ANNIHILATOR OF LOCAL COHOMOLOGY MODULES UNDER THE RING EXTENSION $R \subset R[X]$

MASOUD SEIDALI SAMANI* AND KAMAL BAHMANPOUR

ABSTRACT. Let R be a commutative Noetherian ring, I an ideal of R and M a non-zero R-module. In this paper, we calculate the extension of annihilator of local cohomology modules $H_I^t(M)$, $t \geq 0$, under the ring extension $R \subset R[X]$ (resp., $R \subset R[[X]]$). By using this extension we will present some of the faithfulness conditions of local cohomology modules, and show that if the Lynch's conjecture [11] holds in R[[X]], then it will holds in R.

1. Introduction

Throughout this paper, R denotes a commutative Noetherian ring (with identity) and I is an ideal of R. The local cohomology modules $H_I^i(M)$, $i=0,1,2,\ldots$, of an R-module M with respect to I were introduced by Grothendieck [9]. They arise as the derived functors of the left exact functor $\Gamma_I(-)$, where for an R-module M, $\Gamma_I(M)$ is the submodule of M consisting of all elements annihilated by some power of I, i.e., $\bigcup_{n=1}^{\infty} (0:_M I^n)$. There is a natural isomorphism

$$H_I^i(M) \cong \varinjlim_{n \geq 1} \operatorname{Ext}_R^i(R/I^n, M).$$

We refer the reader to [9] or [5] for more details about local cohomology.

MSC(2010): Primary: 13D45; Secondary: 14B15, 13E05.

Keywords: Annihilator, cohomological dimension, faithfully flat, local cohomology, zero-divisor.

Received: 7 April 2019, Accepted: 18 December 2019.

^{*}Corresponding author.

Recall that, for an R-module M, the cohomological dimension of M with respect to I, denoted by cd(I, M), is defined as

$$\operatorname{cd}(I, M) := \sup\{i \in \mathbb{Z} : H_I^i(M) \neq 0\}.$$

One of the important problems in commutative algebra is determining the annihilator of local cohomology modules. This problem has been studied by several authors; see, for example, [1, 2, 3, 10, 11, 13]. In this paper, we will calculate the extension of annihilator of local cohomology modules, under the ring extension $R \subset R[X]$ (resp., $R \subset R[[X]]$), as the first main result.

Lynch in [11] conjectured the following:

For every Noetherian local ring (R, \mathfrak{m}) and any ideal I of R, if $\operatorname{cd}(I, R) = t > 0$ then $\dim R / \operatorname{Ann}_R H_I^t(R) = \dim R / \Gamma_I(R)$.

An another aim of this paper is to find a relation between the Lynch's conjecture in R and R[[X]].

2. Main results

The following lemma will be quite useful in this section.

Lemma 2.1. Let R be a Noetherian ring and M be a non-zero R-module. Let X be an indeterminate over R. Then for every monic polynomial $f \in R[X]$ of positive degree, the following statements hold:

- (i) $\Gamma_{fR[X]}(M \otimes_R R[X]) = 0.$
- (ii) For every positive integer n,

$$(0:_{H^1_{f_R[X]}(M\otimes_R R[X])} f^n) \cong M[X]/f^n M[X].$$

In particular, $H^1_{fR[X]}(M \otimes_R R[X]) \neq 0$.

(iii)
$$cd(IR[X] + fR[X], R[X]) = cd(I, R) + 1.$$

Proof. See [4, Lemma 2.9 and Theorem 2.10].

The next theorem is the first main result of this paper.

Theorem 2.2. Let R be a Noetherian ring, I an ideal of R and M a non-zero R-module. Let $H_I^t(M) \neq 0$, for integer $t \geq 0$. If $J := \operatorname{Ann}_R H_I^t(M)$, then

$$\operatorname{Ann}_{R[X]} H^t_{IR[X]}(M[X]) = \operatorname{Ann}_{R[X]} H^{t+1}_{IR[X]+fR[X]}(M[X]) = JR[X],$$

where X is an indeterminate over R and $f \in R[X]$ is a monic polynomial of positive degree.

