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ANNIHILATOR OF LOCAL COHOMOLOGY MODULES
UNDER THE RING EXTENSION R C R[X]

MASOUD SEIDALI SAMANI* AND KAMAL BAHMANPOUR

ABSTRACT. Let R be a commutative Noetherian ring, I an ideal
of R and M a non-zero R-module. In this paper, we calculate
the extension of annihilator of local cohomology modules H (M),
t > 0, under the ring extension R C R[X] (resp., R C R[[X]]). By
using this extension we will present some of the faithfulness con-
ditions of local cohomology modules, and show that if the Lynch’s
conjecture [11] holds in R[[X]], then it will holds in R.

1. INTRODUCTION

Throughout this paper, R denotes a commutative Noetherian ring
(with identity) and [ is an ideal of R. The local cohomology modules
HY{M), i = 0,1,2,..., of an R-module M with respect to I were
introduced by Grothendieck [9]. They arise as the derived functors of
the left exact functor I';(—), where for an R-module M, I';(M) is the
submodule of M consisting of all elements annihilated by some power
of I, i.e., [J7 (0 :pr I"™). There is a natural isomorphism

Hi(M) 2 limy Ext}y(R/I", M).

n>1

We refer the reader to [9] or [5] for more details about local cohomology.
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Recall that, for an R-module M, the cohomological dimension of M
with respect to I, denoted by cd(I, M), is defined as
cd(I, M) :=sup{i € Z : Hi(M) # 0}.

One of the important problems in commutative algebra is determining
the annihilator of local cohomology modules. This problem has been
studied by several authors; see, for example, [1, 2, 3, 10, 11, 13]. In this
paper, we will calculate the extension of annihilator of local cohomol-
ogy modules, under the ring extension R C R[X] (resp., R C R[[X]]),
as the first main result.

Lynch in [11] conjectured the following:

For every Noetherian local ring (R,m) and any ideal I of R, if
cd(I,R) =t > 0 then dim R/ Anng Hi(R) = dim R/T';(R).

An another aim of this paper is to find a relation between the Lynch’s
conjecture in R and R[[X]].

2. MAIN RESULTS

The following lemma will be quite useful in this section.

Lemma 2.1. Let R be a Noetherian ring and M be a non-zero R-
module. Let X be an indeterminate over R. Then for every monic
polynomial f € R[X]| of positive degree, the following statements hold:

(ii) For every positive integer n,

Frix) (M®RR[X]) f*) = MX]/f"MX].

In particular, H}p (M @p R[X]) # 0.
(ifi) cd(TR[X] + fR(X], RIX]) = cd(I, R) + 1.

Proof. See [1, Lemma 2.9 and Theorem 2.10]. O

(0

The next theorem is the first main result of this paper.

Theorem 2.2. Let R be a Noetherian ring, I an ideal of R and M
a non-zero R-module. Let HY(M) # 0, for integer t > 0. If J :=
Anng HY (M), then

Anngpx) Hypx) (M[X]) = Anngpxg Hify prg (MX]) = JR[X],

where X is an indeterminate over R and f € R[X] is a monic polyno-
mial of positive degree.
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Proof. Since R[X] is a faithfully flat R-algebra, it follows from [5, The-
orem 4.3.2] that Hj(M) — Hip(M[X]) is injective. Therefore,
J = Anng Hi{(M) = Anng H}R[X](M[X]) = Annpgx H}R[X](M[X])HR.

So JR[X] C Anngx] H}R[X}(M[X]).
On the other hand, using Lemma 2.1 and [1/, Corollary 1.4] yield the
following isomorphism

HE;[IX]-I-fR[X](M[X]) = Hipixy(Hippg(M[X])) # 0.
So
Anngix] HfR[X](M[X]) C Anngx; H}‘R[X](HiR[X](M[X]))a
and hence

JR[X] C Annpiy H;—Ig[lXHfR[X](M[X])'

