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A NEW CHARACTERIZATION OF SIMPLE GROUP
G»(q) WHERE ¢ < 11

M. BIBAK, GH. REZAEEZADEH* AND E. ESMAEILZADE

ABSTRACT. In this paper, we prove that every finite group G with
the same order and largest element order as Ga(q), where ¢ < 11
is necessarily isomorphic to the group Gy(q).

1. INTRODUCTION

Let G be a finite group and 7.(G) denote the set of element orders
of G. In 1987, Shi [15] posed the following conjecture:

Conjecture. If G is a finite group and M is a finite simple group.
Then G = M if and only if |G| = |M| and 7.(G) = m.(M).

Mazurov et al. [L6] proved that this conjecture is valid for all finite
simple groups. Some other researchers studied the characterization
of finite simple groups by using fewer conditions. For example, He
and Chen [2, 0, 8] proved that the simple K3-groups, sporadic simple
groups and Lo(q) with ¢ < 125 are determined by their orders and the
largest, the second largest and the third largest element orders. They
also characterized in [7, 9] some simple K4-groups, G2(3), G2(4) and
G2(5) by using the group orders and the largest element orders. In
the following, it is proved that the simple Kj-groups of type Ly(q), the
simple Ks-groups of type Lz(p) with (3,p—1) = 1, Suzuki groups Sz(q)
where ¢ —1 or ¢+ +/2g+1 is a prime number and Ly (p) such that p # 7
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is a prime number can be uniquely determined by their orders and the
largest element orders [5, 12, 13, 18]. In this paper, our main aim is to
prove the following theorem:

Theorem 1.1. The simple groups Go(7), G2(8), G2(9) and G3(11) are
recognizable by their order and the largest element orders.

From this, the following corollary is derived.

Corollary 1.2. The simple groups G2(q), with ¢ < 11 are recognizable
by their order and the largest element orders.

Throughout this paper, we use the following definitions and nota-
tions: The prime graph T'(G) of a group G is a simple graph whose
vertices are the primes dividing the group order of G and two vertices
p and ¢ are joined by an edge if and only if pg € 7.(G). Denote by
T(G) = {m(G)|1 <i < t(G)} the set of all connected components of
the graph I'(G), where ¢(G) is the number of connected components
of I'(G). If the order of G is even, we assume that 2 € m(G). The
socle of GG is the subgroup generated by the set of all minimal normal
subgroup of Gj; it is denoted by Soc(G). For p € 7(G), we denote by
Syl,(G) and G, the set of all Sylow p—subgroups of G and a Sylow
p—subgroup of G, respectively. Also, we denote the highest power of
p dividing the order of G by e,(G).

2. PRELIMINARIES

In this section, we consider some results which will be needed for our
further investigations.

The set 7.(G) is closed and partially ordered by the divisibility re-
lation; therefore, it is determined uniquely from the subset p(G) of all
maximal elements of 7.(G) with respect to divisibility.

Lemma 2.1. [1, 11] Let q be a power of a prime p. Then

(a) u(Gy 2( 7)) €1{8,12,2,2(¢*1),¢* = 1, £ q+ 1} C 7m(Ga(q)) for
p_

(b) w(Ga(q)) = {p*,p(q£1),¢> = 1,¢* £ ¢+ 1} for p=3,5;

(c) u(G2(9 ))—{p(qil),q2—17q2iq+1} for p>5;

As an immediate consequence of Lemma 2.1, we have the following
corollary.

Corollary 2.2. The following statements hold:
(a) u(Ga(7)) = {42,43,48,56,57};
(b) u(G2(8)) C {8,12,14,18,57,63,73};
(¢) u(G2(9)) = {72,73,80,81,90,91};
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(d) p(Go(11)) ={110,111,120, 132, 133}.
The following lemma is useful in dealing with a Frobenius group.

Lemma 2.3. [10] Let G be a Frobenius group with kernel K and com-
plement H. Then
(a) K is a nilpotent group;
(b) |H| divide | K| — 1;
(¢) t(G) = 2 and the prime graph component of G are n(H) and
m(K).
(d) Every non-identity element of H induces by conjugation an au-
tomorphism of K which is fixed-point-free.

Definition 2.4. A group G is a 2-Frobenius group if there exists a
normal series 1 < H < K <G such that K and % are Frobenius groups

with kernels H and %, respectively.

Lemma 2.5. [I] Let G be a 2-Frobenius group of even order. Then
t(G) = 2 and G has a normal series 1 <<H <K <G such that w (%) = T,
T(H)Un (£) = m and |E| divides |Aut(%)|. Moreover, H is a
nilpotent group and G is a solvable group.

