A NEW CHARACTERIZATION OF SIMPLE GROUP $G_2(q)$ WHERE $q \leq 11$

M. BIBAK, GH. REZAEEZADEH* AND E. ESMAEILZADE

ABSTRACT. In this paper, we prove that every finite group G with the same order and largest element order as $G_2(q)$, where $q \leq 11$ is necessarily isomorphic to the group $G_2(q)$.

1. INTRODUCTION

Let G be a finite group and $\pi_e(G)$ denote the set of element orders of G. In 1987, Shi [15] posed the following conjecture:

Conjecture. If G is a finite group and M is a finite simple group. Then $G \cong M$ if and only if |G| = |M| and $\pi_e(G) = \pi_e(M)$.

Mazurov et al. [16] proved that this conjecture is valid for all finite simple groups. Some other researchers studied the characterization of finite simple groups by using fewer conditions. For example, He and Chen [2, 6, 8] proved that the simple K_3 -groups, sporadic simple groups and $L_2(q)$ with $q \leq 125$ are determined by their orders and the largest, the second largest and the third largest element orders. They also characterized in [7, 9] some simple K_4 -groups, $G_2(3)$, $G_2(4)$ and $G_2(5)$ by using the group orders and the largest element orders. In the following, it is proved that the simple K_4 -groups of type $L_2(q)$, the simple K_5 -groups of type $L_3(p)$ with (3, p-1) = 1, Suzuki groups Sz(q)where q-1 or $q \pm \sqrt{2q} + 1$ is a prime number and $L_2(p)$ such that $p \neq 7$

MSC(2010): Primary: 20D60; Secondary: 20D06.

Keywords: Characterization, simple group, largest element order.

Received: 16 November 2018, Accepted: 27 December 2019.

^{*}Corresponding author.

is a prime number can be uniquely determined by their orders and the largest element orders [5, 12, 13, 18]. In this paper, our main aim is to prove the following theorem:

Theorem 1.1. The simple groups $G_2(7)$, $G_2(8)$, $G_2(9)$ and $G_2(11)$ are recognizable by their order and the largest element orders.

From this, the following corollary is derived.

Corollary 1.2. The simple groups $G_2(q)$, with $q \leq 11$ are recognizable by their order and the largest element orders.

Throughout this paper, we use the following definitions and notations: The prime graph $\Gamma(G)$ of a group G is a simple graph whose vertices are the primes dividing the group order of G and two vertices p and q are joined by an edge if and only if $pq \in \pi_e(G)$. Denote by $T(G) = \{\pi_i(G) | 1 \le i \le t(G)\}$ the set of all connected components of the graph $\Gamma(G)$, where t(G) is the number of connected components of $\Gamma(G)$. If the order of G is even, we assume that $2 \in \pi_1(G)$. The socle of G is the subgroup generated by the set of all minimal normal subgroup of G; it is denoted by Soc(G). For $p \in \pi(G)$, we denote by $Syl_p(G)$ and G_p the set of all Sylow p-subgroups of G and a Sylow p-subgroup of G, respectively. Also, we denote the highest power of p dividing the order of G by $e_p(G)$.

2. Preliminaries

In this section, we consider some results which will be needed for our further investigations.

The set $\pi_e(G)$ is closed and partially ordered by the divisibility relation; therefore, it is determined uniquely from the subset $\mu(G)$ of all maximal elements of $\pi_e(G)$ with respect to divisibility.

Lemma 2.1. [4, 11] Let q be a power of a prime p. Then

- (a) $\mu(G_2(q)) \subseteq \{8, 12, 2, 2(q \pm 1), q^2 1, q^2 \pm q + 1\} \subseteq \pi_e(G_2(q))$ for p = 2;
- (b) $\mu(G_2(q)) = \{p^2, p(q \pm 1), q^2 1, q^2 \pm q + 1\}$ for p = 3, 5;(c) $\mu(G_2(9)) = \{p(q \pm 1), q^2 1, q^2 \pm q + 1\}$ for p > 5;

As an immediate consequence of Lemma 2.1, we have the following corollary.