Proof. Since R[X] is a faithfully flat R-algebra, it follows from [5, Theorem 4.3.2] that $H_I^t(M) \longrightarrow H_{IR[X]}^t(M[X])$ is injective. Therefore,

$$J = \operatorname{Ann}_R H_I^t(M) = \operatorname{Ann}_R H_{IR[X]}^t(M[X]) = \operatorname{Ann}_{R[X]} H_{IR[X]}^t(M[X]) \cap R.$$

So
$$JR[X] \subseteq \operatorname{Ann}_{R[X]} H^t_{IR[X]}(M[X])$$
.

On the other hand, using Lemma 2.1 and [14, Corollary 1.4] yield the following isomorphism

$$H^{t+1}_{IR[X]+fR[X]}(M[X]) \cong H^1_{fR[X]}(H^t_{IR[X]}(M[X])) \neq 0.$$

So

$$\operatorname{Ann}_{R[X]} H^t_{IR[X]}(M[X]) \subseteq \operatorname{Ann}_{R[X]} H^1_{fR[X]}(H^t_{IR[X]}(M[X])),$$

and hence

$$JR[X] \subseteq \operatorname{Ann}_{R[X]} H^{t+1}_{IR[X]+fR[X]}(M[X]).$$

Now, we claim that $\operatorname{Ann}_{R[X]}H^1_{fR[X]}(H^t_{IR[X]}(M[X]))\subseteq JR[X]$. Let $g=a_0+a_1X+\cdots+a_nX^n$ be a non-zero polynomial with $a_j\in R$, for all $0\leq j\leq n$, and let $g\notin JR[X]$ but $g\in \operatorname{Ann}_{R[X]}H^1_{fR[X]}(H^t_{IR[X]}(M[X]))$. Since $g\notin JR[X]$, it follows that there exists $a_{j'}\in R\setminus J$, for $0\leq j'\leq n$, such that $a_{j'}H^t_I(M)\neq 0$ and hence $a_{j'}b\neq 0$ for some $b\in H^t_I(M)$. It is clear that

$$g \notin \operatorname{Ann}_{R[X]}((H_I^t(M))[X]) = \operatorname{Ann}_{R[X]} H_{IR[X]}^t(M[X]).$$

On the other hand, using Lemma 2.1 yields the following exact sequence

$$0 \longrightarrow (H^t_I(M))[X] \longrightarrow ((H^t_I(M))[X])_f \longrightarrow H^1_{fR[X]}(H^t_{IR[X]}(M[X])) \longrightarrow 0,$$

which implies that $((H_I^t(M))[X])_f/(H_I^t(M))[X] \cong H^1_{fR[X]}(H^t_{IR[X]}(M[X]))$. Thus

$$g((H_I^t(M))[X])_f \subseteq (H_I^t(M))[X].$$

In fact, $g(((H_I^t(M))[X])[1/f]) \subseteq (H_I^t(M))[X]$. Let m > n be an integer, and set $h := b/f^m \in ((H_I^t(M))[X])[1/f]$. Since f is a monic polynomial of positive degree, it follows that f^m is a monic polynomial of degree at least m. Since $gh \in (H_I^t(M))[X]$, it follows that $gb \in f^m(H_I^t(M))[X]$. But, $0 \neq gb = a_0b + a_1bX + \cdots + a_nbX^n$ and n < m, which is a contradiction. Therefore,

$$JR[X] \subseteq \operatorname{Ann}_{R[X]}((H_I^t(M))[X])$$

$$= \operatorname{Ann}_{R[X]} H_{IR[X]}^t(M[X])$$

$$\subseteq \operatorname{Ann}_{R[X]} H_{fR[X]}^1(H_{IR[X]}^t(M[X]))$$

$$\subseteq JR[X].$$

Thus, we obtain that

$$\operatorname{Ann}_{R[X]} H^t_{IR[X]}(M[X]) = \operatorname{Ann}_{R[X]} H^{t+1}_{IR[X]+fR[X]}(M[X]) = JR[X].$$

With a similar argument, we have the following corollary.

