Journal of Algebraic Systems

Vol. 8, No. 1, (2020), pp 103-111

A NEW CHARACTERIZATION OF SIMPLE GROUP $G_{2}(q)$ WHERE $q \leqslant 11$

M. BIBAK, GH. REZAEEZADEH* AND E. ESMAEILZADE

Abstract

In this paper, we prove that every finite group G with the same order and largest element order as $G_{2}(q)$, where $q \leq 11$ is necessarily isomorphic to the group $G_{2}(q)$.

1. Introduction

Let G be a finite group and $\pi_{e}(G)$ denote the set of element orders of G. In 1987, Shi [15] posed the following conjecture:

Conjecture. If G is a finite group and M is a finite simple group. Then $G \cong M$ if and only if $|G|=|M|$ and $\pi_{e}(G)=\pi_{e}(M)$.

Mazurov et al. [16] proved that this conjecture is valid for all finite simple groups. Some other researchers studied the characterization of finite simple groups by using fewer conditions. For example, He and Chen $[2,6,8]$ proved that the simple K_{3}-groups, sporadic simple groups and $L_{2}(q)$ with $q \leq 125$ are determined by their orders and the largest, the second largest and the third largest element orders. They also characterized in $[7,9]$ some simple K_{4}-groups, $G_{2}(3), G_{2}(4)$ and $G_{2}(5)$ by using the group orders and the largest element orders. In the following, it is proved that the simple K_{4}-groups of type $L_{2}(q)$, the simple K_{5}-groups of type $L_{3}(p)$ with $(3, p-1)=1$, Suzuki groups $S z(q)$ where $q-1$ or $q \pm \sqrt{2 q}+1$ is a prime number and $L_{2}(p)$ such that $p \neq 7$

[^0]is a prime number can be uniquely determined by their orders and the largest element orders $[5,12,13,18]$. In this paper, our main aim is to prove the following theorem:

Theorem 1.1. The simple groups $G_{2}(7), G_{2}(8), G_{2}(9)$ and $G_{2}(11)$ are recognizable by their order and the largest element orders.

From this, the following corollary is derived.
Corollary 1.2. The simple groups $G_{2}(q)$, with $q \leq 11$ are recognizable by their order and the largest element orders.

Throughout this paper, we use the following definitions and notations: The prime graph $\Gamma(G)$ of a group G is a simple graph whose vertices are the primes dividing the group order of G and two vertices p and q are joined by an edge if and only if $p q \in \pi_{e}(G)$. Denote by $T(G)=\left\{\pi_{i}(G) \mid 1 \leq i \leq t(G)\right\}$ the set of all connected components of the graph $\Gamma(G)$, where $t(G)$ is the number of connected components of $\Gamma(G)$. If the order of G is even, we assume that $2 \in \pi_{1}(G)$. The socle of G is the subgroup generated by the set of all minimal normal subgroup of G; it is denoted by $\operatorname{Soc}(G)$. For $p \in \pi(G)$, we denote by $\operatorname{Syl} l_{p}(G)$ and G_{p} the set of all Sylow p-subgroups of G and a Sylow p-subgroup of G, respectively. Also, we denote the highest power of p dividing the order of G by $e_{p}(G)$.

2. Preliminaries

In this section, we consider some results which will be needed for our further investigations.

The set $\pi_{e}(G)$ is closed and partially ordered by the divisibility relation; therefore, it is determined uniquely from the subset $\mu(G)$ of all maximal elements of $\pi_{e}(G)$ with respect to divisibility.

Lemma 2.1. [4, 11] Let q be a power of a prime p. Then
(a) $\mu\left(G_{2}(q)\right) \subseteq\left\{8,12,2,2(q \pm 1), q^{2}-1, q^{2} \pm q+1\right\} \subseteq \pi_{e}\left(G_{2}(q)\right)$ for $p=2$;
(b) $\mu\left(G_{2}(q)\right)=\left\{p^{2}, p(q \pm 1), q^{2}-1, q^{2} \pm q+1\right\}$ for $p=3,5$;
(c) $\mu\left(G_{2}(9)\right)=\left\{p(q \pm 1), q^{2}-1, q^{2} \pm q+1\right\}$ for $p>5$;

As an immediate consequence of Lemma 2.1, we have the following corollary.
Corollary 2.2. The following statements hold:
(a) $\mu\left(G_{2}(7)\right)=\{42,43,48,56,57\}$;
(b) $\mu\left(G_{2}(8)\right) \subseteq\{8,12,14,18,57,63,73\}$;
(c) $\mu\left(G_{2}(9)\right)=\{72,73,80,81,90,91\}$;
(d) $\mu\left(G_{2}(11)\right)=\{110,111,120,132,133\}$.

The following lemma is useful in dealing with a Frobenius group.
Lemma 2.3. [10] Let G be a Frobenius group with kernel K and complement H. Then
(a) K is a nilpotent group;
(b) $|H|$ divide $|K|-1$;
(c) $t(G)=2$ and the prime graph component of G are $\pi(H)$ and $\pi(K)$.
(d) Every non-identity element of H induces by conjugation an automorphism of K which is fixed-point-free.