Corollary 2.2. The following statements hold:

(a) $\mu(G_2(7)) = \{42, 43, 48, 56, 57\};$ (b) $\mu(G_2(8)) \subseteq \{8, 12, 14, 18, 57, 63, 73\};$ (c) $\mu(G_2(9)) = \{72, 73, 80, 81, 90, 91\};$

104

(d) $\mu(G_2(11)) = \{110, 111, 120, 132, 133\}.$

The following lemma is useful in dealing with a Frobenius group.

Lemma 2.3. [10] Let G be a Frobenius group with kernel K and complement H. Then

- (a) K is a nilpotent group;
- (b) |H| divide |K| 1;
- (c) t(G) = 2 and the prime graph component of G are $\pi(H)$ and $\pi(K)$.
- (d) Every non-identity element of H induces by conjugation an automorphism of K which is fixed-point-free.

Definition 2.4. A group G is a 2-Frobenius group if there exists a normal series $1 \leq H \leq K \leq G$ such that K and $\frac{G}{H}$ are Frobenius groups with kernels H and $\frac{K}{H}$, respectively.

Lemma 2.5. [1] Let G be a 2-Frobenius group of even order. Then t(G) = 2 and G has a normal series $1 \leq H \leq K \leq G$ such that $\pi\left(\frac{K}{H}\right) = \pi_2$, $\pi(H) \cup \pi\left(\frac{G}{K}\right) = \pi_1$ and $\left|\frac{G}{K}\right|$ divides $\left|\operatorname{Aut}\left(\frac{K}{H}\right)\right|$. Moreover, H is a nilpotent group and G is a solvable group.

The structure of finite groups with non-connected prime graph is described in the following lemma.

Lemma 2.6. [17] Let G be a finite group with $t(G) \ge 2$. Then one of the following statements hold:

- (a) G is a Frobenius or a 2-Frobenius group;
- (b) G has a normal series $1 \leq H \leq K \leq G$ where H is a nilpotent π_1 -group, $\frac{K}{H}$ is a non-abelian simple group and $\frac{G}{K}$ is a π_1 -group such that $|\frac{G}{K}|$ divides $|\operatorname{Out}(\frac{K}{H})|$. Moreover, each odd order components of G is also an odd order component of $\frac{K}{H}$.

Lemma 2.7. [14] Let $R = R_1 \times R_2 \times \cdots \times R_k$, where R_i is a direct product of n_i isomorphic copies of a simple group H_i , where H_i and H_j are not isomorphic if $i \neq j$. Then $\operatorname{Aut}(R) \cong \operatorname{Aut}(R_1) \times \operatorname{Aut}(R_2) \times$ $\cdots \times \operatorname{Aut}(R_k)$ and $\operatorname{Aut}(R_i) \cong \operatorname{Aut}(H_i) \wr \mathbb{S}_{n_i}$ where in this wreath product $\operatorname{Aut}(H_i)$ appears in its right regular representation and the symmetric group \mathbb{S}_{n_i} in its natural permutation representation. Moreover, these isomorphisms induce isomorphisms $\operatorname{Out}(R) \cong \operatorname{Out}(R_1) \times \operatorname{Out}(R_2) \times$ $\cdots \times \operatorname{Out}(R_k)$ and $\operatorname{Out}(R_i) \cong \operatorname{Out}(H_i) \wr \mathbb{S}_{n_i}$.

Lemma 2.8. [3] Let G be a group and N be a normal subgroup of G with order p^n , $n \ge 1$. If $(r, |\operatorname{Aut}(N)|) = 1$, where $r \in \pi(G)$, then G has an element of order pr.