Corollary 2.3. Let R be a Noetherian ring, I an ideal of R and M a non-zero R-module. Let $H_I^t(M) \neq 0$, for integer $t \geq 0$. If $J := \operatorname{Ann}_R H_I^t(M)$, then

$$\operatorname{Ann}_{R[[X]]} H^t_{IR[[X]]}(M[[X]]) = \operatorname{Ann}_{R[[X]]} H^{t+1}_{IR[[X]]+XR[[X]]}(M[[X]]) = JR[[X]].$$

Corollary 2.4. Let R be a Noetherian ring, I an ideal of R and M a non-zero R-module. Let X be an indeterminate over R and f be a monic polynomial of positive degree. For an integer $t \geq 0$, $\operatorname{Ann}_R H^t_I(M) = 0$ if and only if $\operatorname{Ann}_{R[X]} H^{t+1}_{IR[X]+fR[X]}(M[X]) = 0$ (resp., $\operatorname{Ann}_{R[[X]]} H^{t+1}_{IR[[X]]+XR[[X]]}(M[[X]]) = 0$).

Proof. The assertion follows from Theorem 2.2 (resp., Corollary 2.3). \Box

The following theorem will be useful in the proof of Corollary 2.6.

Theorem 2.5. Let R be a (not necessarily local) Noetherian ring, I an ideal of R and M a finitely generated R-module such that cd(I, M) = t > 0. Then $H_I^t(M)$ is not finitely generated.

Proof. First, it is clear that for every $\mathfrak{p} \in \operatorname{Supp} H_I^t(M)$, $\operatorname{cd}(IR_{\mathfrak{p}}, M_{\mathfrak{p}}) = \operatorname{cd}(I, M) = t$. So, without loss of generality, we may assume that (R, \mathfrak{m}) is a Noetherian local ring and M is a finitely generated R-module. Since $\operatorname{Supp} M = \operatorname{Supp} R / \operatorname{Ann} M$, it follows from [7, Theorem 2.2] and [5, Theorem 4.2.1] (the Independence Theorem) that

$$\operatorname{cd}(I,M) = \operatorname{cd}(I,R/\operatorname{Ann} M) = \operatorname{cd}(I(R/\operatorname{Ann} M),R/\operatorname{Ann} M).$$

Since $H_{I(R/\text{Ann }M)}^t(-)$ is a right exact functor and M is an R/Ann M-module, it follows from [5, Exercise 6.1.8] that

$$H_{I}^{t}(M)/\mathfrak{m} H_{I}^{t}(M) \cong H_{I}^{t}(M) \otimes_{R} R/\mathfrak{m}$$

$$\cong (H_{I(R/\operatorname{Ann} M)}^{t}(R/\operatorname{Ann} M) \otimes_{R/\operatorname{Ann} M} M) \otimes_{R} R/\mathfrak{m}$$

$$\cong H_{I(R/\operatorname{Ann} M)}^{t}(R/\operatorname{Ann} M) \otimes_{R/\operatorname{Ann} M} M/\mathfrak{m} M$$

$$\cong H_{I(R/\operatorname{Ann} M)}^{t}(M/\mathfrak{m} M) \cong H_{I}^{t}(M/\mathfrak{m} M) = 0.$$

Therefore, $H_I^t(M) = \mathfrak{m} H_I^t(M)$ and hence by Nakayama's lemma we can deduce that the R-module $H_I^t(M)$ is not finitely generated. \square

 \neg

Corollary 2.6. Let R be a (not necessarily local) Noetherian ring, I an ideal of R and M a finitely generated R-module. If cd(I, M) = 1, then $Ann_R H_I^1(M) \subseteq Z_R(M)$.

