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THE (△,□)-EDGE GRAPH G△,□ OF A GRAPH G

GH. NASIRIBOROUJENI, M. MIRZAVAZIRI∗ AND A. ERFANIAN

Abstract. To a simple graph G = (V,E), we correspond a sim-
ple graph G△,□ whose vertex set is V△,□ = {{x, y} : x, y ∈ V }
and two vertices {x, y} and {z, w} are adjacent if and only if
{x, z}, {x,w}, {y, z}, {y, w} ∈ E or correspond to a vertex of V .
The graph G△,□ is called the (△,□)-edge graph of the graph G.
In this paper, our ultimate goal is to provide a link between the
connectedness of G and G△,□.

1. introduction

In the recent years, the commuting graph of group have become a
topic of research for many mathematicians (see, for example [2, 4, 9]).
This graph is precisely the complement of the non-commuting graph of
a group, denoted by ∆(G), considered in [1]. Some authors gave some
generalization of the commuting graph and non-commuting graph (see,
for example [3, 6, 7, 10]). In 2017, the authors have generalized the
notion of a commuting graph to the commuting graph of subsets of a
finite group G, Γ(n1, n2, . . . , nk, G) whose vertices are the ni-subsets of
G such that two vertices X and Y are adjacent if and only if xy = yx
for all x ∈ X and y ∈ Y .

Taking idea from this, we correspond a graph G△,□ to a simple
graph G. The main idea is to correspond some edges to triangles
and squares of G in a new graph. More precisely, if G = (V,E) is
a simple graph, then we define a new graph G△,□ whose vertices are
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2-subsets of V . Then if (x, y, z) is a triangle in G, we draw the trian-
gle ({x, y}, {x, z}, {y, z}) in G△,□ and if (x, y, z, w) is a square in G,
with xy, yz, zw,wx as its edges, we draw an edge {x, z}{y, w} in G△,□.
Roughly speaking, we can say that edges of G△,□ are derived from △’s
and □’s of G.

The ultimate goal of the present paper is to find a link between
connectivity of G and G△,□. Some simple facts can be easily proved
in on direction when we want to think about the connectedness of G
using the same property for G△,□. We do this in Section 2 together
with giving some general facts about G△,□.

On the other hand, from connectivity of G to the same property of
G△,□, the problem seems to be hard. We give some partial answer for
the problem in Section 3.

We recall certain graph theoretic terminologies (see, for example,
[5, 8, 11]). Note that all graphs considered here are simple graphs,
i.e., undirected graphs without loop or multiple edges. Moreover, by
(x, y, z) we mean the triangle with vertices x, y, z and by (x, y, z, w) we
mean the square with vertices x, y, z, w and edges xy, yz, zw,wx. The
complete graph Kn is the graph with n vertices and all possible edges.
The complete bipartite graph Kn,n′ is the graph with two partition sets
A and A′ with |A| = n and |A′| = n′ such that there is no edges inside
a partition and contains all possible edges between two partitions.

2. Triangles and squares as edges

Let us start by the definition of G△,□.

Definition 2.1. Let G = (V,E) be a graph. The (△,□)-edge graph
of G is the graph G△,□ = (V△,□, E△,□) whose vertex set is V△,□ =
{{x, y} : x, y ∈ V } and two vertices {x, y}, {z, w} ∈ V△,□ are adjacent
if and only if {x, z}, {x,w}, {y, z}, {y, w} ∈ E or correspond to a vertex
of V .

For the sake of simplicity we write xy instead of {x, y}.

Example 2.2. Let G = (x, y, z, w)∪{xz}, namely the square (x, y, z, w)
with an extra edge xz. Then

V△,□ = {xy, xz, xw, yz, yw, zw},
E△,□ = (xy, xz, yz) ∪ (xz, xw, zw) ∪ {xz yw}.

A simple verification shows that triangles of G produce triangles in
G△,□ and squares of G give edges in G△,□. We therefore can immedi-
ately deduce the following.
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Proposition 2.3. Let G be a triangle-free and square-free graph. Then
G△,□ has no edges. In particular, for a tree T , the (△,□)-edge graph
T△,□ has no edge.

We can evidently see that if G and G′ are two isomorphic graphs
then G△,□ is isomorphic to G′

△,□. A natural question is about the
converse: if G△,□ is isomorphic to G′

△,□, can we deduce that G and G′

are isomorphic? Proposition 2.3 shows that the converse is not true in
general. To see this, let T and T ′ be two non-isomorphic trees with
the same order. Then T△,□ and T ′

△,□ are empty graphs with the same
order which are clearly isomorphic to each other.
Proposition 2.4. For positive integers n ≥ 2 and n′ ≥ 2,

(Kn)△,□ = K(n2)
, (Kn,n′)△,□ = K(n2),(

n′
2 )

∪Knn′ .

