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φ-CONNES MODULE AMENABILITY OF DUAL
BANACH ALGEBRAS

A. GHAFFARI∗, S. JAVADI AND E. TAMIMI

Abstract. In this paper, we define φ-Connes module amenability
of a dual Banach algebra A, where φ is a bounded module homo-
morphism from A to A that is wk∗ -continuous. We are mainly
concerned with the study of φ-module normal, virtual diagonals.
We show that if S is a weakly cancellative and S is an inverse
semigroup with subsemigroup E of idempotents, χ is a bounded
module homomorphism from l1(S) to l1(S) that is wk∗ -continuous
and l1(S) as a Banach module over l1(E) is χ-Connes module
amenable, then it has a χ-module normal, virtual diagonal. In
the case χ = id, the converse also holds.

1. Introduction

Connes amenable dual Banach algebras were introduced by Runde
in [19]. In [20], Runde showed that if a Banach algebra is Connes
amenable, it has a normal, virtual diagonal. The interest in normal,
virtual diagonals arises from the fact that for a von Neumann algebra
A, Connes amenability of A is completely determined by the existence
of a normal, virtual diagonal. As noticed by Runde, the notion of a
normal, virtual diagonal adapts naturally to the context of general dual
Banach algebras. In [21], it is shown that M(G), the measure algebra
of a locally compact group G, is Connes amenable if and only if it has
a normal, virtual diagonal.

MSC(2010): Primary: 22D15; Secondary: 43A10.
Keywords: Banach algebra, module amenability, derivation, semigroup algebra.
Received: 29 May 2019, Accepted: 6 December 2019.
∗Corresponding author.

69



70 A. GHAFFARI, S. JAVADI, E. TAMIMI

In [1], Amini introduced the concept of module amenability for Ba-
nach algebras, and proved that when S is an inverse semigroup with
subsemigroup E of idempotents, then l1(S) as a Banach module over
U = l1(E) is module amenable if and only if S is amenable. Also, in
[2], it is shown that l1(S)∗∗ is l1(E)-module amenable if and only if
an appropriate group homomorphic image of S is finite. We may refer
the reader e.g. to [1, 2, 3, 4, 5, 16], for extensive treatments of various
notions of module amenability.
All of these concepts generalized the earlier concept of amenability
for Banach algebras introduced by Johnson [12]. Recently, the au-
thors have introduced the ϕ-version of Connes amenability of dual Ba-
nach algebra A that ϕ is a homomorphism from A onto C that lies
in A∗[11]. Let A be a dual Banach algebra with a compatible action
of a Banach algebra U and φ be a bounded module homomorphism
from A to A that is wk∗-continuous. In this paper, we introduce the
concept of φ-Connes module amenability for A and give a character-
ization of φ-Connes module amenability in terms of φ-modul normal
virtual diagonals. In particular, we show that if χ is a bounded module
homomorphism from l1(S) to l1(S) that is wk∗-continuous and l1(S) as
a Banach module over l1(E) is χ-Connes module amenable, then it has
a χ-module normal virtual diagonal. In the case χ = id, the converse
also holds, restoring [21, Theorem 1] for the case of measure algebra of
a discrete group.

2. Main results

Let A be a dual Banach algebra with predual A∗ and U be a Banach
algebra such that A is a Banach U -bimodule with compatible actions,
that is

α.(ab) = (α.a).b, (αβ).a = α.(β.a) (a, b ∈ A, α, β ∈ U).

Let E be a dual Banach A-bimodule. E is called normal if for each
x ∈ E, the maps

A → E, a →
{a.x

x.a

are wk∗- continuous. If moreover E is a U -bimodule such that for a ∈ A,
α ∈ U and x ∈ E

α.(a.x) = (α.a).x, (a.α).x = a.(α.x), (α.x).a = α.(x.a),

then E is called a normal Banach left A−U -module. Similarly for the
right and two sided actions. Also, E is called commutative, if

α.x = x.α (α ∈ U , x ∈ E).
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A module homomorphism from A to A is a map φ : A → A with
φ(a+ b) = φ(a) + φ(b), φ(ab) = φ(a)φ(b)

φ(α.a) = α.φ(a), φ(a.α) = φ(a).α (a, b ∈ A, α ∈ U).
Since A is a dual Banach algebra, then multiplication in A is wk∗-
continuous. Consider A as dual A-module with predual A∗. So we
shall suppose that A takes wk∗-topology. HOMwk∗ (A) will denote the
space of all bounded module homomorphism that is wk∗-continuous.