S	S	$ \operatorname{Out}(S) $	S	S	$ \operatorname{Out}(S) $
\mathbb{A}_5	$2^2 \cdot 3 \cdot 5$	2	$L_2(19)$	$2^2 \cdot 3^2 \cdot 5 \cdot 19$	2
\mathbb{A}_6	$2^3 \cdot 3^2 \cdot 5$	2^{2}	J_1	$2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$	1
$U_4(2)$	$2^6 \cdot 3^4 \cdot 5$	2	$L_3(11)$	$2^4\cdot 3\cdot 5^2\cdot 7\cdot 11^3\cdot 19$	2
$L_2(7)$	$2^3 \cdot 3 \cdot 7$	2	$L_2(27)$	$2^2 \cdot 3^2 \cdot 19 \cdot 37$	6
$L_2(8)$	$2^3 \cdot 3^2 \cdot 7$	3	$L_2(11^3)$	$2^2 \cdot 3^2 \cdot 5.7 \cdot 11^3 \cdot 19.37$	6
$U_{3}(3)$	$2^5 \cdot 3^3.7$	2	$G_2(11)$	$2^6 \cdot 3^2 \cdot 5^2 \cdot 7.11^6.19.37$	1
\mathbb{A}_7	$2^3 \cdot 3^2 \cdot 5 \cdot 7$	2	$L_2(7^3)$	$2^3 \cdot 3^2 \cdot 7^3 \cdot 19.43$	6
$L_2(49)$	$2^4 \cdot 3 \cdot 5^2 \cdot 7^2$	2^{2}	$G_2(7)$	$2^8 \cdot 3^3 \cdot 7^6 \cdot 19.43$	1
$U_{3}(5)$	$2^4\cdot 3^2\cdot 5^3\cdot 7$	6	$U_3(7)$	$2^7 \cdot 3 \cdot 7^3.43$	1
$L_{3}(4)$	$2^6 \cdot 3^2 \cdot 5 \cdot 7$	12	$L_3(8)$	$2^9 \cdot 3^2 \cdot 7^2.73$	6
\mathbb{A}_8	$2^6 \cdot 3^2 \cdot 5 \cdot 7$	2	$L_2(2^9)$	$2^9 \cdot 3^3 \cdot 7.19.73$	9
\mathbb{A}_9	$2^6 \cdot 3^4 \cdot 5 \cdot 7$	2	$G_2(8)$	$2^{18} \cdot 3^5 \cdot 7^2.19.37$	3
\mathbb{A}_{10}	$2^7 \cdot 3^4 \cdot 5^2 \cdot 7$	2	$U_3(9)$	$2^5 \cdot 3^6 \cdot 5^2.73$	2
$U_4(3)$	$2^7 \cdot 3^6 \cdot 5 \cdot 7$	8	$^{3}D_{4}(3)$	$2^6 \cdot 3^{12} \cdot 7^2 \cdot 13^2 \cdot 73$	1
$S_4(7)$	$2^8\cdot 3^2\cdot 5^2\cdot 7^4$	2	$L_2(3^7)$	$2^3 \cdot 3^6 \cdot 5.7 \cdot 13 \cdot 73$	14
$S_{6}(2)$	$2^9 \cdot 3^4 \cdot 5 \cdot 7$	1	$L_2(3^6)$	$2^3 \cdot 3^6 \cdot 5.7.13.73$	12
$O_8^+(2)$	$2^{12}\cdot 3^5\cdot 5^2\cdot 7$	6	$S_4(27)$	$2^6 \cdot 3^{12} \cdot 5 \cdot 7^2 \cdot 13^2 \cdot 73$	6
$L_2(11)$	$2^2 \cdot 3 \cdot 5 \cdot 11$	3	$G_2(9)$	$2^8 \cdot 3^{12} \cdot 5^2.7.13.73$	4
M_{11}	$2^4 \cdot 3^2 \cdot 5 \cdot 11$	1			
M_{12}	$2^6\cdot 3^3\cdot 5\cdot 11$	2			

TABLE 1.