Now, we claim that Anngpx) H i (H] gy (M[X])) € JRIX]. Let g =
agp + a1 X + --- + a, X" be a non-zero polynomial with a; € R, for all
0<j<n,andlet g ¢ JR[X]| but g € Anngjx H}R[X](HfR[X](M[X])).
Since g ¢ JR[X], it follows that there exists a;; € R\ J, for 0 < j' < mn,
such that a; Hi (M) # 0 and hence a;b # 0 for some b € Hi(M). Tt is
clear that

g & Annpix) ((H[(M))[X]) = Annppx) Hipp (M[X]).
On the other hand, using Lemma 2.1 yields the following exact sequence
0 — (H(M))[X] — (H(M))[X]); — Hjpx)(Hippx (M[X])) — 0,
which implies that ((H§(M))X])/ (M) (X] & H s (H e (MIX)).
Thus
g((H(M))[X])s € (H[(M))[X].
In fact, g(((HH(M))[X])[1/f]) € (HI(M))[X]. Let m > n be an in-
teger, and set h := b/f™ € ((Ht( NIX])[1/f]. Since f is a monic
polynomial of positive degree, it follows that f™ is a monic polyno-
mial of degree at least m. Since gh € (HiH(M))[X], it follows that
gb € fM(HYM))[X]. But, 0 # gb = apb + a1bX + -+ + a,bX™ and
n < m, which is a contradiction. Therefore,
JRIX] C Anngix)((Hp(M))[X])

= Anngx) H;R[X} (M[XT])

C Anngly) H}R[X] (H;R[X} (M[X]))

CJR[X].
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Thus, we obtain that
Anngpx) Hypx)(M[X]) = Anngxg Hir  prog (M [X]) = JR[X].
O

With a similar argument, we have the following corollary.

Corollary 2.3. Let R be a Noetherian ring, I an ideal of R and

M a non-zero R-module. Let HY(M) # 0, for integer t > 0. If

J:=Aung H{(M), then

Ann gy Hy gy (M[X]]) = Annggy Hygyey s xrgxg (M X)) = JR[[X]).
O

Corollary 2.4. Let R be a Noetherian ring, I an ideal of R and

M a non-zero R-module. Let X be an indeterminate over R and

f be a monic polynomial of positive degree For an integer t > 0,
Anng Hj(M) = 0 if and only if Annpgy, HIR[X]HR[X](M[X]) =0 (resp.,

Anngxy) Higixgx s (M XD = 0).

Proof. The assertion follows from Theorem 2.2 (resp., Corollary 2.3).
OJ

The following theorem will be useful in the proof of Corollary 2.6.

Theorem 2.5. Let R be a (not necessarily local ) Noetherian ring, I an
ideal of R and M a finitely generated R-module such that cd(I, M) =
t > 0. Then HY(M) is not finitely generated.

Proof. First, it is clear that for every p € Supp H} (M), cd(IR,, M,) =
cd(I, M) = t. So, without loss of generality, we may assume that
(R,m) is a Noetherian local ring and M is a finitely generated R-
module. Since Supp M = Supp R/ Ann M, it follows from [7, Theorem
2.2] and [5, Theorem 4.2.1] (the Independence Theorem) that

cd(I,M)=cd(I,R/Ann M) = cd({(R/Ann M), R/ Ann M).
Since H}(R/ Annary(—) 1 a right exact functor and M is an 2/ Ann M-
module, it follows from [5, Exercise 6.1.8] that

Hi(M)/m Hy (M) = Hj(M) ®g R/m
= (Hip) aon vy (R/ A M) @pjanny M) @ R/ m
NHI () Ann ar) (B An M) @ gy ann s M/ m M
:HI(R/AnnM)(M/mM) = Hi(M/mM)=0.

Therefore, Hi(M) = m H{(M) and hence by Nakayama’s lemma we
can deduce that the R-module H}(M) is not finitely generated. O
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Corollary 2.6. Let R be a (not necessarily local ) Noetherian ring, I
an ideal of R and M a finitely generated R-module. If cd(I,M) =1,
then AHHR H}(M) - ZR(M>

Proof. Let Anng Hj (M) € Zg(M). Hence there exists x € Anng H} (M),
such that z ¢ Zg(M). An exact sequence

0— M- M — M/zM — 0
induces the exact sequence
Ur(M/aM) 5 Hi (M) = Hi (M),
which implies that H} (M) is a finitely generated R-module. But, in
view of Theorem 2.5, this is a contradiction. O

For the next result we need the following lemma.

