M) is a dis-
connected space. Thus Spec(M) = V (N1)

c ∪ V (N2)
c with V (N1)

c ∩
V (N2)

c = ∅, for some nonempty closed subsets V (N1) and V (N2)
of Spec(M). We show that PS(M) = ν(N1)

c ∪ ν(N2)
c. Suppose

that Q ∈ PS(M). Since radQ ̸= M , there is P ∈ Spec(M) with
P ⊇ Q. Now since (P : M) ̸⊇ (Ni : M) for i = 1 or i = 2, we have
(radQ :M) ̸⊇ (Ni :M) for i = 1 or i = 2. Thus Q ∈ ν(N1)

c ∪ ν(N2)
c.

Moreover, ν(N1)
c ∩ ν(N2)

c = ∅, because if Q ∈ ν(N1)
c ∩ ν(N2)

c, then
(radQ :M) ̸⊇ (Ni :M) for i = 1, 2. It follows that there is P ∈ PS(M)
such that (P : M) ̸⊇ (radNi : M) for i = 1, 2. This implies that
P ∈ V (N1)

c ∩ V (N2)
c, a contradiction. Therefore PS(M) is not a

connected space.
(3)⇒(1) Since Spec(M) is a connected space, by [12, Corollary 3. 8],

R has no idempotent element other than 0 and 1. Now, it is clear that
R is indecomposable. □

3. A base for primary Zariski topology on PS(M)

For each r ∈ R, we set Br := PS(M) − ν(rM). Our first result
in this section shows that B = {Br|r ∈ R} is a base for the primary
Zariski topology on PS(M). Next, we prove that Br’s are compact,
and so PS(M) is a compact space.
Lemma 3.1. With the above notations, B = {Br|r ∈ R} forms a base
for the PZ-topology over PS(M).
Proof. Let U be an open set in PS(M). Then U = (ν(N))c for some
submodule N of M . Hence we have

U = PS(M)− ν(N)

= PS(M)− ν((N :M)M)

= PS(M)− ν(
∑

ri∈(N :M)

riM)

= PS(M)− ∪ri∈(N :M)ν(riM)

= ∩ri∈(N :M)Bri .
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This completes the proof. □

Let R be a ring and let Dr = Spec(R)−V (rR). It is well known that
{Dr|r ∈ R} forms a base for the Zariski topology on Spec(R). It is also
proved that for each r ∈ R, Dr and thus Spec(R) is a compact space
with respect to the Zariski topology. This assertion has been proved for
the Spec(M) with respect to the Zariski topology (see [12, Corollary
4.2]). Now, we show that the similar statement holds for PS(M) with
the PZ-topology. We begin with the following lemma.

Lemma 3.2. Let ϕ be as in Theorem 2.5. Then, for each r ∈ R, it
follows that

(1) ϕ−1(Dr̄) = Br;
(2) ϕ(Br) ⊆ Dr̄; the equality holds if ϕ is surjective.

Proof. (1) First, assume that Q ∈ PS(M)\ϕ−1(Dr̄). Thus r ∈ (radQ :
M). It follows that rM ⊆ radQ), and thus (rM : M) ⊆ (radQ : M).
Hence Q ∈ PS(M) \ Br. Therefore Br ⊆ ϕ−1(Dr̄). For the reverse
inclusion, let Q ∈ ϕ−1(Dr̄). Then p̄ = ϕ(Q) =

√
(Q :M) ∈ Dr̄. Thus

r /∈ p. It follows that (rM : M) ̸⊆ (radQ : M). Therefore Q /∈ ν(M),
and so ϕ−1(Dr̄) ⊆ Br, as required.
(2) Let r ∈ R, Q ∈ PS(M), and

√
(Q :M) = p. If p̄ ∈ V (r̄R), then

(radQ :M) =
√

(Q :M) = p ⊇ rR,

and so rM ⊆ radQ. It follows that (rM : M) ⊆ (radQ : M), and
hence Q ∈ ν(rM). This means that if Q ∈ Br, then ϕ(Q) = p̄ ∈ Dr̄.
Thus, we have ϕ(Br) ⊆ Dr̄. To prove the reverse inclusion, let p ∈ Dr̄.
Thus r ∈ R \ p. Since ϕ is surjective, there exists Q ∈ PS(M) such
that (radQ : M) = p. Thus (rM : M) ̸⊆ (radQ : M), and hence
Q ∈ Br. Hence Dr̄ ⊆ ϕ(Br).