The structure of finite groups with non-connected prime graph is
described in the following lemma.

Lemma 2.6. [17] Let G be a finite group with t(G) > 2. Then one of
the following statments hold:

(a) G is a Frobenius or a 2-Frobenius group;

(b) G has a normal series 1 < H < K QG where H is a nilpotent
T -group, % is a non-abelian simple group and % 18 a T1-group
such that |£| divides |Out(£)|. Moreover, each odd order com-

ponents of G is also an odd order component of %

Lemma 2.7. [11] Let R = Ry X Ry X -+ X Ry, where R; is a direct
product of n; isomorphic copies of a simple group H;, where H; and
H; are not isomorphic if i # j. Then Aut(R) = Aut(R;) x Aut(Rz) X
- x Aut(Rg) and Aut(R;) = Aut(H;)1S,, where in this wreath product
Aut(H;) appears in its right reqular representation and the symmetric
group S,, in its natural permutation representation. Moreover, these
isomorphisms induce isomorphisms Out(R) = Out(R;) x Out(Rs) X
- x Out(Ry) and Out(R;) = Out(H;)S,,.

Lemma 2.8. [3] Let G be a group and N be a normal subgroup of G
with order p™, n > 1. If (r,|Aut(N)|) = 1, where r € n(G), then G has
an element of order pr.
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TABLE 1.

S 5] Ouwt(S) [ S 5] [Out(S)]
Ag 22.3.5 2 L,(19) 22.32.5.19 2
Ag 23.32.5 22 Jy 23.3.5.7-11-19 1
Uy(2) 26.34.5 2 Ls(11) 24.3.52.7.113-19 2
Ly(7) 23.3.7 2 Ly(27) 22.32.19-37 6
Ly(8) 23.32.7 3 Ly(11%) 22.32.5.7-11%3.19.37 6
Us(3) 25.337 2 G(11) 26.32.52.7.116.19.37 1
A; 28.32.5.7 2 Lo(7%) 23.32.73.19.43 6
L,(49) 24.3.52.72 22 Go(7) 28.33.76.19.43 1
Us(5) 24.32.5%.7 6 Us(7) 27.3.73.43 1
Ls(4) 26.32.5.7 12 Ls(8) 29.32.72.73 6
Ag 26.32.5.7 2 Ly(29) 29.33.7.19.73 9
Ay 26.31.5.7 2 G»(8) 218.35.7219.37 3
Ao 27.34.52.7 2 Us(9) 25.36.52.73 2
Uy(3) 27.36.5.7 8 3D4(3) 26.312.72 13273 1
S4(7) 28.32.52.74 2 Ly(37) 23.36.57.13-73 14
S6(2) 29.34.5.7 1 Lo(3%) 23.36.57.13.73 12
07 (2) 212.35 . 52.7 6 54(27) 26.312.5.72.132.73 6
Ly(11) 22.3.5-11 3 G1(9) 28.312.527.13.73 4
My, 24.32.5.11 1

Mis 26.33.5.11 2

3. MAIN RESULTS

In this section, we study the characterization problem of the simple
groups G(q) for g € {7,8,9, 11} by their orders and the largest element
orders. We denote the largest element order of G by m(G).

Proposition 3.1. If G is a finite group such that m(G) = m(Gy(7))
and |G| = |Go(7)], then G = Gy(7).

Proof. According to Corollary 2.2, m(G5(7)) = 57. Since |G| = |G5(7)|

28.3%.76.19.43 and m(G) = m(G(7)) = 57, it follows that 43 is an iso-
lated vertex of I'(G), and therefore t(G) > 2. Now, we show that G is
neither Frobenius group nor 2-Frobenius group.

Assume that G = KH is a Frobenius group with kernel K and
complement H. By Lemma 2.3(c), T(G) = {n(H),n(K)}. Since |H|
divides |K| — 1 by Lemma 2.3(b), it follows that |H| = 43 and |K| =
28.33.75.19. Let Ki9 € Sylio(K), then by nilpotency of K we have
K19 < G. Hence, H acts on Kj9 by conjugation. This action is fixed-
point-free on K9, by Lemma 2.3(d), and so K19H is a Frobenius group.
Therefore by Lemma 2.3(b), |H|||K19|— 1 which implies that 43|19 —1,

a contradiction.