A bounded map D : A → E is called a module φ-derivation if
D(a± b) = D(a)±D(b), D(ab) = D(a).φ(b) + φ(a).D(b)

D(α.a) = α.D(a), D(a.α) = D(a).α (a, b ∈ A, α ∈ U).
When E is commutative, each x ∈ E defines a module φ-derivation

Dx(a) = φ(a). x− x. φ(a) (a ∈ A).

Derivations of this form are called inner module φ-derivation.

Definition 2.1. Let A be a dual Banach algebra, U be a Banach
algebra such that A is a Banach U -module and φ ∈ HOMwk∗ (A). A
is called φ-Connes module amenable if for any commutative normal
Banach A-U -module E, each wk∗- continuous module φ-derivation D :
A → E is inner.

Recall that if φ is identity map on A, then id-Connes module amenabil-
ity is called Connes module amenability. Also, by the proof of [1,
Proposition 2.1], Connes amenability of A implies its Connes module
amenability in the case where U has a bounded approximate identity
for A. Example 9 shows that the converse is false. Hence Connes mod-
ule amenability is weaker than Connes amenability. Throughout this
paper, A is a Banach algebra that is a Banach U -module.

Theorem 2.2. Let A be a dual Banach algebra and φ ∈ HOMwk∗ (A).
If φ is an epimorphism and A is φ-Connes module amenable, then A
is Connes-module amenable.

Proof. Let E be a commutative normal Banach A − U -module and
D : A → E be a wk∗-continuous module derivation. Set d = D◦φ. The
mapping d : A → E is a module φ-derivation. Since φ ∈ HOMwk∗ (A),
then d is wk∗-continuous. Thus there exists f ∈ E such that d(a) =
f. φ(a) − φ(a). f for all a ∈ A. Let b ∈ A, there exists a ∈ A such
that φ(a) = b. Hence

D(b) = D(φ(a)) = d(a) = f. φ(a)− φ(a). f = f. b− b. f.

This shows that A is Connes-module amenable. □
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Theorem 2.3. Let A be a dual Arens regular Banach algebra and
φ ∈ HOMwk∗ (A). Then the following are equivalent:
(i) A is φ- Connes module amenable.
(ii) A∗∗ is φ∗∗-Connes module amenable.

Proof. (i)⇒(ii) Let E be a commutative normal Banach A∗∗−U -module
and D : A∗∗ → E be a wk∗-continuous module φ∗∗-derivation. Let θ :
A → A∗∗ be the canonical map. It is known that θ is wk∗-continuous.
Define a module action of A on E by letting x • a = x. θ(a), a • x =
θ(a). x (a ∈ A, x ∈ E). It can be shown that this module action is well
defined and turns E into a normal Banach A − U -module. We define
a derivation D̃ : A → E by letting D̃ = D ◦ θ. Then we have

D̃(ab) = D ◦ θ(ab) = D ◦ θ(a). φ∗∗(θ(b)) + φ∗∗(θ(a)). D ◦ θ(b)
= D ◦ θ(a). θ(φ(b)) + θ(φ(a)). D ◦ θ(b)
= D ◦ θ(a) • φ(b) + φ(a) • D ◦ θ(b)
= D̃(a) • φ(b) + φ(a) • D̃(b).

Thus D̃ is a module φ-derivation that is wk∗-continuous. Since A is
φ-Connes module amenable, then there exists x ∈ E such that

D̃(a) = D ◦ θ(a) = x • φ(a)− φ(a) • x

= x. θ(φ(a))− θ(φ(a)). x.