3. Main results

In this section, we study the characterization problem of the simple groups $G_2(q)$ for $q \in \{7, 8, 9, 11\}$ by their orders and the largest element orders. We denote the largest element order of G by m(G).

Proposition 3.1. If G is a finite group such that $m(G) = m(G_2(7))$ and $|G| = |G_2(7)|$, then $G \cong G_2(7)$.

Proof. According to Corollary 2.2, $m(G_2(7)) = 57$. Since $|G| = |G_2(7)| = 2^8 \cdot 3^3 \cdot 7^6 \cdot 19.43$ and $m(G) = m(G_2(7)) = 57$, it follows that 43 is an isolated vertex of $\Gamma(G)$, and therefore $t(G) \ge 2$. Now, we show that G is neither Frobenius group nor 2-Frobenius group.

Assume that G = KH is a Frobenius group with kernel K and complement H. By Lemma 2.3(c), $T(G) = \{\pi(H), \pi(K)\}$. Since |H|divides |K| - 1 by Lemma 2.3(b), it follows that |H| = 43 and $|K| = 2^{8} \cdot 3^{3} \cdot 7^{6} \cdot 19$. Let $K_{19} \in Syl_{19}(K)$, then by nilpotency of K we have $K_{19} \leq G$. Hence, H acts on K_{19} by conjugation. This action is fixedpoint-free on K_{19} , by Lemma 2.3(d), and so $K_{19}H$ is a Frobenius group. Therefore by Lemma 2.3(b), $|H| ||K_{19}| - 1$ which implies that 43|19-1, a contradiction.

Suppose that G is a 2-Frobenius group. By Lemma 2.5, G has a normal series $1 \leq H \leq K \leq G$ such that $\pi(H) \cup \pi\left(\frac{G}{K}\right) = \pi_1, \pi\left(\frac{K}{H}\right) = \pi_2$ and $\left|\frac{G}{K}\right| \left| \left|\operatorname{Aut}\left(\frac{K}{H}\right)\right|$. As 43 is an isolated vertex of $\Gamma(G)$, it follows that $\pi(H) \cup \pi\left(\frac{G}{K}\right) = \{2, 3, 7, 19\}$ and $\left|\frac{K}{H}\right| = 43$. Since $\left|\frac{G}{K}\right| \left| \left|\operatorname{Aut}\left(\frac{K}{H}\right)\right| = 42$,

we conclude that $19 \in \pi(H)$. Let $H_{19} \in Syl_{19}(H)$, then H_{19} is a normal Sylow 19-subgroup of G by nilpotency of H. Because of $(43, |\operatorname{Aut}(H_{19})|) = 1$, Lemma 2.8 implies that $19.43 \in \pi_e(G)$, a contradiction.

Hence Lemma 2.6(b) implies that G has a normal series $1 \leq H \leq K \leq G$, where $\frac{K}{H}$ is a non-abelian simple group and $\frac{G}{K}$ is a π_1 -group such that $\left|\frac{G}{K}\right| \left| \left| \operatorname{Out}\left(\frac{K}{H}\right) \right|$. Moreover, each odd order component of G is an odd order component of $\frac{K}{H}$. Therefore 43 is an isolated vertex of prime graph of $\frac{K}{H}$. Now, according to the results collected in Table 1, we deduce that $\frac{K}{H}$ is isomorphic to one of the following groups: $L_2(7^3)$ or $G_2(7)$.

 $G_2(7)$. If $\frac{K}{H}$ is isomorphic to $L_2(7^3)$, then $\left(\left|\frac{G}{K}\right|, 19\right) = 1$ by $\left|\operatorname{Out}(\frac{K}{H})\right| = 6$ and so the Sylow 19-subgroup of H is of order 19 and is normal in G. Since $(43, |\operatorname{Aut}(H_{19})|) = 1$, it follows that G has an element of order 19.43 by Lemma 2.8, which is a contradiction.