Suppose that G is a 2-Frobenius group. By Lemma 2.5, G has a
normal series 1 <H I K <G such that 7(H)Un (%) =T, T (%) = Ty
and | Z| | [Aut(4)|. As 43 is an isolated vertex of I'(G), it follows that
{2,3,7,19} and |£| = 43. Since |Z|||Aut(%)] = 42,

r(H)Uur (£) =
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we conclude that 19 € wn(H). Let Hyg € Sylig(H), then Hig is
a normal Sylow 19-subgroup of G by nilpotency of H. Because of
(43, |Aut(Hig)|) = 1, Lemma 2.8 implies that 19.43 € 7.(G), a contra-
diction.

Hence Lemma 2.6(b) implies that G has a normal series 1<<H <K <G,
where % is a non-abelian simple group and % is a m-group such that
|%‘ ‘ ‘Out(%)|. Moreover, each odd order component of GG is an odd
order component of % Therefore 43 is an isolated vertex of prime
graph of % Now, according to the results collected in Table 1, we
deduce that £ is isomorphic to one of the following groups: Ls(7%) or
Go(7).

If &£ is isomorphic to Ly(7?), then (|%],19) = 1 by |Out(¥)| =6
and so the Sylow 19—subgroup of H is of order 19 and is normal in G.
Since (43, |Aut(Hig)|) = 1, it follows that G has an element of order
19.43 by Lemma 2.8, which is a contradiction.

Therefore, % is isomorphic to G2(7) and since |G| = |G(7)], we
obtain |H| =1 and G = G5(7). O

Proposition 3.2. If G is a finite group such that m(G) = m(Gy(8))
and |G| = |G2(8)|, then G = G5(8).

Proof. By Corollary 2.2, m(G(8)) = 73. As |G| = |G2(8)] = 2!8.3°.7%.19
73 and m(G) = m(G(8)) = 73, it follows that 73 is an isolated vertex
of I'(G) and t(G) > 2.

Suppose that G is a Frobenius group with kernel K and complement
H. Then by Lemma 2.3(b), |H| divides |K| — 1 and so |H| < |K]|,
moreover T(G) = {n(H),n(K)}. Therefore, we have |H| = 73 and
19 € m(K). Now, by using the same technique as in the proof of
Proposition 3.1, we get that HKjg is a Frobenius group. Hence |H|
divides | K19| — 1, namely, 73‘19 — 1, a contradiction.

Assume that G is a 2-Frobenius group. By Lemma 2.5, G has a
normal series 1< H < K <G such that 7(H)Ur (£) = {2,3,7,19} and
|£| = 73. Since |£|[|Aut(£)| = 72, it follows that 19 € x(H). Let
Hi9 € Slyi9(H), then by nilpotency of H we have Hyg < G and so by
Lemma 2.8, 19.73 € 7.(G) since (73, |Aut(Hyg)|) = 1, a contradiction.

Therefore by Lemma 2.6(b), it follows that % is a non-abelian simple
group and % is a m-group such that ‘% | }Out(%)‘. In addition, each
odd-order component of G is also an odd order component of % So
73 is an isolated vertex in I'(%). Now, Table 1 shows us that % is
isomorphic to Ly(2%) or Go(8).
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If % = L,(2°), then 19||H| because |<|||Out(%)| = 9. Moreover,
as (73,|Aut(Hy)|) = 1, it follows that 19.73 € 7.(G) by Lemma 2.8,
which is a contradiction.

Therefore, we have £ 2 G5(8). Because |G| = |G2(8)|, we can get
that |[H| = 1, and thus G = G4(8). O

Proposition 3.3. If G is a finite group such that m(G) = m(G2(9))
and |G| = |G2(9)], then G = G1(9).

Proof. In this case, we have |G| = |G2(9)| = 28.312.52.7.13.73 and
m(G) = m(G2(9)) = 91. Hence 73 is an isolated vertex in the prime
graph of G and t(G) > 2.

By similar argument as in the proof of Propositions 3.1 and 3.2, one
can show that G is not a Frobenius group and 2-Frobenius group. So
it follows by Lemma 2.6 that G has a normal series 1 I H < K 4G,
where % is a non-abelian simple group and % is a m-group such that
|%‘ ‘ ‘Out(%)|. Thus 73 is an isolated vertex of the prime graph of G.
Now, according to the results in Table 2, it follows that £ = Ly(3%) or
G2(9).

If & =~ [,(3%), then 13 € w(H) by ‘Out(%) = 12. Moreover, since
(73,]Aut(H;3)|) = 1, Lemma 2.8 implies that 13.73 € 7.(G), which is
impossible.