Let G ∈ A∗∗. As θ(A) is wk∗-dense in A∗∗, there exists a net {gα} in
A such that θ(gα) → G in the wk∗-topology. Also it is known that φ∗∗

is wk∗-continuous, then φ∗∗(θ(gα)) → φ∗∗(G). Hence

D(G) = lim
α

D ◦ θ(gα) = lim
α

x. θ ◦ φ(gα)− θ ◦ φ(gα). x

= lim
α

x. φ ◦ θ(gα)− φ ◦ θ(gα). x

= x. φ∗∗(G)− φ∗∗(G). x

(ii)⇒(i) Let E be a commutative normal Banach A-U -module and D :
A → E be a wk∗-continuous module φ-derivation. Let π : (A∗)

∗∗∗ →
(A∗)

∗ by π(F ) = F |θ(A∗) be the Dixmier projection. It is well known
that the Dixmier projection from A∗∗ onto A is a module homomor-
phism [14]. Then E is a Banach A∗∗-U -module with the bimodule
multiplications

F • x = π(F ). x, x • F = x. π(F ) (x ∈ E,F ∈ A∗∗).



φ-CONNES MODULE AMENABILITY OF DUAL BANACH ALGEBRAS 73

It is routinely checked that E is a commutative normal Banach A∗∗-U -
module. Now set D ◦ π : A∗∗ → E. We have
D ◦ π(FG) = D(π(F )π(G)) = Doπ(F ). φ ◦ π(G) + φ ◦ π(F ). Doπ(G)

= D ◦ π(F ). φ∗∗ ◦ π(G) + φ∗∗ ◦ π(F ). D ◦ π(G)

= D ◦ π(F ). π(φ∗∗(G)) + π(φ∗∗(F )). D ◦ π(G)

= D ◦ π(F ) • φ∗∗(G) + φ∗∗(F ) • D ◦ π(G).

Since A∗∗ is φ∗∗-Connes module amenable, then there exists x ∈ E
such that
Doπ(F ) = φ∗∗(F ) • x− x • φ∗∗(F ) = π(φ∗∗(F )). x− x. π(φ∗∗(F ))

= φ∗∗(π(F )). x− x. φ∗∗(π(F )).

Therefore D(a) = φ(a). x − x. φ(a) for all a ∈ A, and hence D is
inner. □
Theorem 2.4. Let A be a commutative dual Banach algebra and φ ∈
HOMwk∗ (A). If A is φ-Connes module amenable, then A has a bounded
approximate identity for φ(A).
Proof. Let A be a commutative Banach A-U -module whose underlying
space is A, but on which A acts via

a. x := ax, x. a := 0 (a ∈ A, x ∈ A).

Let I : A → A be the identity map. It is easy to see that I ◦ φ is
a module φ-derivation. Since A is φ-Connes module amenable, there
exists e ∈ A such that

I ◦ φ(a) = φ(a). e− e. φ(a)

φ(a) = φ(a). e.

The element e has the desired properties. □
Theorem 2.5. Let A be a dual Banach algebra and φ ∈ HOMwk∗ (A).
If A is φ-Connes module amenable, then A is λ ◦ φ-Connes module
amenable for any λ ∈ HOMwk∗ (A).
Proof. Let E be a commutative normal Banach A − U -module and
D : A → E be a module λ ◦ φ-derivation that is wk∗- continuous. If E
is equipped with the module operation by

a • x = λ(a). x, x • a = x. λ(a), (a ∈ A, x ∈ E)

then E becomes a commutative normal Banach A − U -module. We
have

D(ab) = D(a). λ ◦ φ(b) + λ ◦ φ(a). D(b)

= D(a) • φ(b) + φ(a) •D(b).
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Thus, there exists f ∈ E such that
D(a) = f • φ(a)− φ(a) • f = f. λ ◦ φ(a)− λ ◦ φ(a). f (a ∈ A).

This shows that D is inner. □
Theorem 2.6. Let A be a unital dual Banach algebra and also φ ∈
HOMwk∗ (A). Then A is φ-Connes module amenable if and only if
for any unital commutative Banach A-U-module E, each module φ-
derivation D : A −→ E is inner.