Therefore, $\frac{K}{H}$ is isomorphic to $G_2(7)$ and since $|G| = |G_2(7)|$, we obtain |H| = 1 and $G \cong G_2(7)$.

Proposition 3.2. If G is a finite group such that $m(G) = m(G_2(8))$ and $|G| = |G_2(8)|$, then $G \cong G_2(8)$.

Proof. By Corollary 2.2, $m(G_2(8)) = 73$. As $|G| = |G_2(8)| = 2^{18} \cdot 3^5 \cdot 7^2 \cdot 19$.73 and $m(G) = m(G_2(8)) = 73$, it follows that 73 is an isolated vertex of $\Gamma(G)$ and $t(G) \ge 2$.

Suppose that G is a Frobenius group with kernel K and complement H. Then by Lemma 2.3(b), |H| divides |K| - 1 and so |H| < |K|, moreover $T(G) = \{\pi(H), \pi(K)\}$. Therefore, we have |H| = 73 and $19 \in \pi(K)$. Now, by using the same technique as in the proof of Proposition 3.1, we get that HK_{19} is a Frobenius group. Hence |H| divides $|K_{19}| - 1$, namely, 73|19 - 1, a contradiction.

Assume that G is a 2-Frobenius group. By Lemma 2.5, G has a normal series $1 \leq H \leq K \leq G$ such that $\pi(H) \cup \pi\left(\frac{G}{K}\right) = \{2, 3, 7, 19\}$ and $\left|\frac{K}{H}\right| = 73$. Since $\left|\frac{G}{K}\right| ||\operatorname{Aut}\left(\frac{K}{H}\right)| = 72$, it follows that $19 \in \pi(H)$. Let $H_{19} \in Sly_{19}(H)$, then by nilpotency of H we have $H_{19} \leq G$ and so by Lemma 2.8, $19.73 \in \pi_e(G)$ since $(73, |\operatorname{Aut}(H_{19})|) = 1$, a contradiction.

Therefore by Lemma 2.6(b), it follows that $\frac{K}{H}$ is a non-abelian simple group and $\frac{G}{K}$ is a π_1 -group such that $\left|\frac{G}{K}\right| \left| \left| \operatorname{Out}\left(\frac{K}{H}\right) \right|$. In addition, each odd-order component of G is also an odd order component of $\frac{K}{H}$. So 73 is an isolated vertex in $\Gamma(\frac{K}{H})$. Now, Table 1 shows us that $\frac{K}{H}$ is isomorphic to $L_2(2^9)$ or $G_2(8)$. If $\frac{K}{H} \cong L_2(2^9)$, then 19||H| because $\left|\frac{G}{K}\right| \left| \left| \operatorname{Out}(\frac{K}{H}) \right| = 9$. Moreover, as $(73, |\operatorname{Aut}(H_{19})|) = 1$, it follows that $19.73 \in \pi_e(G)$ by Lemma 2.8, which is a contradiction.

Therefore, we have $\frac{K}{H} \cong G_2(8)$. Because $|G| = |G_2(8)|$, we can get that |H| = 1, and thus $G \cong G_2(8)$.

Proposition 3.3. If G is a finite group such that $m(G) = m(G_2(9))$ and $|G| = |G_2(9)|$, then $G \cong G_2(9)$.

Proof. In this case, we have $|G| = |G_2(9)| = 2^8 \cdot 3^{12} \cdot 5^2 \cdot 7 \cdot 13 \cdot 73$ and $m(G) = m(G_2(9)) = 91$. Hence 73 is an isolated vertex in the prime graph of G and $t(G) \ge 2$.