□

Theorem 3.3. Let M be an R-module. If ϕ is surjective, then for each
r ∈ R, Br is compact in PS(M).

Proof. Assume that Br is covered by an open covering in PS(M). Since
B = {Br|r ∈ R} is a base for the PZ-topology, Br ⊆

∪
λ∈Λ Brλ for some

open cover {Brλ|λ ∈ Λ} ⊆ B. Thus, by Lemma 3.2, Dr̄ = ϕ(Br) ⊆∪
λ∈Λ ϕ(Brλ) =

∪
λ∈Λ Dr̄λ . Now since, by [7, Proposition 12], Spec(R̄)

is a compact space with respect to the Zariski topology, we have Dr̄ =
ϕ(Br) ⊆

∪k
i=1 Dr̄λi

for some λi ∈ Λ (1 ≤ i ≤ k). Hence, in view of
Lemma 3.2, we have Br ⊆ ϕ−1(ϕ(Br)) =

∪k
i=1 ϕ

−1(Dr̄λi
) =

∪k
i=1 Brλi

,
as desired. □
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Corollary 3.4. Let M be an R-module. If ϕ is surjective, then PS(M)
is a compact space with respect to the PZ-topology.

Proof. This is an immediate consequence of Theorem 3.3 and the fact
that PS(M) = B1, where 1 is the unit element of R. □

Corollary 3.5. Let M be an R-module and let ϕ be surjective. Then
the compact open sets of PS(M) are closed under finite intersections
and form an open base.

Proof. First, it follows from Lemma 3.2, that

Brs = ϕ−1(Drs) = ϕ−1(Dr̄ ∩ Ds̄) = ϕ−1(Dr̄) ∩ ϕ−1(Ds̄) = Br ∩ Bs,

for some Br,Bs ∈ B. Thus, by Lemma 3.1, every open covering of any
intersection of compact sets is a finite union of the elements B. Now
the result follows from Theorem 3.3. □

4. Irreducibility in PS(M)

Recall that a topological space X is irreducible, if for any decompo-
sition X = C1

∪
C2 with closed subsets Ci of X for i = 1, 2, we have

C1 = X or C2 = X. A subset X ′ of X is irreducible if it is irreducible
as a subspace of X. An irreducible component of a topological space
X is a maximal irreducible subset of X.

Let M be an R-module. In this section, we investigate the irre-
ducibility in PS(M); in particular, we show that, for a submodule N
of M , irreducible components in a primary decomposition of N into
primary submodules of M relate to irreducible components of an irre-
ducible decomposition of the closed set ν(N) in PS(M).

Throughout the rest of this section, assume that cl(Y ) is the closure
of a subset Y in PS(M) with respect to the PZ-topology and that
η(Y ) is the intersection

∩
Q∈Y radQ.

Lemma 4.1. Let M be an R-module and let Y be a subset of PS(M).
Then cl(Y ) = ν(η(Y )). In particular, if (0) ∈ Y , then Y is dense in
PS(M), that is, cl(Y ) = PS(M).

Proof. Suppose that Q ∈ Y . Then (radQ : M) ⊇ (η(Y ) : M), and so
Q ∈ ν(η(Y )). Hence Y ⊆ ν(η(Y )). Therefore cl(Y ) ⊆ ν(η(Y )). For
the reverse inclusion, suppose that N is a submodule of M such that
Y ⊆ ν(N). Then, for each Q ∈ ν(N), (radQ : M) ⊇ (N : M). Let
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Q′ ∈ ν(η(Y )). Then

(radQ′ :M) ⊇ (η(Y ) :M) = (
∩

Q∈ν(N)

radQ :M)

=
∩

Q∈ν(N)

(radQ :M) ⊇ (N :M).