Proof. Let E be a commutative normal Banach A-U -bimodule with
predual E∗, and consider l : E −→ E and r : E −→ E by l(x) = eAx
and r(x) = xeA. put E1 = (id − l) ◦ r(E), E2 = (id − r) ◦ l(E),
E3 = (id − l) ◦ (id − r)(E) and E4 = l ◦ r(E). The verification that
E = E1 ⊕ E2 ⊕ E3 ⊕ E4 is routine. It is the diect sum of Ei for
i = 1, 2, 3, 4. Then E1 is equipped with the module operation by

(x− eAx). a = x. a− eAx. a, a(x− eAx) = a. x− a. eA.x = 0

It is easy to see that E1 is a commutative normal Banach A-U -bimodule
by predual (1 − eA).E∗.eA. Let π1 : E −→ E1 be the projection map.
Then π1 ◦D is a module φ-derivation from A to E1 that is wk∗- con-
tinuous. Since A has a left zero action on E1, then we have
π1 ◦D(a) = π1 ◦D(eA.a) = π1 ◦D(eA).φ(a) + φ(eA).π1 ◦D(a)

= π1 ◦D(eA).φ(a) = π1 ◦D(eA).φ(a)− φ(a).π1 ◦D(eA)

Also, a routine verification shows that π2oD = adπ2◦D(eA) and π3 ◦D =
0.

Now, let π4 ◦ D : A −→ E4. It is obvious that π4 ◦ D is a module
φ-derivation. We can show that E4 is a commutative normal Banach
A-U -bimodule with predual eA.E∗.eA. By our assumption, π4 ◦ D is
inner. □

Let A and U are dual Banach algebras. Let A be a dual Banach
U -module and A⊗̂A denote the projective tensor product of A and A.
Let A∗ ⊗w A∗ be the injective tensor product of A∗ with itself. Then
we have a canonical map from A⊗̂A into (A∗⊗wA∗)

∗ which has closed
range if A has the bounded approximation property. For more details,
see [18]. Let I be the closed ideal of A⊗̂A generated by elements of the
form α.(a ⊗ b) − (a ⊗ b).α, for a, b ∈ A and α ∈ U . A⊗̂UA is defined

to be the quitiont Banach space A⊗̂A
I

[15]. Let J be the closed ideal
of A generated by elements of the form (α.a).b − a.(b.α). Since J is
weak∗-closed, then the quotient algebra A

J
is again dual with predual
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⊥J = {ϕ ∈ A∗ : ⟨ϕ, a⟩ = 0 for all a ∈ J}. Moreover, A⊗̂UA ∼=
A⊗̂A
I

and A
J

could be regarded as a Banach A-U -module. Let L2
w∗(

A
J
,C)

denote the separately wk∗-continuous 2-linear maps from A
J
× A

J
to C.

Note that the dual Banach A-U -module L2
w∗(

A
J
,C) need not be normal.

Let w̃ : A⊗̂UA → A
J

be the multiplication operator, w̃(a ⊗ b + I) =

ab + J . Since the quotient map is continuous and open, then it is
immediate that w̃∗ maps ⊥J into L2

w∗(
A
J
,C). It follows that w̃∗∗ drops

to an A-U -module homomorphism w̃∗∗ : L2
w∗(

A
J
,C)∗ → A

J
. Recall a

few definitions from [10](with a different notation, however). Given
F ∈ L2

w∗(
A
J
,C) and M ∈ L2

w∗(
A
J
,C)∗, we put

⟨M, F ⟩ =
∫

FdM =:

∫
A⊗̂UA

F (a+ J, b+ J)dM(a+ J, b+ J).