By similar argument as in the proof of Propositions 3.1 and 3.2, one can show that G is not a Frobenius group and 2-Frobenius group. So it follows by Lemma 2.6 that G has a normal series $1 \leq H \leq K \leq G$, where $\frac{K}{H}$ is a non-abelian simple group and $\frac{G}{K}$ is a π_1 -group such that $\left|\frac{G}{K}\right| \left| \left|\operatorname{Out}\left(\frac{K}{H}\right)\right|$. Thus 73 is an isolated vertex of the prime graph of G. Now, according to the results in Table 2, it follows that $\frac{K}{H} \cong L_2(3^6)$ or $G_2(9)$.

If $\frac{K}{H} \cong L_2(3^6)$, then $13 \in \pi(H)$ by $\left|\operatorname{Out}(\frac{K}{H})\right| = 12$. Moreover, since $(73, |\operatorname{Aut}(H_{13})|) = 1$, Lemma 2.8 implies that $13.73 \in \pi_e(G)$, which is impossible.

Thus $\frac{K}{H} \cong G_2(9)$. Since $|G| = |G_2(9)|$, we deduce that |H| = 1 and $G \cong G_2(9)$.

Proposition 3.4. If G is a finite group such that $m(G) = m(G_2(11))$ and $|G| = |G_2(11)|$, then $G \cong G_2(11)$.

Proof. Since $|G| = |G_2(11)| = 2^6 \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 11^6 \cdot 19 \cdot 37$ and also $m(G) = m(G_2(11)) = 133$, we have $5 \cdot 37 \notin \pi_e(G)$ and $19 \cdot 37 \notin \pi_e(G)$. Now, we divide the proof into two steps:

Step 1. Let K be the maximal normal solvable subgroup of G, Then K is a $\{5, 19, 37\}'$ -group. In particular, G is non-solvable.

Assume first that $\{p, q, r\} = \{5, 19, 37\}$ and $\{p, q, r\} \subseteq \pi(K)$. Since K is solvable, it includes the solvable Hall $\{19, 37\}$ -subgroup, which is a cyclic subgroup of order 19.37. Hence $19.37 \in \pi_e(K) \subseteq \pi_e(G)$, a contradiction.

Next, we assume that $\{p,q\} \subseteq \pi(K)$ and $r \notin \pi(K)$. Let T be a $\{p,q\}$ -Hall subgroup of K of order $p^i q$, where i = 1 or 2. By calculating the number of Sylow subgroups of T, we get that T is a nilpotent subgroup of G.

If $\{p,q\} \neq \{5,19\}$, then $p.q \in \pi_e(K) \subseteq \pi_e(G)$, a contradiction.

108

If $\{p,q\} = \{5,19\}$, then K is a $\{2,3,7,11,p\}$ -group. Let K_p be a Sylow p-subgroup of K. By Frattini argument, we have $G = KN_G(K_p)$. Since $37 \notin \pi(K)$, 37 must divide $|N_G(K_p)|$ and so $N_G(K_p)$ contains an element x of order 37. Now, it is seen that $\langle x \rangle K_p$ is a nilpotent subgroup of order p^i .37, where i = 1 or 2 and so $p.37 \in \pi_e(K) \subseteq \pi_e(G)$, a contradiction.

Finally, assume that $\{p,q\} \cap \pi(K) = \emptyset$ and $r \in \pi(K)$. In this case, K is a $\{2,3,7,11,r\}$ -group and we consider a Sylow r-subgroup K_r of K. Again using the Frattini argument, we have $G = KN_G(K_r)$. Since $\{p,q\} \cap \pi(K) = \emptyset$, it follows that p and q must divide $|N_G(K_r)|$ and thus $N_G(K_r)$ contains two elements of orders p and q, say x and y, respectively. Obviously, $\langle x \rangle K_r$ and $\langle y \rangle K_r$ are nilpotent subgroups of orders $p.r^i$ and $q.r^i$, where i = 1 or 2, which implies that $\{p.r, q.r\} \subseteq \pi_e(G)$, a contradiction. Therefore, K is a $\{5, 19, 37\}'$ -group. In addition, since $G \neq K$ hence G is non-solvable.