Proof. Let $\operatorname{Ann}_R H_I^1(M) \nsubseteq Z_R(M)$. Hence there exists $x \in \operatorname{Ann}_R H_I^1(M)$, such that $x \notin Z_R(M)$. An exact sequence

$$0 \longrightarrow M \xrightarrow{x} M \longrightarrow M/xM \longrightarrow 0$$

induces the exact sequence

$$\Gamma_I(M/xM) \xrightarrow{f} H_I^1(M) \xrightarrow{x} H_I^1(M),$$

which implies that $H_I^1(M)$ is a finitely generated R-module. But, in view of Theorem 2.5, this is a contradiction.

For the next result we need the following lemma.

Lemma 2.7. Let R be a commutative Noetherian ring and X be an indeterminate over R. Then every associated prime ideal of R[X] is extended, and hence

$$\operatorname{Ass}_{R[X]}(R[X]) = \{ \mathfrak{p} R[X] : \mathfrak{p} \in \operatorname{Ass}_{R}(R) \}.$$

Proof. See [8, Theorem].

Theorem 2.8. Let R be a Noetherian ring, I an ideal of R and M a non-zero R-module. Let X be an indeterminate over R and $f \in R[X]$ be a monic polynomial of positive degree. Then for an integer $t \geq 0$, $\operatorname{Ann}_R H_I^t(M) \subseteq Z_R(R)$ (the set of all zero-divisors of R) if and only if $\operatorname{Ann}_{R[X]} H_{IR[X]+fR[X]}^{t+1}(M[X]) \subseteq Z_{R[X]}(R[X])$.

Proof. The assertion follows from Theorem 2.2, [12, Theorem 7.5] and Lemma 2.7.

Corollary 2.9. Let R be a Noetherian ring and I an ideal of R with cd(I,R)=1. Let X be an indeterminate over R and $f \in R[X]$ be a monic polynomial of positive degree. Then

$$\operatorname{Ann}_{R[X]} H^2_{IR[X]+fR[X]}(R[X]) \subseteq Z_{R[X]}(R[X]).$$

In particular, if R is an integral domain, then

$$\operatorname{Ann}_{R[X]} H^2_{IR[X]+fR[X]}(R[X]) = \operatorname{Ann}_{R[X]} H^1_{IR[X]}(R[X]) = 0.$$

Proof. The first assertion follows from Corollary 2.6 and Theorem 2.8. Moreover, the last assertion is immediate from Corollary 2.4.

Remark 2.10. Let R be a Noetherian ring, I an ideal of R and M an R-module. If $H_I^t(M) \neq 0$, for integer t, then it follows from Lemma 2.1 that $H_{IR[X]}^t(M[X])$ is not an injective R[X]-module. So, injdim $_{R[X]}H_{IR[X]}^t(M[X]) > 0$.

Corollary 2.11. Let R be a Noetherian ring, I an ideal of R and M an R-module, such that $H_I^t(M) \neq 0$, for integer $t \geq 0$. If

$$\operatorname{injdim}_{R[X]} H_{IR[X]}^t(M[X]) = 1,$$

then

 $\operatorname{Ann}_{R[X]}H^{t+1}_{IR[X]+fR[X]}(M[X]) = \operatorname{Ann}_{R[X]}H^t_{IR[X]}(M[X]) \subseteq Z_{R[X]}(R[X]),$ where f is a monic polynomial of positive degree. In particular, $\operatorname{Ann}_R H^t_I(M) \subseteq Z_R(R)$.

Proof. Since $\operatorname{injdim}_{R[X]} H^t_{IR[X]}(M[X]) = 1$, there is an exact sequence

$$0 \longrightarrow H^t_{IR[X]}(M[X]) \longrightarrow \mathbb{E}_0 \longrightarrow \mathbb{E}_1 \longrightarrow 0,$$

as an injective resolution of $H^t_{IR[X]}(M[X])$, which induces the following exact sequence

$$\Gamma_{fR[X]}(\mathbb{E}_1) \longrightarrow H^1_{fR[X]}(H^t_{IR[X]}(M[X])) \longrightarrow 0.$$