Hence Q′ ∈ ν(N). This implies that ν(η(Y )) is the smallest closed
subset of PS(M) containing Y . Therefore ν(η(Y )) = cl(Y ).

Now suppose for the remainder of the proof that (0) ∈ Y . Thus
cl(Y ) = ν(η(Y )) = ν(rad(0)) = PS(M). □
Theorem 4.2. Let M be an R-module. Then, for each Q ∈ PS(M),
the closed set ν(Q) is irreducible in PS(M).

Proof. It follows from Lemma 4.1 and the fact that the closure of each
irreducible subset of a topological space is irreducible. □
Theorem 4.3. Let M be an R-module and let Y ⊆ PS(M). If η(Y )
is a primary submodule of M , then Y is irreducible. Conversely if Y
is irreducible, then Υ = {(radQ :M) | Q ∈ Y } is an irreducible subset
of Spec(R), that is, η(Υ) = (η(Y ) :M) is a prime ideal of R.

Proof. Suppose that η(Y ) is a primary submodule of M . By Lemma
4.1 and Theorem 4.2, cl(Y ) = ν(η(Y )) is irreducible, and so Y is
irreducible.

Conversely, if Y is irreducible, then by Theorem 2.5, {(radQ :M) |Q ∈
Y } is irreducible, and thus, by[15, p. 129, Proposition 14], we have that∩

Q∈Y

(radQ :M) = (
∩
Q∈Y

radQ :M) = (η(Y ) :M)

is a prime ideal of R. Therefore

η(Υ) = (
∩
Q∈Y

radQ :M) = (η(Y ) :M)

is a prime ideal of R, and hence, by the first part, Υ is an irreducible
submodule of Spec(R). □
Theorem 4.4. Let M be an R-module, let Y ⊆ PS(M), and let ϕ
be surjective. Then Y is an irreducible closed subset of PS(M) if and
only if Y = ν(Q) for some Q ∈ PS(M).

Proof. Suppose that Y is an irreducible closed subset of PS(M). Then
Y = ν(N) for some submodule N of M . Thus, by Theorem 4.3,

(η(ν(N)) :M) = (η(Y ) :M) = p
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is a prime ideal of R. Since ϕ is surjective, there exists Q ∈ PS(M)
such that (radQ :M) = p = (η(ν(N)) :M). This implies that

Y = ν(N) = ν(η(ν(N))) = ν(Q).

□

Corollary 4.5. Let M be an R-module and let ϕ be surjective. Then
the correspondence ν(Q) 7−→ (radQ :M) provides a bijection from the
set of irreducible components of PS(M) to the set of minimal prime
ideals of R.

Proof. First we show that the given correspondence is well-defined. For
this, let ν(Q) = ν(Q′) for some Q,Q′ ∈ PS(M). Then (radQ : M) ⊇
(Q′ : M) and (radQ′ : M) ⊇ (Q : M). Now by taking radical of both
side of these inclusions, we have (radQ :M) = (radQ :M). Moreover,
if ν(Q) is an irreducible component, p = (radQ : M), and p′ ⊆ p for
some p′ ∈ Spec(R), then by the surjectivity of ϕ, there is Q′ ∈ PS(M)
such that (radQ′ : M) = p′. It follows that ν(Q) ⊆ ν(Q′). Since, by
Theorem 4.2, ν(Q′) is irreducible, we have ν(Q) = ν(Q′), which implies
that p = p′. Thus p is a minimal prime ideal of R.
For the surjectivity of the correspondence, assume that p̄ is a minimal
prime ideal of R̄. Then, since ϕ is surjective, there exists Q ∈ PS(M)

such that (radQ :M) = p̄. Moreover, by Theorem 4.2, ν(Q) is irre-
ducible. Now let ν(Q) ⊆ Y for some irreducible subset Y of PS(M).
Without loss of generality, we may assume that Y is closed, since the
closure of an irreducible subset of PS(M) is irreducible. Thus, by The-
orem 4.4, there exists Q′ ∈ PS(M) such that Y = ν(Q′). It follows
that p = (radQ : M) ⊇ ( radQ′ : M), and so, by the minimality of p,
we have p = (radQ : M) = (radQ′ : M). Hence ν(Q) = ν(Q′) = Y .
This means that ν(Q) is an irreducible component of PS(M). □