Thus £ = G5(9). Since |G| = |G2(9)|, we deduce that |H| =1 and
G = G49(9). O

Proposition 3.4. If G is a finite group such that m(G) = m(Gy(11))
and |G| = |G2(11)], then G = Gy(11).

Proof. Since |G| = |Go(11)] = 26.33.52.7.116.19.37 and also m(G) =
m(Gy(11)) = 133, we have 5.37 ¢ 7.(G) and 19.37 ¢ 7.(G). Now, we

divide the proof into two steps:

Step 1. Let K be the maximal normal solvable subgroup of G, Then
K is a {5,19,37} -group. In particular, G is non-solvable.

Assume first that {p,q,r} = {5,19,37} and {p,q,r} C 7(K). Since
K is solvable, it includes the solvable Hall {19, 37}-subgroup, which
is a cyclic subgroup of order 19.37. Hence 19.37 € 7.(K) C 7.(G), a
contradiction.

Next, we assume that {p,q} C 7(K) and r ¢ n(K). Let T be a
{p, ¢}-Hall subgroup of K of order p'q, where i = 1 or 2. By calculating
the number of Sylow subgroups of T, we get that T is a nilpotent
subgroup of G.

If {p,q} # {5,19}, then p.q € m.(K) C 7.(G), a contradiction.
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If {p,q} = {5,19}, then K isa {2,3,7,11, p}-group. Let K, be a Sy-
low p—subgroup of K. By Frattini argument, we have G = K Ng(K,).
Since 37 ¢ 7(K), 37 must divide |[Ng(K,)| and so Ng(K,) contains an
element x of order 37. Now, it is seen that (z)K, is a nilpotent sub-
group of order p*.37, where i = 1 or 2 and so p.37 € 7.(K) C 7.(G), a
contradiction.

Finally, assume that {p, ¢} N7(K) =0 and r € 7(K). In this case,
K is a {2,3,7,11,r}-group and we consider a Sylow r-subgroup K, of
K. Again using the Frattini argument, we have G = K Ng(K,). Since
{p,q}nm(K) = 0, it follows that p and ¢ must divide | Ng(K,)| and thus
N¢(K,) contains two elements of orders p and ¢, say = and y, respec-
tively. Obviously, (x)K, and (y) K, are nilpotent subgroups of orders
p.rt and ¢.r', where i = 1 or 2, which implies that {p.r,q.r} C 7.(G), a
contradiction. Therefore, K is a {5,19,37}-group. In addition, since
G # K hence G is non-solvable.

Step 2. The quotient % is an almost simple group. In fact, we have
S < £ < Aut(S), where S is a finite non-abelian simple group.

Let G = £ and S = Soc(G). Since G is non-solvable group, it follows
that S = P, x P, x --- X P,, where P;’s are finite non-abelian simple
groups and S<G < Aut(S). Since 7(P;) C n(G) = {2,3,5,7,11, 19,37},
from Table 1 it follows that the simple group P; is isomorphic to one
of tha following simple groups:

As, Ag, Lo(7), Lo(8),Us(3), A7, L3(4), As, Lo(11), Myq, Mo, Lo(19),
Ji, L3(11), Ly(37), Us(11), Ly(11%), Go(11)

It is clear that {5,19,37} C n(G) C w(Aut(9)), because K is a
{5,19,37}-group. Now, we claim that {p,q,r} = {5,19,37} C =(S5).
Assume to the contrary that r ¢ m(S). Then r € m(Out(S)) because
r|[Aut(S)| and 7 { |Inn(S)|. By Lemma 2.7, Out(S) = Out(S;) x
Out(S2) x - -+ x Out(Sy), where each S; is a direct product of isomor-
phic P;s such that S = 5; x Sy x - -+ x Si. Therefore, r}|Out(Sj)| for
some j, where S; is a direct product of ¢ isomorphic simple groups F;.
By Lemma 2.7, we obtain |Out(S)| = |Out(F;)|".t!. Since r does not
divide |Out(F;)| by Table 1, it follows that r|t!. Therefore, t > r > 5
and hence 2'° must divides the order of G, which is a contradiction.

Now, using the facts that {5,19,37} C 7(S) and order consideration,
it is easily checked from Table 1, that S = Ly(113) or Go(11).

If S = Ly(113), then we have es(Aut(S)) = 1 while e5(G) = 2, and
this forces 5 € m(K'), which is a contradiction. Therefore S = G(11)
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and so G2(11) < £ < Aut(G5(11)). Now, by the fact that |G| =
|G2(11)], it follows that K =1 and G = G(11). O
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