If

$$\operatorname{Ann}_{R[X]} H^{t+1}_{IR[X]+fR[X]}(M[X]) = \operatorname{Ann}_{R[X]} H^1_{fR[X]}(H^t_{IR[X]}(M[X]))$$

$$\nsubseteq Z_{R[X]}(R[X]),$$

then there exists $g \in \operatorname{Ann}_{R[X]} H^1_{fR[X]}(H^t_{IR[X]}(M[X])) \setminus Z_{R[X]}(R[X])$. So, we have the following exact sequence

$$\Gamma_{fR[X]}(\mathbb{E}_1)/g\Gamma_{fR[X]}(\mathbb{E}_1) \longrightarrow H^1_{fR[X]}(H^t_{IR[X]}(M[X])) \longrightarrow 0.$$

Since $H^1_{fR[X]}(H^t_{IR[X]}(M[X])) \neq 0$, it follows that $\Gamma_{fR[X]}(\mathbb{E}_1) \neq g\Gamma_{fR[X]}(\mathbb{E}_1)$. On the other hand, $\Gamma_{fR[X]}(\mathbb{E}_1)$ is an injective R[X]-module. Thus the exact sequence

$$0 \longrightarrow R[X] \xrightarrow{g} R[X] \longrightarrow R[X]/qR[X] \longrightarrow 0$$

induces the exact sequence $\Gamma_{fR[X]}(\mathbb{E}_1) \xrightarrow{g} \Gamma_{fR[X]}(\mathbb{E}_1) \longrightarrow 0$. Therefore, $\Gamma_{fR[X]}(\mathbb{E}_1) = g\Gamma_{fR[X]}(\mathbb{E}_1)$, which is a contradiction.

We need the following notation in the proof of Corollary 2.12. **Notation.** [6, Theorem A.11] Let $(R, \mathfrak{m}) \longrightarrow (S, \mathfrak{n})$ be a homomorphism of Noetherian local rings. If M is a finitely generated R-module and N is an R-flat finitely generated S-module, then

$$\dim_S(M\otimes_R N)=\dim_R M+\dim_S N/\mathfrak{m}\,N.$$

Corollary 2.12. Let (R, \mathfrak{m}) be a commutative Noetherian local ring, I an ideal of R and i be a non-negative integer. Let X be an indeterminate over R, and set S := R[[X]]. Then, the following statements are equivalent:

- (i) $\dim_R R / \operatorname{Ann}_R H_I^i(R) = \dim_R R / \Gamma_I(R)$.
- (ii) $\dim_S S / \operatorname{Ann}_S H_{IS}^i(S) = \dim_S S / \Gamma_{IS}(S)$.

Proof. Since $R \longrightarrow S$ is a faithfully flat ring homomorphism, it follows from Corollary 2.3 that

$$R/\operatorname{Ann}_R H_I^i(R) \otimes_R S \cong S/\operatorname{Ann}_S H_{IS}^i(S).$$

Also using [5, Theorem 4.3.2] yields the following isomorphism

$$R/\Gamma_I(R) \otimes_R S \cong S/\Gamma_{IS}(S).$$

Now, the assertion follows from the Notation.

Now, we are ready to state and prove the second main result of this paper.

Corollary 2.13. Let (R, \mathfrak{m}) be a commutative Noetherian local ring and let I be an ideal of R with $\operatorname{cd}(I, R) = t > 0$. If the Lynch's conjecture holds in R[[X]], then it holds in R.

Proof. By the assumption we have

$$\dim_{R[[X]]} R[[X]] / \operatorname{Ann}_{R[[X]]} H_{\mathbb{J}}^{\operatorname{cd}(\mathbb{J}, R[[X]])} (R[[X]]) = \dim_{R[[X]]} R[[X]] / \Gamma_{\mathbb{J}} (R[[X]]),$$

for any ideal \mathbb{J} of R[[X]] with $\operatorname{cd}(\mathbb{J}, R[[X]]) > 0$. Since R[[X]] is a faithfully flat R-algebra, it follows easily that

$$\operatorname{cd}(IR[[X]],R[[X]]) = \operatorname{cd}(I,R) = t > 0.$$

So, we have

$$\dim_{R[[X]]} R[[X]] / \operatorname{Ann}_{R[[X]]} H^t_{IR[[X]]}(R[[X]]) = \dim_{R[[X]]} R[[X]] / \Gamma_{IR[[X]]}(R[[X]]).$$

Now using Corollary 2.12 yields the assertion.