Step 2. The quotient $\frac{G}{K}$ is an almost simple group. In fact, we have $S \leq \frac{G}{K} \lesssim \operatorname{Aut}(S)$, where S is a finite non-abelian simple group.

Let $\bar{G} = \frac{G}{K}$ and $S = Soc(\bar{G})$. Since G is non-solvable group, it follows that $S = P_1 \times P_2 \times \cdots \times P_m$ where P_i 's are finite non-abelian simple groups and $S \leq \bar{G} \leq \operatorname{Aut}(S)$. Since $\pi(P_i) \subseteq \pi(G) = \{2, 3, 5, 7, 11, 19, 37\}$, from Table 1 it follows that the simple group P_i is isomorphic to one of tha following simple groups:

$$A_5, A_6, L_2(7), L_2(8), U_3(3), A_7, L_3(4), A_8, L_2(11), M_{11}, M_{12}, L_2(19), J_1, L_3(11), L_2(37), U_3(11), L_2(11^3), G_2(11)$$

It is clear that $\{5, 19, 37\} \subseteq \pi(\overline{G}) \subseteq \pi(\operatorname{Aut}(S))$, because K is a $\{5, 19, 37\}'$ -group. Now, we claim that $\{p, q, r\} = \{5, 19, 37\} \subseteq \pi(S)$. Assume to the contrary that $r \notin \pi(S)$. Then $r \in \pi(\operatorname{Out}(S))$ because $r ||\operatorname{Aut}(S)|$ and $r \nmid |\operatorname{Inn}(S)|$. By Lemma 2.7, $\operatorname{Out}(S) = \operatorname{Out}(S_1) \times \operatorname{Out}(S_2) \times \cdots \times \operatorname{Out}(S_k)$, where each S_j is a direct product of isomorphic P_i 's such that $S \cong S_1 \times S_2 \times \cdots \times S_k$. Therefore, $r ||\operatorname{Out}(S_j)|$ for some j, where S_j is a direct product of t isomorphic simple groups P_i . By Lemma 2.7, we obtain $|\operatorname{Out}(S)| = |\operatorname{Out}(P_i)|^t t!$. Since r does not divide $|\operatorname{Out}(P_i)|$ by Table 1, it follows that r|t!. Therefore, $t \ge r \ge 5$ and hence 2^{10} must divides the order of G, which is a contradiction.

Now, using the facts that $\{5, 19, 37\} \subseteq \pi(S)$ and order consideration, it is easily checked from Table 1, that $S \cong L_2(11^3)$ or $G_2(11)$.

If $S \cong L_2(11^3)$, then we have $e_5(\operatorname{Aut}(S)) = 1$ while $e_5(G) = 2$, and this forces $5 \in \pi(K)$, which is a contradiction. Therefore $S \cong G_2(11)$ and so $G_2(11) \leq \frac{G}{K} \lesssim \operatorname{Aut}(G_2(11))$. Now, by the fact that $|G| = |G_2(11)|$, it follows that K = 1 and $G \cong G_2(11)$.