Proof. Note that (Kn)△,□ has
(
n
2

)
vertices with all possible edges. Fur-

thermore, note that (Kn,n′)△,□ has
(
n+n′

2

)
vertices and its edges are

derived from squares of Kn,n′ since the bipartite graph Kn,n′ is triangle-
free. Thus if xy and zw are two vertices with x, y in one partition set
and z, w belong to the other partition set, then xy zw is an edge in
(Kn,n′)△,□ and if xy is a vertex such that x and y are in two different
partition sets, then xy is an isolated vertex in (Kn,n′)△,□. □
Lemma 2.5. Let G be a graph and xy be a non-isolated vertex of G△,□.
Then

a. if xy is an edge of G then x and y have at least a common
neighbour in G, i.e., xy is on a triangle in G;

b. if xy is not an edge of G then x and y have at least two common
neighbours in G, i.e., x and y are on opposite corners of a square
in G.

Proof. Since xy is not isolated, there is a neighbour zw for it. There
are two cases:

a. {x, y} and {z, w} has a common vertex, say x = w. By the
definition of an edge in G△,□ we can therefore deduce that
{x, z}, {x}, {y, z}, {y, x} ∈ V ∪ E. This means that (x, y, z)
is a triangle in G;

b. {x, y} and {z, w} has no common vertex. By the definition of an
edge in G△,□ we can therefore deduce that {x, z}, {x,w}, {y, z},
{y, w} ∈ E. This means that (x, y, z, w) is a square in G.

□
Corollary 2.6. If edge xy is on m triangles and x and y are on opposite
corners of k squares in G, then in G△,□ we have deg(xy) = 2m+ k.
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Corollary 2.7. Let G be a graph of order at least 3 and let G△,□ be
connected. Then

a. G has a triangle or a square;
b. G has no pendant or isolated vertex.

Proof. Since G△,□ is connected and is not a singleton, it can not have
isolated vertex. Now we can apply Lemma 2.5. □

One can easily see that the converse of Corollary 2.7 is not true in
general.
Theorem 2.8. Let G be a graph and let G△,□ be connected. Then G
is also connected.
Proof. If G is not connected, then there are two vertices x and y which
are belonged to two different components of G. Thus xy is not an
edge and they have no common neighbour. This contradicts to Lemma
2.5. □

Again, notice that the converse of the above facts are not true in
general. Figure 1 gives an appropriate example to show this.

Figure 1.

Theorem 2.9. Let G be a graph and let G△,□ be connected. Then
|E| ⩾ 2|V | − 3.
Proof. The result is obviously true, even with > instead of ⩾, if
deg(x) ⩾ 4 for each x ∈ G. Thus we can assume that there is a
vertex x1 ∈ G with deg(x1) ⩽ 3. Corollary 2.7 now implies that
deg(x1) = 2 or 3.

Let deg(x1) = 2 for some x1 and let x2 and x3 be the only neighbours
of x1. Thus the remaining vertices x4, . . . , x|V | are not neighbours of
x1 and Lemma 2.5 guarantees that each of these vertices should have
at least two common neighbours with x1. Since x2 and x3 are the
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only neighbours of x1 we can therefore deduce that both x2 and x3 are
neighbours of x4, . . . , x|V |. We now have
deg(x1) ⩾ 2, deg(x2), deg(x3) ⩾ |V | − 2, deg(x4), . . . , deg(x|V |) ⩾ 2.

Summing these and regarding to the face that the degree sum of vertices
is 2|E| gives |E| ⩾ 2|V | − 4. But if these are the only edges of G then
G is triangle-free which contradicts to the part (a) of Lemma 2.5. This
implies the result.

Otherwise, if there is no x with deg(x) = 2, suppose deg(x1) = 3 for
some x1 and let x2, x3 and x4 be the only neighbours of x1. Thus the
remaining vertices x5, . . . , x|V | are not neighbours of x1 and Lemma 2.5
guarantees that each of these vertices should have at least two common
neighbours with x1. Since x2, x3 and x4 are the only neighbours of x1

we can therefore deduce that both two of the vertices x2, x3 and x4

are neighbours of x5, . . . , x|V |. This guarantees the existence of at least
(|V | − 4) × 2 edges between the sets {x5, . . . , x|V |} and {x2, x3, x4}.
We also have 3 extra edges for x1. Moreover, since each of the vertex
{x5, . . . , x|V |} has degree at least 3 we should have at least ⌊ |V |−4

2
⌋

extra edges. Furthermore, there should be at least 2 edges for the set
{x2, x3, x4}, since the 3 edges incidence on x1 should be belonged to
some triangles.