Acknowledgments

The authors are deeply grateful to the referee for a very careful reading of the manuscript and many valuable suggestions.

References

- 1. K. Bahmanpour, Annihilators of local cohomology modules, *Comm. Algebra*, **43** (2015), 2509–2515.
- 2. K. Bahmanpour, A note on Lynch's conjecture, Comm. Algebra, 45 (2017), 2738–2745.
- 3. K. Bahmanpour, J. A'zami and G. Ghasemi, On the annihilators of local cohomology modules, J. Algebra, **363** (2012), 8–13.
- 4. K. Bahmanpour and M. Seidali Samani, On the cohomological dimension of finitely generated modules, *Bull. Korean Math. Soc.*, **55** (2018), 311–317.
- 5. M. P. Brodmann and R. Y. Sharp, *Local Cohomology; An Algebraic Introduction with Geometric Applications*, Cambridge University Press, Cambridge, 1998.

- 6. W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge Studies in Advanced Mathematics, Vol. 39, Cambridge University Press, Cambridge, 1998.
- 7. K. Divaani-Aazar, R. Naghipour and M. Tousi, Cohomological dimension of certain algebraic varieties, *Proc. Amer. Math. Soc.*, **130** (2002), 3537–3544.
- C. Faith, Associated primes in commutative polynomial rings, Comm. Algebra, 28 (2000), 3983–3986.
- A. Grothendieck, Local cohomology, Notes by R. Hartshorne, Lecture Notes in Math., Vol. 862, Springer, New York, 1966.
- 10. C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, *Math. Proc. Cambridge Philos. Soc.*, **110** (1991), 421–429.
- L. R. Lynch, Annihilators of top local cohomology, Comm. Algebra, 40 (2012), 542–551.
- H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1986.
- 13. P. Schenzel, Cohomological annihilators, *Math. Proc. Cambridge Philos. Soc.*, **91** (1982), 345–350.
- 14. P. Schenzel, On the use of local cohomology in algebra and geometry, Six lectures on commutative algebra, Bellaterra 1996, 241–292.

Masoud Seidali Samani

Faculty of Sciences, Department of Mathematics, University of Mohaghegh Ardabili, P.O. Box 56199-11367, Ardabil, Iran.

Email: masoudseidali@gmail.com

Kamal Bahmanpour

Faculty of Sciences, Department of Mathematics, University of Mohaghegh Ardabili, P.O. Box 56199-11367, Ardabil, Iran.

Email: bahmanpour.k@gmail.com

Journal of Algebraic Systems

ANNIHILATOR OF LOCAL COHOMOLOGY MODULES UNDER THE RING EXTENSION $R \subset R[X]$

M. SEIDALI SAMANI AND K. BAHMANPOUR

 $R\subset R[X]$ پوچساز مدولهای کوهمولوژی موضعی تحت توسیع حلقه ای

مسعود صیدعلی سامانی و کمال بهمنپور دانشکدهی علوم، دانشگاه محقق اردبیلی، اردبیل، ایران

فرض کنید R حلقه ای جابجایی و نوتری، I ایده آلی از R و M یک R-مدول غیرصفر باشد. ما در این مقاله توسیع پوچساز مدولهای کوهمولوژی موضعی $H_I^t(M)$ و $H_I^t(M)$ ربه توسیع حلقه ای $R \subset R[[X]]$ محاسبه می کنیم. با استفاده از این توسیع، برخی از شرایط وفاداری مدولهای کوهمولوژی موضعی را ارائه داده، و نشان می دهیم که اگر حدس لینچ [11]، در [11] برقرار باشد، آنگاه در [11] نیز برقرار خواهد بود.

كلمات كليدى: پوچساز، بعد كوهمولوژيكى، يكدست وفادار، كوهمولوژى موضعى، مقسوم عليه صفر.