Recall that a submodule N of an R-module M has a primary de-
composition if it is a finite intersection of primary submodules Qi

(1 ≤ i ≤ n) of M . This primary decomposition is called irreducible, if
Qi ̸⊇

∩
i ̸=j Qj and

√
(Qi :M)’s are all distinct.

In contrast, we say that ν(N) =
∪n

i=1 ν(Qi), for some Qi ∈ PS(M)
(1 ≤ i ≤ n), is an irreducible decomposition for ν(N), if ν(Qi) ̸⊆∪

i ̸=j ν(Qj) and ν(Qi) (1 ≤ i ≤ n) are all distinct irreducible subsets.

Theorem 4.6. Let M be a finitely generated module over a Noetherian
ring R. Then, for each submodule N of M , ν(N) has an irreducible
decomposition.
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Proof. Suppose that R is Noetherian, and let N be a submodule of
a finitely generated R-module M . By [7, Theorem 18.20], N has an
irreducible decomposition

∩n
i=1Qi. Then, in view of Theorem 2.1, we

have ν(N) =
∪n

i=1 ν(Qi) and ν(Qj) ̸⊆
∪

i ̸=j ν(Qi). Also by Theorem
4.2, every closed set ν(Qi)(1 ≤ i ≤ n) is irreducible. Observe that
ν(Qi)’s are all distinct, because

√
(Qi :M)’s are all distinct. □

Theorem 4.7. Let R be a ring and let F be a free R-module. If
I =

∩n
i=1 qi is an irreducible decomposition for an ideal I of R, then

ν(IF ) =
∪n

i=1 ν(qiF ) is an irreducible decomposition for ν(IF ).
Proof. Suppose that I =

∩n
i=1 qi is a primary decomposition for I. By

[17, Lemma 1.1], IF =
∩n

i=1 qiF is an irreducible primary decomposi-
tion for IF . Thus ν(IF ) =

∪n
i=1 ν(qiF ), where ν(qiF ) ̸⊆

∪
i ̸=j ν(qjF ).

Note that, in view of Theorem 4.2, ν(qiF )’s are irreducible subsets of
PS(F ). Since the ideals

√
(qiF : F ) =

√
qi (1 ≤ i ≤ n) are distinct in

R, it follows that ν(qiF )’s are all distinct. □
If m is a maximal ideal of R, then we set Tm(M) = {m ∈ M :

(1 − p)m = 0 for some p ∈ m}. We say that M is m-cyclic provided
there exist x ∈ m and m ∈M such that (1− x)M ⊆ Rm.
Theorem 4.8. Let q be a primary ideal of R and let M be a faithful
multiplication R-module. Let r ∈ R, x ∈ M be such that rx ∈ qM .
Then r ∈ √

q or x ∈ qM . In particular, if qM ̸= M , then qM is a
primary submodule of M .
Proof. Let r /∈ √

q, and set K := {r ∈ R : rx ∈ qM}. Suppose
that K ̸= R, and seek a contradiction. Then there exists a maximal
ideal m of R such that K ⊆ m. Clearly x /∈ Tm(M). If x ∈ Tm(M),
then (1 − p)x = 0 for some p ∈ m. Thus 0 = (1 − p)x ∈ qM , and so
1−p ∈ K ⊆ m. Hence 1 ∈ m, a contradiction. By [9, Theorem1.2], M is
m-cyclic; therefore there exist m ∈M and p ∈ m such that (1−p)M ⊆
Rm. In particular, (1− p)x = sm and (1− p)rx = rsm = tm for some
s ∈ R and t ∈ q. Thus (rs− t)m = 0. Since (1−p)M ⊆ Rm, it follows
that (1−p)Ann(m)M ⊆ RAnn(m)m = 0, and so (1−p)Ann(m)M =
0. Now [(1−p)Ann(m)]M = 0 implies (1−p)Ann(m) = 0, because M
is faithful and hence (1−p)rs = (1−p)t ∈ q. Indeed, rs− t ∈ Ann(m),
and so (1−p)(rs−t) = 0, (1−p)rs = (1−p)t. Now since (1−p), r ∈ √