We now have at least

(|V | − 4)× 2+3+ ⌊|V | − 4

2
⌋+2 = 2|V | − 5+ ⌊|V | − 4

2
⌋+2 ⩾ 2|V | − 3

edges in G. Note that the equality can only occurs just for the case
|V | = 4, but if |V | = 4 we have |E| = 6. Thus we can say that
|E| > 2|V | − 3 is this case. □
Theorem 2.10. Let G be a graph with |E| = 2|V | − 3 and let G△,□
be connected. Then G is a union of |V | − 2 triangles with a unique
common edge.
Proof. Using the same notation as in Theorem 2.9, we can say that
equality occurred just for the case deg(x1) = 2 and just provided that
the last extra edge is between x2 and x3, since this is the only edge
which guarantees that |E| = 2|V | − 3. Note that if we have no edge
between x2 and x3 then for G△,□ to be connected we need at least two
edges and so we have |E| > 2|V | − 3 that conrary to assumption. □
Theorem 2.11. If G has m triangles and k squares, then |E(G△,□)| =
3m+ k.
Proof. For each triangle (x, y, z) in G, there is a triangle (xy, xz, yz) in
G△,□ which has three edge and for each square (x, y, z, w) in G there
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is a edge in G△,□ between vertices xz, yw. All the edges obtained from
these two methods are separate and so |E(G△,□)| = 3m+ k. □

Corollary 2.12. For each natural number m we have 3
(
m+1
4

)
=

((m
2
)

2

)
Proof. Let G = Km, we know that this graph has

(
m
3

)
triangles and

p(m,4)
8

= 3
(
m
4

)
squares. Therefore, according to Theorem 2.11, the

number of edges G△,□ is equal to 3(
(
m
3

)
+

(
m
4

)
) = 3

(
m+1
4

)
. On the

other hand, G△,□ = K(m
2
) and so has

((m
2
)

2

)
edges. Consequently,

3
(
m+1
4

)
=

((m
2
)

2

)
. □

3. Sufficient conditions for the connectedness of G△,□

In this section, we study some sufficient conditions for the connect-
edness of G△,□.

Theorem 3.1. Let G be a graph with |V | ≥ 3. If |E| ≥
(
n−1
2

)
+ 2,

then G△,□ is connected.
Proof. The result is obviously true for |V | = 3. Now, suppose that the
theorem is true for graph G with |V | = n−1 and we prove it for graph
G with |V | = n. We consider the following two cases:
Case 1. G has a vertex a of degree n− 2. In this case we remove the
vertex a and all the edges attached to it, then we obtain the graph H
with n−1 vertices. In the graph H we have |E(H)| ⩾

(
n−1
2

)
+2− (n−

2) =
(
n−2
2

)
+ 2.

Consequently, graph H△,□ is connected. If vertices of graph H are
x1, x2, . . . , xn−1. Then graph G△,□ contains graph H△,□ and n − 1
vertices ax1, ax2, . . . , axn−1, to show that the graph G△,□ is connected,
it is sufficient to show that each of these n−1 vertices is at least one of
the H△,□ vertices is adjacent. Because deg(a) = n−2, assume that a is
adjacent to x1, x2, . . . , xn−2. We consider vertex axi(i = 1, 2, . . . , n−2).
Because deg(xi) in graph H at least 2, there is 1 ⩽ j ⩽ n − 2, j ̸= i
such that vertex xj adjacent to xi and so axi, axj, xixj form a triangle
in G△,□, consequently axi is adjacent to xixj. Now we consider vertex
axn−1 , because deg(xn−1) ⩾ 2, there is two vertices xk, xl that with
xn−1 are adjacent and so vertex axn−1 with vertex xkxl adjacent.
Case 2. G has not a vertex of degree n − 2. So, G has at least two
vertices of degree n − 1, because otherwise it has a maximum of one
vertex of degree n−1 and we have: |E(G)| ⩽ n− 1 + (n− 1)(n− 3)

2
=

(n− 1)(n− 2)

2
=

(
n−1
2

)
<

(
n−1
2

)
+ 2, which contradicts assumption.
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Now, if vertices of degree n − 1 in G are a, b. In G△,□ , each other
vertex is adjacent to ab and so G△,□ is connected. □
Definition 3.2. Let G be a graph and x, y ∈ G. The common neigh-
bourhood of x and y, denoted by N(x, y), is defined by