More generally, let E be a dual Banach space and let F :
A
J
× A

J
→ E

be a bilinear map such that a + J → F (a + J, b + J) and b + J →
F (a+ J, b+ J) are wk∗- continuous. We define

∫
FdM ∈ E by

⟨
∫

FdM, x⟩ =
∫

⟨F (a+ J, b+ J), x⟩dM(a+ J, b+ J),

where a, b ∈ A, x ∈ E∗. Let φ ∈ HOMwk∗ (A) such that φ(J) ⊆ J .
Then the map φ̃ :

A
J

→ A
J

by φ̃(a+J) = φ(a)+J could be considered

as an element of HOMwk∗ (
A
J
).

Definition 2.7. Let A be a dual Banach algebra. An element M ∈
L2

w∗(
A
J
,C)∗ is called a φ-module normal virtual diagonal for A if w̃∗∗(M)

is an identity for φ(A)

J
and

M. φ̃(c+ J) = φ̃(c+ J). M (c ∈ A).

Note that with the above notation M. (c + J) = (c + J). M is
equivalent to∫

F (ca+ J, b+ J)dM(a+ J, b+ J) =

∫
F (a+ J, bc+ J)dM(a+ J, b+ J).
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Theorem 2.8. Let A and U be dual Banach algebras, let A be a unital
dual Banach U- module and let A has an id-module normal virtual
diagonal. Then A is id-Connes module amenable.

Proof. Let E be a commutative normal Banach A-U -module. We first
note that A has an identity. From Theorem 5, it is therefore sufficient
for A to be id-Connes module amenable that we suppose that E is
unital. Let D : A → E be a module derivation that is wk∗- continuous.
It is straightforward to see that E is a normal Banach A

J
-U -module.

Let E = (E∗)
∗. Since E is commutative, then D = 0 on J . Thus we

have D̃ :
A
J

→ E, D̃(a + J) := D(a) (a ∈ A). To each x ∈ E∗, there

corresponds Vx :
A
J

× A
J

→ C via Vx(a + J, b + J) = ⟨x, (a + J)D̃(b +

J)⟩(a, b ∈ A). It is routinely checked that Vx ∈ L2
w∗(

A
J
,C). For each

a, b ∈ A and a∗ ∈ A∗ we have

⟨
∫

ab+ JdM, a∗ + J⊥⟩ = ⟨
∫

w̃(a⊗ b+ I)dM, a∗ + J⊥⟩

=

∫
⟨w̃(a⊗ b+ I), a∗ + J⊥⟩dM

=

∫
⟨a⊗ b+ I, w̃∗(a∗ + J⊥)⟩dM

= ⟨
∫

a⊗ b+ IdM, w̃∗(a∗ + J⊥)⟩

= ⟨M, w̃∗(a∗ + J⊥)⟩ = ⟨w̃∗∗(M), a∗ + J⊥⟩,

Now, put f(x) = ⟨M, vx⟩(x ∈ E∗). Let c ∈ A. We have

⟨ (c+ J). f − f. (c+ J), x⟩
= ⟨f, x. (c+ J)− (c+ J). x⟩
= ⟨M, Vx. (c+J)−(c+J). x⟩

=

∫
Vx. (c+J)−(c+J). x(a+ J, b+ J)dM

=

∫
⟨x. (c+ J)− (c+ J). x, (a+ J)D̃(b+ J)⟩dM

=

∫
⟨x, (c+ J)(a+ J)D̃(b+ J)− (a+ J)D̃(b+ J)(c+ J)⟩dM

=

∫
⟨x, (ca+ J)D̃(b+ J)− (a+ J)D̃(b+ J)(c+ J)⟩dM,
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and so

⟨ (c+ J). f − f. (c+ J), x⟩

=

∫
⟨x, (a+ J)D̃(bc+ J)− (a+ J)D̃(b+ J)(c+ J)⟩dM

=

∫
⟨x, (a+ J)D̃(b+ J)(c+ J) + (a+ J)(b+ J)D̃(c+ J)

− (a+ J)D̃(b+ J)(c+ J)⟩dM

=

∫
⟨(a+ J)(b+ J)D̃(c+ J), x⟩dM

=

∫
⟨(ab+ J)D̃(c+ J), x⟩dM

=

∫
⟨(ab+ J), x⟩dM.D̃(c+ J)

= ⟨w̃∗∗(M). D̃(c+ J), x⟩.