q
and q is primary, we have s ∈ q. It follows that (1 − p)x = sm ∈ qM
and hence 1− p ∈ K ⊆ m, a contradiction. It follows that K = R and
x ∈ qM , as required. □
Corollary 4.9. Let M be a faithful multiplication module over a Noe-
therian ring R. If I =

∩n
i=1 qi is an irreducible decomposition for
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I, then IM =
∩n

i=1 qiM is an irreducible decomposition for IM , and
therefore ν(IM) =

∪n
i=1 ν(qiM) is an irreducible decomposition for

ν(IM).

Proof. Since M is a multiplication R-module and R is Noetherian, it
follows thatM is Noetherian. By [9, Theorem 1.6], IM = (

∩n
i=1 qi)M =∩n

i=1(qiM). Also, [9, Theorem 1.6(i) and Theorem 3.1(ii)] implies that
qiM ̸⊇

∩n
i=1 qjM and

√
(qiM :M) =

√
qi, which are distinct. Observe

that, by Theorem 4.8, the submodules qiM (1 ≤ i ≤ n) are primary
submodules of M . Now, by Theorem 4.6, ν(IM) =

∪n
i=1 ν(qiM) is an

irreducible decomposition for ν(IM). □

5. PS(M) as a spectral space

In this section, we investigate PS(M) with the PZ-topology from
the view point of being a spectral space.

A topological space X is a T0-space if, for every pair of distinct
points of X, at least one of them has a neighborhood not containing
the other. It is well known that X is a T0-space if and only if the
closure of distinct points are distinct. Clearly, for a ring R, Spec(R) is
a T0-space with the Zariski topology. However, if M is a vector space
with dim(M) > 1, then PS(M) is the set of all proper subspaces of M
and the PZ-topology on PS(M) is {PS(M), ∅}. Thus PS(M) is not
a T0-space.

A topological space X is called a spectral space if it is homeomorphic
with the spectrum of a commutative ring R equipped with the Zariski
topology. In [11, Proposition 4], spectral spaces have been character-
ized by Hochster as the topological spaces X that satisfy the following
conditions:

(1) X is compact;
(2) the compact open subsets of X are closed under finite intersec-

tion and form an open base;
(3) each irreducible closed subset of X is the closure of a singleton

set;
(4) X is a T0-space.

Now, if ϕ is a surjective map, we showed that PS(M) together with
the PZ-topology satisfies conditions (1), (2) and (3) (see Corollary 3.4,
Corollary 3.5 and Theorem 4.4). Thus PS(M) is a spectral space if
and only if it is a T0-space.

Theorem 5.1. Let M be an R-module and let ϕ be a surjective map.
Then PS(M) is a T0-space if and only if |PSp(M)| ≤ 1, for every
p ∈ Spec(R).
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Proof. (⇒) Suppose that PS(M) is a T0-space and Q1, Q2 are two
distinct p-primary submodules of M . Since (rad(Q1) :M) = (rad(Q2) :
M) = p, it is easy to see that ν(Q1) = ν(Q2). By Lemma 4.1, this
contradicts the fact that the closure of distinct points are distinct.
Thus we have at most only one p-primary submodule.