N(x, y) = {z|zx and zy ∈ E}.
The closed common neighbourhood of x and y, denoted by N ′(x, y), is
then defined by N ′(x, y) = N(x, y) ∪ {x, y} if xy ∈ E and N ′(x, y) =
N(x, y) if xy /∈ E.
Lemma 3.3. Let G be a graph. Then G△,□ has an isolated vertex as
a connected component if and only if N(x, y) = ∅ for an edge xy of G
or |N(x, y)| ≤ 1

Proof. A vertex xy ∈ G△,□ is an isolated vertex if and only if it has no
neighbour. An argument similar to the proof of Lemma 2.5 shows that
this happens when xy is an edge which is not in a triangle or xy is not
an edge and x and y have at most one common neighbour. □
Lemma 3.4. Let G be a graph. Then G△,□ has an edge as a connected
component if and only if N ′(x, y) = {z, w} and N ′(z, w) = {x, y} for
some different vertices x, y, z, w ∈ G.
Proof. Let xy zw be a connected component of G△,□. If {x, y}∩{z, w}
is non-empty, say x = w, then (x, y, z) should be a triangle in G and
thus (xy, xz, yz) = (xy, wz, yz) is a triangle in G△,□, which contradicts
the fact that xy zw is a connected component of G△,□. We can therefore
deduce that x, y, z, w are different vertices of G and (x, z, y, w) is a
square in G.

If xy ∈ E then xz is another neighbour of xy which again contradicts
the fact that xy zw is a connected component of G△,□. The same reason
shows that zw /∈ E.

We have now shown that {z, w} ⊆ N(x, y) and {x, y} ⊆ N(z, w)
and xy, zw /∈ E. Now note that if u ∈ N(x, y) and u ̸= z, w then zu
is another neighbour of xy which contradicts the fact that xy zw is a
connected component of G△,□. This completes one part of the result.
The other part is clear. □
Lemma 3.5. Let G be a graph. Then G△,□ has a triangle as a connected
component if and only if N ′(x, y) = N ′(x, z) = N ′(y, z) = {x, y, z} for
some different vertices x, y, z ∈ G.
Proof. Let (xy, zw, uv) be a connected component of G△,□. If xy /∈ E
then (x, z, y, w) and (x, u, y, v) should be squares in G. Thus (x, u, y, z)
is also a square. This implies that uz is another neighbour of xy which
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contradicts the fact that (xy, zw, uv) is a connected component of G△,□.
Thus we have xy ∈ E and the same argument shows that zw, uv ∈ E.

Note that if x, y, z, w are different vertices of G then xy has at
least three neighbours xz, yz and zw which contradicts the fact that
(xy, zw, uv) is a connected component of G△,□. Thus we can assume
that x = w. The same argument shows that uv = yz. Thus the triangle
is (xy, xz, yz).

We have now proved that {z} ⊆ N(x, y). If there is another vertex
r with r ∈ N(x, y) then rx is another neighbour of xy which again
contradicts the fact that (xy, xz, yz) is a connected component of G△,□.
This shows that N(x, y) = {z}. The other parts are proved similarly.

□

We now want to give a criterion for a graph G to determine that
whether G△,□ is connected or not. Prior to that we need some termi-
nology.

Definition 3.6. Let G be a graph and x, y ∈ G. We say that (z, w) can
be derived from (x, y) if there is a sequence (a1, b1), (a2, b2), . . . , (ak, bk)
such that (a1, b1) = (x, y) and (ak, bk) = (z, w) and ai+1, bi+1 ∈ N ′(ai, bi)
for i = 1, 2, . . . , k − 1. The derived pairs of (x, y), denoted by D(x, y),
is the set of all (z, w) such that (z, w) can be derives from (x, y).

Theorem 3.7. Let G be a graph. Then G△,□ is disconnected if and
only if |D(x, y)| <

(|V |
2

)
for some x, y ∈ G.

Proof. Let |D(x, y)| <
(|V |

2

)
for some x, y ∈ G, then there is pairs of

(z, w) such that D(x, y) not included (z, w). Now let G△,□ is connected,
therefore there is a path from vertex xy to vertex zw. If this path
is xy = a1b1, a2b2, . . . , akbk = zw, then according to the definition
ai+1bi+1 ∈ N ′(aibi) for i = 1, 2, . . . , k− 1 consequently (z, w) ∈ D(x, y)
that is a contradiction. The same argument shows that the other part
of theorem is also holds true. □

Example 3.8. Let G be a graph and N ′(x, y) = {z} for some vertices
x, y, z ∈ G. Then D(x, y) = {(x, y)}. Thus

|D(x, y)| = 1 < 3 ⩽
(
|V |
2

)
.