All in all, D(c) = c. f − f. c holds. □

Let A be a commutative Banach U -bimodule. Consider A⊗̂UA with
the product specified by (a⊗ b)(c⊗ d) = ac⊗ bd. Let φ⊗φ denote the
element of HOMwk∗ (A⊗̂A) satisfying φ ⊗ φ(a ⊗ b) = φ(a) ⊗ φ(b) for
all a, b ∈ A. φ ⊗ φ induces a map φ ⊗U φ ∈ HOMwk∗ (A⊗̂UA) with
φ⊗U φ(a⊗ b) = φ(a)⊗ φ(b) + I [7].

Theorem 2.9. Let A and U be dual Banach algebras, let A be a unital
dual Banach U- module and let A⊗̂UA be a dual Banach algebra and
φ ∈ HOMwk∗ (A). If A is φ-Connes module amenable, then A⊗̂UA is
φ⊗U φ-Connes module amenable.

Proof. Let E be a commutative normal Banach A⊗̂UA-U -module and
D̂ : A⊗̂UA → E be a module φ⊗Uφ-derivation that is wk∗- continuous.
Consider the quotient map π : A⊗̂A → A⊗̂UA. Define

(a⊗ b). x = π(a⊗ b)⊖ x, x. (a⊗ b) = x⊖ π(a⊗ b) (a, b ∈ A, x ∈ E)

Since π is wk∗- continuous, then E is a normal Banach A⊗̂A-U -module.
Put D̂ ◦ π : A⊗̂A → E. It is easy to see that D̂ ◦ π is a module φ⊗φ-
derivation that is wk∗- continuous. If D̂ ◦ π is inner, then D̂ is inner.
Therefore in the following we prove that D = D̂ ◦ π is inner. For with
eA an identity for A we define

a △ x = (a⊗ eA). x, x △ a = x. (a⊗ eA) (a ∈ A, x ∈ E).
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For a ∈ A, x ∈ E and α ∈ U , we get
a △ (α. x)− (a. α) △ x = (a⊗ eA). (α. x)− (a. α⊗ eA). x

= (a⊗ eA). (α. x)− (α. a⊗ eA). x

= (a⊗ eA). (α. x)− (α. (a⊗ eA)). x

= (a⊗ eA). (α. x)− ((a⊗ eA). α). x

= (a⊗ eA). (α. x)− (a⊗ eA).(α. x) = 0

and the same for the right or two-sided actions. So E is a commutative
normal Banach A-U -bimodule. Put DA : A → E, DA(a) = D(a⊗ eA),
then
DA(ab) = D(ab⊗ eA)

= D(a⊗ eA). φ⊗ φ(b⊗ eA) + φ⊗ φ(a⊗ eA). D(b⊗ eA)

= DA(a) △ φ(b) + φ(a) △ DA(b).

Since A is φ-Connes module amenable, there is u ∈ E such that DA =
adu. Therefore, D̃ = D − adu vanishes on A⊗ eA. Setting

a▽ x = (eA ⊗ a). x, x▽ a = x. (eA ⊗ a) (a ∈ A, x ∈ E)

makes E into an A-U -bimodule. Let us now, D′
A(a) = D̃(eA ⊗ a)(a ∈

A). Set K = {e ∈ E∗ : ⟨D̃(eA ⊗ a), e⟩ = 0}. Since D̃ is wk∗-
continuous, by a similar argument of [17, Theorem 4.9] we have (E∗

K
)∗ =

D̃(eA ⊗ a)
w∗

k . Further, D̃(eA ⊗ a)
w∗

k is a wk∗-closed submodule of E.
All in all D̃(eA ⊗ a)

w∗
k is a commutative normal Banach A-U -module.