Lemma 2.7. Let R be a commutative Noetherian ring and X be an
indeterminate over R. Then every associated prime ideal of R[X] is
extended, and hence

Asspix)(R[X]) = {p R[X] : p € Assgr(R)}.
Proof. See [3, Theorem]. O

Theorem 2.8. Let R be a Noetherian ring, I an ideal of R and M a
non-zero R-module. Let X be an indeterminate over R and f € R[X]

be a monic polynomial of positive degree. Then for an integer t > 0,
Anng Hi(M) C Zg(R) (the set of all zero-divisors of R ) if and only

’Lf AHHR[X} H;E[lX]—i-fR[X](M[X]) g ZR[X](R[XD
Proof. The assertion follows from Theorem 2.2, [I2, Theorem 7.5] and
Lemma 2.7. O

Corollary 2.9. Let R be a Noetherian ring and I an ideal of R with
cd(I,R) = 1. Let X be an indeterminate over R and f € R[X] be a
monic polynomial of positive degree. Then

Anngix] H12R[X}+fR[X}(R[X]) C Zgx)(R[X]).
In particular, if R is an integral domain, then
Anngix) Higxs prixg (RIX)) = Anngix) Higx (R[X]) = 0.

Proof. The first assertion follows from Corollary 2.6 and Theorem 2.8.
Moreover, the last assertion is immediate from Corollary 2.4. 0

Remark 2.10. Let R be a Noetherian ring, I an ideal of R and M
an R-module. If HY(M) # 0, for integer ¢, then it follows from
Lemma 2.1 that Hjp o (M[X]) is not an injective R[X]-module. So,
injdimp x) Hip (M[X]) > 0.
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Corollary 2.11. Let R be a Noetherian ring, I an ideal of R and M
an R-module, such that HL(M) # 0, for integer t > 0. If
injdimpx) Hypx) (M[X]) = 1,
then
Annpg(x] H;EX]HR[X}(M[X]) = Anngix) Hip (M[X]) € Zgix (R[X]),
where [ is a monic polynomial of positive degree.
In particular, Anng Hi(M) C Zg(R).
Proof. Since injdimpx) Hip (M [X]) = 1, there is an exact sequence
0 — Hipx(M[X]) — Eg — E; — 0,

as an injective resolution of Hjp (M [X]), which induces the following
exact sequence

Uyrix)(E1) — H}R[X](H;R[X]<M[X])) — 0.
If
Anngix) H;E[IX]—Q—]‘R[X] (M[X]) = Annpgx) H}R[X} (H;R[X] (M[X]))
¢ Zpix)(RIX]),
then there exists g € Anngix) H g (Hi g (M[X])\ Zrix) (R[X])- So,
we have the following exact sequence
T rrix)(B1) /90 prix) (Br) — Hippx (Hrgx (M[X])) — 0.

Since H}R[X](H}R[X}(M[X])) # 0, it follows that I'rrix)(E1) # gL srpx) (Eq).
On the other hand, I'ypix)(E;) is an injective R[X]-module. Thus the
exact sequence

0 — R[X] -4 R[X] — R[X]/gR[X] — 0,

induces the exact sequence I'ypx](E1) —= Tgpx(E1) — 0. There-
fore, I'trix1(E1) = gL' srix)(E1), which is a contradiction. O

We need the following notation in the proof of Corollary 2.12.
Notation. [0, Theorem A.11] Let (R,m) — (S,n) be a homomor-
phism of Noetherian local rings. If M is a finitely generated R-module
and N is an R-flat finitely generated S-module, then

dimg(M ®g N) = dimg M + dimg N/ m N.

Corollary 2.12. Let (R, m) be a commutative Noetherian local ring, T
an ideal of R and i be a non-negative integer. Let X be an indeterminate
over R, and set S := R[[X]]. Then, the following statements are
equivalent:
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(11) dlms S/ Anns H}S(S) = dlmg S/F[S(S)

Proof. Since R — S is a faithfully flat ring homomorphism, it follows
from Corollary 2.3 that

R/ Aung Hj(R) ®p S = S/ Anng Hj¢(9).
Also using [5, Theorem 4.3.2] yields the following isomorphism
R/T1(R)®r S = S/T'15(S).
Now, the assertion follows from the Notation. O

Now, we are ready to state and prove the second main result of this
paper.
Corollary 2.13. Let (R,m) be a commutative Noetherian local ring

and let I be an ideal of R with cd(I,R) = t > 0. If the Lynch’s
conjecture holds in R[[X]], then it holds in R.

Proof. By the assumption we have
dimppx) RIXT)/ Amngyg) H 'O (RIXT) = dimpgp RIX) /T3 (RIXT),
for any ideal J of R[[X]] with cd(J, R[[X]]) > 0. Since R[[X]] is a
faithfully flat R-algebra, it follows easily that

cd(IR[[X]], R[[X]]) = cd(I,R) =t > 0.
So, we have
dimpgyx)) R[[X]]/ Anngyxyy Hy gy (RIX]]) = dimgyg) RIX]/T g (R[X]).-
Now using Corollary 2.12 yields the assertion. O
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