This confirms the result of Lemma 3.3. Note that in this case G△,□ has
a connected component with |D(x, y)| vertex, i.e., an isolated vertex.

Example 3.9. Let G be a graph and N ′(x, y) = {z, w} and N ′(z, w) =
{x, y} for some different vertices x, y, z, w ∈ G. Then D(x, y) =
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{(x, y), (z, w)}. Thus

|D(x, y)| = 2 < 6 ⩽
(
|V |
2

)
.

This confirms the result of Lemma 3.4. Note that in this case G△,□ has
a connected component with |D(x, y)| vertices, i.e., an edge.

Example 3.10. Let G be a graph with |V | ⩾ 4 and
N ′(x, y) = N ′(x, z) = N ′(y, z) = {x, y, z},

for some different vertices x, y, z ∈ G. Then
D(x, y) = {(x, y), (x, z), (y, z)}.

Thus
|D(x, y)| = 3 < 6 ⩽

(
|V |
2

)
.

This confirms the result of Lemma 3.5. Note that in this case G△,□ has
a connected component with |D(x, y)| vertices, i.e., a triangle.

Example 3.11. Let G be a graph and
N ′(x, y) = {z, w, t}, N ′(z, w) = N ′(z, t) = N ′(w, t) = {x, y},

for some different vertices x, y, z, w, t ∈ G. Then
D(x, y) = {(x, y), (z, w), (z, t), (w, t)}.

Thus
|D(x, y)| = 4 < 10 ⩽

(
|V |
2

)
.

Note that G△,□ has a K1,3 component with the partition sets {xy} and
{zw, zt, wt}.

Let G be a graph with vertices x1, x2, . . . , x|V |. Recall that the ad-
jacency matrix A(G) = [aij] is a square |V | × |V | matrix such that aij
is 1 when there is an edge from vertex xi to vertex xj, and 0 when
there is no edge. Let B(G) = [bij] = A(G)2. Then bii = deg(xi) for
i = 1, 2, . . . , |V | and bij = |N(xi, xj)| for 1 ⩽ i ̸= j ⩽ |V |. We can
therefore say that |N ′(xi, xj)| = bij + 2aij. We use these notations is
the following theorem.

Theorem 3.12. Let G = {x1, x2, . . . , x|V |} be a graph, A(G) = [aij] be
its adjacency matrix and B(G) = [bij] = A(G)2. Then

deg(xixj) =

(
bij + 2aij

2

)
− aij
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for each vertex xixj in G△,□. Furthermore,∑
1⩽i<j⩽|V |

bij =

|V |∑
i=1

(
deg(xi)

2

)
.

Theorem 3.13. Let G be a graph. Then G△,□ is a connected graph
with diam(G△,□) ⩽ 2 if and only if for each four vertices x, y, z, w ∈ G
there are two vertices u, v ∈ G such that u, v ∈

∩
αβ∈{x,y,z,w}N

′(α, β).

Proof. Suppose G△,□ is a connected graph with diam(G△,□) ⩽ 2 and let
x, y, z, w ∈ G. If xy and zw are not adjacent in G△,□ according to the
assumption there is vertex uv in G△,□ that uv is common neighbour
for xy and zw, therefore there are two vertices u, v ∈ G such that
u, v ∈

∩
αβ∈{x,y,z,w}N

′(α, β). But if xy and zw are adjacent, then if x
and y are adjacent in G, we consider x = u and y = v and if x and y
are not adjacent in G, then xz and yw are not adjacent in G△,□ and
with similar argument u, v are obtained. The other part of the theorem
is also obviously true. □
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G گراف یک از G△,□ (□,△)-یال گراف

عرفانیان احمد و میرزاوزیری مجید بروجنی، نصیری قربانعلی
ایران مشهد، مشهد، فردوسی دانشگاه ریاضی، علوم دانشکده

چکیده

مجموعه که می کنیم نظیر G△,□ ساده گراف یک ،G = (V,E) مانند ساده گراف هر به
{x, y} مانند دلخواه راس دو و V△,□ = {{x, y} : x, y ∈ V } از است عبارت آن رئوس
{y, w} و {y, z} ،{x,w} ،{x, z} که وقتی فقط و فقط مجاورند گراف این در {z, w} و
G گراف از (□,△)-یال گراف ،G△,□ گراف باشند. V از عضو یک با متناظر یا E عضو

می شود. بررسی G△,□ گراف و G گراف همبندی بین ارتباط مقاله این در می شود. نامیده

شمارشی. ترکیبیات گراف؛ در شمارش (□,△)-یال؛ گراف کلیدی: کلمات
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