Then there is v ∈ D̃(eA ⊗ a)
w∗

k such that
D̃(eA⊗a) = D′

A(a) = φ(a)▽ν−ν▽φ(a) = φ⊗φ(eA⊗a). v−v. φ⊗φ(eA⊗a)

and D̃ − adv|(eA⊗A) = {0}. Consequently D̃ − adv = D − adu − adv
vanishes on A⊗̂A. This complete the proof. □

3. χ-Connes Module amenability of semigroup algebras

A discrete semigroup S is called an inverse semigroup if for each
x ∈ S there is a unique element x∗ ∈ S such that xx∗x = x and
x∗xx∗ = x∗. An element e ∈ S is called an idempotent if e = e∗ = e2.
The set of idempotent elements of S is denoted by E. For s ∈ S, we
define Ls, Rs : S → S by Ls(t) = st, Rs(t) = ts, (t ∈ S). If for each
s ∈ S, Ls and Rs are finite-to-one maps, then we say that S is weakly
cancellative.
Before turning our result, we note that if S is a weakly cancellative
semigroup, then l1(S) is a dual Banach algebra with predual c0(S)[8].
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In Theorem 2.8 it is shown that if a unital Banach algebra A has
an id-module normal virtual diagonal, then A is id-Connes module
amenable. It would be interesting to know that the converse holds for
inverse semigroup algebra l1(S).
For an inverse semigroup S, we consider an equivalence relation on S
where s ∼ t if and only if there is e ∈ E such that se = te. The
quotient semigroup SG =

S

∼
is a group [13]. It is easy to see that E is

a commutative subsemigroup of S. Therefore, l1(S) is a Banach l1(E)-
module with compatible canonical actions. Let l1(E) acts on l1(S) by
the multiplication from right and trivially from left, that is

δe.δs = δs, δs.δe = δse = δs ∗ δe (s ∈ S, e ∈ E).

With above notation, l1(SG) is a quotient of l1(S) and so the above
action of l1(E) on l1(S) lifts to an action of l1(E) on l1(SG), making it
a Banach l1(E)-module [1].

Theorem 3.1. Let S be a weakly cancellative semigroup. Let S be an
inverse semigroup with idempotents E, let l1(S) be a Banach l1(E)-
module and let χ ∈ HOMwk∗ (l

1(S)). If l1(S) is χ-Connes module
amenable, then l1(S) has a χ-module normal virtual diagonal.

Proof. Let π : S → SG be the quotient map. By [1, Lemma 3.2], we
define a bimodule action of l1(S) on l∞(SG) by

δs. x = δπ(s) ∗ x, x. δs = x ∗ δπ(s) (s ∈ S, x ∈ l∞(SG)).

Since c0(SG) is an introverted subspace of l∞(SG) [9], then l∞(SG)
∗

is a normal Banach l1(S)-l1(E)-module. Choose n ∈ l∞(SG)
∗ with

⟨n, 1⟩ = 1, and define D : l1(S) → l∞(SG)
∗ by D(δs) = χ(δs). n −

n. χ(δs). Moreover, D attains its values in the weak∗-closed submodule

(
l∞(SG)

C
)∗. Since l1(S) is χ-Connes module amenable, then D is inner.

Consequently, there exists ñ ∈ (
l∞(SG)

C
)∗ such that D(δs) = adñ, so

χ̃(δπ(s)). n− n. χ̃(δπ(s)) = χ̃(δπ(s)). ñ− ñ. χ̃(δπ(s)).

For each f ∈ l∞(SG),
⟨χ̃(δπ(s)). (n− ñ)− (n− ñ). χ̃(δπ(s)), f⟩ = 0.

Now put m := n− ñ ∈ l∞(SG)
∗, we have

⟨χ̃(δπ(s)). m−m. χ̃(δπ(s)), f⟩ = 0.

By a similar argument as in [18, Lemma 7.1.1], there exists a net {fα}
of l1(SG) such that

∫
fα = 1 and ∥ χ̃(δπ(s)) ∗ fα − fα ∗ χ̃(δπ(s)) ∥→ 0.
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Now let f ∈ c0(SG × SG). Take ϵ > 0 and consider a compact set K
such that ∥f(x)∥SG\K <

√
ϵ and

sup
s∈K

∥ χ̃(δπ(s)) ∗ fα − fα ∗ χ̃(δπ(s)) ∥<
√
ϵ

∥f∥
.