References

- G. Y. Chen, On structure of frobenius groups and 2-frobenius groups, J. Southwest China Normal Univ., 20 (1995), 485–487.
- 2. G. Y. Chen, L. G. He and J. H. Xu, A new characterization of sporadic simple groups, *Ital. J. Pure Appl. Math.*, **30** (2013), 373–392.
- Y. H. Chen, G. Y. Chen and J. B. Li, Recognizing simple K₄-groups by few special conjugacy class sizes, Bull. Malays. Math. Sci. Soc., 38 (2015), 51–72.
- 4. D. Deriziotis, Conjugacy class and centralizers of semisimple elements in finite groups of lie type, Vorlesungen Fachbereich Math. Univ. Essen 1984.
- B. Ebrahimzadeh, A. Iranmanesh, A. Tehranian and H. Parvizi Mosaed, A characterization of Suzuki groups by order and the largest element order, J. Sci. I. R. Iran. 27 (2016), 353–355.
- 6. L. G. He and G. Y. Chen, A new characterization of $L_2(q)$ where $q = p^n < 125$, Ital. J. Pure Appl. Math., 28 (2011), 127–136.
- L. G. He and G. Y. Chen, A new characterization of some simple groups, J. Sichuan Normal Univ. (Natur. Sci)., 35 (2012), 590–594.
- L. G. He and G. Y. Chen, A new characterization of simple K₃-groups, Comm. Algebra, 40 (2012), 3903–3911.
- L. G. He and G. Y. Chen, A new characterization of simple K₄-groups, J. Math. Research Appl. 35 (2015), 400–406.
- 10. D. Gorenstein, *Finite Groups*, Harper and Row, New York, 1968.
- W. M. Kantor and A. Seress, Prime power graphs for groups of Lie type, J. Algebra, 247 (2002), 370–434.
- 12. J. B. Li, W. J. Shi and D. P. Yu, A characterization of some PGL(2,q) by maximum element orders, *Bull. Korean Math. Soc.*, **52** (2015), 2025–2034.
- 13. J. B. Li, D. P. Yu, G. Y. Chen and W. J. Shi, A new characterization of simple K_4 -groups of type $L_2(q)$ and their automorphism groups, *Bull. Iran. Math. Soc.*, **43** (2017), 501–514.
- J. S. Robinson Derek, A Course in the Theory of Groups, second edition, Springer Verlag, New York, 2003.
- 15. W. J. Shi, A new characterization of the sporadic simple groups, *Group theory*, Walter de Gruytern, Berlin-New York. (1989), 531–540.
- A. V. Vaseliev, M. A. Grechkoseeva and V. D. Mazurov, Characterization of finite simple groups by spectrume and order, *Algebra Logic*, 48 (2009), 385-409.
- J. S. Williams, Prime graph componeents of finite group, J. Algebra, 69 (1981), 487–513.
- D. P. Yu, G. Y. Chen, L.G. Zhang and W. J. Shi, A new characterization of simple K₅-groups of type L₃(p), Bull. Iran. Math. Soc., 45 (2019), 771–781.

Masoumeh Bibak

Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran.

Email: m.bibak@pnu.ac.ir

110

Gholamreza Rezaeezadeh

Faculty of Mathematical Sciences, Department of Pure Mathematics, University of Shahrekord, P.O. Box 88186-34141, Shahrekord, Iran. Email: rezaeezadeh@sci.sku.ac.ir

Elham Esmaeilzadeh

Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran.

Email: e.esmaeilzadeh@chmail.ir

Journal of Algebraic Systems

A NEW CHARACTERIZATION OF SIMPLE GROUP $G_2(q)$ WHERE $q \leq 11$

M. BIBAK, GH. REZAEEZADEH AND E. ESMAEILZADE

معصومه بیباک^۱، غلامرضا رضائیزاده^۲ و الهام اسماعیلزاده^۱ ۱ دانشکده ریاضی، دانشگاه پیام نور، تهران، ایران ۲ دانشکده علوم ریاضی، دانشگاه شهرکرد، شهرکرد، ایران

فرض کنید G یک گروه متناهی و m(G) بزرگترین مرتبهی عضوهای گروه G باشد. دراین صورت H گوییم گروه G توسط G(G) و مرتبهاش r- تشخیص پذیر است، هرگاه r گروه غیریکریخت مانند G گوییم گروه G توسط m(G) و m(G) = m(G) = m(G). حال اگر r = r، آنگاه گوییم G تشخیص پذیر است. در این مقاله نشان میدهیم که گروه سادهی $G_r(q)$ به ازای $r \leq q \leq q$

كلمات كليدى: تشخيص پذيرى، بزرگترين مرتبهي عضوهاي گروه، گروه ساده.