(⇐) Let Q1 and Q2 be two distinct primary submodules of M . By
the assumption that the ideals (rad(Q1) : M) and (rad(Q2) : M) are
distinct, we have that Q2 /∈ ν(Q1) and Q1 /∈ ν(Q2). Hence, by Lemma
4.1, cl({Q1}) ̸= cl({Q2}). □

A topological space X is a T1-space if, for every pair of distinct
points, each of them has a neighborhood not containing the other. It
can easily be checked that X is a T1-space if and only if every singleton
subset is closed.
Theorem 5.2. Let M be a finitely generated R-module. Then PS(M)
is a T1-space if and only if PS(M) = MAX (M), where MAX (M)
is the set of all maximal submodules of M . In this case, PS(M) =
Spec(M) = MAX (M).
Proof. Suppose that PS(M) is a T1-space. Then every singleton subset
of PS(M) is closed. Assume that Q ∈ PS(M). Hence, by Lemma 4.1,
ν(Q) = cl({Q}) = {Q}. Since M is finitely generated, there exists
N ∈ MAX (M) such that Q ⊆ N . It follows that (Q : M) ⊆ (N : M)
and thus N ∈ ν(Q) = {Q}, since N is a prime submodule of M . Hence
N = Q, and so Q ∈ MAX (M). Therefore PS(M) ⊆ MAX (M). The
reverse inclusion is clear.

Conversely, suppose that {Q} is a singleton subset of PS(M). If
Q′ ∈ ν(Q), then

√
(Q′ :M) ⊇

√
(Q :M). Since (Q : M) and (Q′ :

M) are maximal ideals of R, (Q : M) = (Q′ : M). It follows that
Q
∩
Q′ ∈ PS(M), and so Q

∩
Q′ ∈ MAX (M). Hence Q = Q′, and so

ν(Q) = {Q}. Therefore PS(M) is a T1-space.
The final claim now follows from the fact that MAX (M) ⊆ Spec(M) ⊆
PS(M). □
Theorem 5.3. Let M be an R-module and let ϕ be a surjective map.
Then the following statements are equivalent.

(1) PS(M) is a spectral space;
(2) PS(M) is a T0-space;
(3) ϕ is injective;
(4) ϕ is a homeomorphism.

Proof. (1)⇒(2) This is immediate from Hochster’s characterization.
(2)⇒(3) Let ϕ(Q) = ϕ(Q′) for Q,Q′ ∈ PS(M). It follows that

(radQ : M) = (radQ′ : M). Thus Q,Q′ ∈ PSp(M), where p =
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(radQ : M). Now by the assumption and Theorem 5.1, we have Q =
Q′.

(3)⇒(4) follows from Corollary 2.7.
(4)⇒(1) It is clear. □

The following corollary is immediate from Theorems 2.4 and 5.3.

Corollary 5.4. Let M be a finitely generated multiplication R-module.
Then the mapping Q 7→ radQ is a homeomorphism from PS(M) to
Spec(M).

Proof. By [12, Corollary 6.6], it is easily obtained. □
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PRIMARY ZARISKI TOPOLOGY ON THE PRIMARY SPECTRUM OF A MODULE

H. BIJARI, K. KHASHYARMANESH AND H. FAZAELI MOGHIMI

مدول یک اولیه ی طیف روی اولیه زاریسکی توپولوژی

مقیمی٢ فضائلی حسین و خشیارمنش١ کاظم بیجاری١، هما

ایران مشهد، مشهد، فردوسی دانشگاه محض، ریاضی گروه ١

ایران بیرجند، بیرجند، دانشگاه ریاضی، گروه ٢

یک اولیه ی طیف از منظور باشد. مدول -R یک M و یکدار و جابجایی حلقه یک R کنید فرض
به است M از Q اولیه ی زیرمدول های تمام مجموعه می شود، داده نشان PS(M) نماد با که مدول

مجهز توپولوژی یک به را PS(M) مقاله این در .(rad(Q) : M) =
√
(Q :M) که گونه ای 

فشردگی ما است. آن زیرفضایی توپولوژی Spec(M) اول طیف روی زاریسکی توپولوژی که می کنیم
یک PS(M) که می آوریم فراهم را شرایطی و کرده بررسی را توپولوژیک فضای این تحویل ناپذیری و

شود. طیفی فضای

اول. آل ایده اولیه، زیرمدول اولیه، زاریسکی توپولوژی اولیه، طیف کلیدی: کلمات

۶
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