Since the quotient map is continuous and open, then by [20, Proposition
3.1] we have L2

wk∗
(l1(SG),C) = c0(SG × SG). Then we may define

⟨M, f⟩ = lim
α

∫
f(χ̃(δπ(x∗)), χ̃(δπ(x)))fα(x)dx.

By the above argument, for each s ∈ S there exists α0 such that for
each α > α0, ∥ χ̃(δπ(s)) ∗ fα − fα ∗ χ̃(δπ(s))∥ <

√
ϵ
2

. Hence
⟨ χ̃(δπ(s)). M −M. χ̃(δπ(s)), f⟩ = ⟨M, f. χ̃(δπ(s))− χ̃(δπ(s)). f⟩

= lim
α

∫ (
f(χ̃(δπ(s)π(x∗)), χ̃(δπ(x)))− f(χ̃(δπ(x∗)), χ̃(δπ(xs)))

)
fα(x)dx

≤ ∥f∥SG\K∥χ̃(δπ(s)) ∗ fα − fα ∗ χ̃(δπ(s))∥
+ |f∥K∥χ̃(δπ(s)) ∗ fα − fα ∗ χ̃(δπ(s))∥ < ϵ.

Also for each s

w̃∗∗(M).χ̃(δπ(s)) = ⟨M, w̃∗(χ̃(δπ(s)))⟩

= lim
α

∫
(w̃∗(χ̃(δπ(s))))(χ̃(δπ(x∗)), χ̃(δπ(x)))fα(x)dx

= lim
α

∫
χ̃(δπ(s))χ̃(δπ(x∗))χ̃(δπ(x))fα(x)dx

= lim
α

∫
χ̃(δπ(s)δπ(x∗)δπ(x))fα(x)dx

= lim
α

χ̃(δπ(s))

∫
fα(x)dx = χ̃(δπ(s)).

Consequently, M is a χ-normal module virtual diagonal for l1(S). □
Corollary 3.2. Let S be a weakly cancellative semigroup, let S be an
inverse semigroup with idempotents E and let l1(S) be a Banach l1(E)-
module. Then the following are equivalent:
(i) l1(S) is Connes module amenable.
(ii) l1(S) has a module normal virtual diagonal.
Proof. This follows immediately from Theorem 2.8 and Theorem 3.1.

□
Example 10. Let (N,∨) be the semigroup of positive integers with

maximum operation. Since N is weakly cancellative, then l1(N) is a
dual Banach algebra with predual c0(N). By [8, Theorem 5.13], l1(N)
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is not Connes amenable. Moreover l1(N) is module amenable on l1(EN),
so it is Connes module amenable (see [2]).
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دوگان باناخ جبرهای از مدولی ميانگين پذيری φ-کنز

تمیمی١ ابراهیم و جوادی٢ سمانه غفاری١، علی

ایران سمنان، سمنان، دانشگاه ریاضی، علوم دانشکده محض، ریاضی گروه ١

ایران رودسر، گیلان، دانشگاه گیلان-شرق، مهندسی دانشکده ٢

آن در که می کنیم تعریف را A دوگان باناخ جبرهای از مدولی ميانگين پذيری φ-کنز مقاله این در
نرمال مدول φ بررسی است. پیوسته ستاره ضعیف که بوده A به A از کراندار مدولی همریختی یک φ
بوده ضعیف حذفی و معکوس نیم گروه یک S کنید فرض است. مقاله این اهداف از واقعی قطرهای و
پیوسته ستاره ضعیف و کراندار مدولی همریختی یک χ اگر باشد. S های خودتوان از نیم گروه زیر E و
قطر و نرمال χ-مدول یک دارای آن گاه باشد، مدولی ميانگين پذير کنز χl١(E)l١(S)l١(S)١(S)l از

است. درست موضوع این عکس χ = id که حالتی در است. واقعی

نیم گروهی. جبر و اشتقاق مدولی، میانگین پذیری باناخ، جبرهای کلیدی: کلمات

٧
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