Definition 2.4. A group G is a 2 -Frobenius group if there exists a normal series $1 \unlhd H \unlhd K \unlhd G$ such that K and $\frac{G}{H}$ are Frobenius groups with kernels H and $\frac{K}{H}$, respectively.
Lemma 2.5. [1] Let G be a 2-Frobenius group of even order. Then $t(G)=2$ and G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $\pi\left(\frac{K}{H}\right)=\pi_{2}$, $\pi(H) \cup \pi\left(\frac{G}{K}\right)=\pi_{1}$ and $\left|\frac{G}{K}\right|$ divides $\left|\operatorname{Aut}\left(\frac{K}{H}\right)\right|$. Moreover, H is a nilpotent group and G is a solvable group.

The structure of finite groups with non-connected prime graph is described in the following lemma.
Lemma 2.6. [17] Let G be a finite group with $t(G) \geq 2$. Then one of the following statments hold:
(a) G is a Frobenius or a 2-Frobenius group;
(b) G has a normal series $1 \unlhd H \unlhd K \unlhd G$ where H is a nilpotent π_{1}-group, $\frac{K}{H}$ is a non-abelian simple group and $\frac{G}{K}$ is a π_{1}-group such that $\left|\frac{G}{K}\right|$ divides $\left|\operatorname{Out}\left(\frac{K}{H}\right)\right|$. Moreover, each odd order components of G is also an odd order component of $\frac{K}{H}$.
Lemma 2.7. [14] Let $R=R_{1} \times R_{2} \times \cdots \times R_{k}$, where R_{i} is a direct product of n_{i} isomorphic copies of a simple group H_{i}, where H_{i} and H_{j} are not isomorphic if $i \neq j$. Then $\operatorname{Aut}(R) \cong \operatorname{Aut}\left(R_{1}\right) \times \operatorname{Aut}\left(R_{2}\right) \times$ $\cdots \times \operatorname{Aut}\left(R_{k}\right)$ and $\operatorname{Aut}\left(R_{i}\right) \cong \operatorname{Aut}\left(H_{i}\right) 2 \mathbb{S}_{n_{i}}$ where in this wreath product Aut $\left(H_{i}\right)$ appears in its right regular representation and the symmetric group $\mathbb{S}_{n_{i}}$ in its natural permutation representation. Moreover, these isomorphisms induce isomorphisms $\operatorname{Out}(R) \cong \operatorname{Out}\left(R_{1}\right) \times \operatorname{Out}\left(R_{2}\right) \times$ $\cdots \times \operatorname{Out}\left(R_{k}\right)$ and $\operatorname{Out}\left(R_{i}\right) \cong \operatorname{Out}\left(H_{i}\right)\left\langle\mathbb{S}_{n_{i}}\right.$.
Lemma 2.8. [3] Let G be a group and N be a normal subgroup of G with order $p^{n}, n \geq 1$. If $(r,|\operatorname{Aut}(N)|)=1$, where $r \in \pi(G)$, then G has an element of order pr.

Table 1.

S	$\|S\|$	$\|\operatorname{Out}(S)\|$	S	$\|S\|$	Out(S)\|
\mathbb{A}_{5}	$2^{2} \cdot 3 \cdot 5$	2	$L_{2}(19)$	$2^{2} \cdot 3^{2} \cdot 5 \cdot 19$	2
\mathbb{A}_{6}	$2^{3} \cdot 3^{2} \cdot 5$	2^{2}	J_{1}	$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$	1
$U_{4}(2)$	$2^{6} \cdot 3^{4} \cdot 5$	2	$L_{3}(11)$	$2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11^{3} \cdot 19$	2
$L_{2}(7)$	$2^{3} \cdot 3 \cdot 7$	2	$L_{2}(27)$	$2^{2} \cdot 3^{2} \cdot 19 \cdot 37$	6
$L_{2}(8)$	$2^{3} \cdot 3^{2} \cdot 7$	3	$L_{2}\left(11^{3}\right)$	$2^{2} \cdot 3^{2} \cdot 5.7 \cdot 11^{3} \cdot 19.37$	6
$U_{3}(3)$	$2^{5} \cdot 3^{3} .7$	2	$G_{2}(11)$	$2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7.11^{6} \cdot 19.37$	1
\mathbb{A}_{7}	$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$	2	$L_{2}\left(7^{3}\right)$	$2^{3} \cdot 3^{2} \cdot 7^{3} \cdot 19.43$	6
$L_{2}(49)$	$2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}$	2^{2}	$G_{2}(7)$	$2^{8} \cdot 3^{3} \cdot 7^{6} \cdot 19.43$	1
$U_{3}(5)$	$2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$	6	$U_{3}(7)$	$2^{7} \cdot 3 \cdot 7^{3} .43$	1
$L_{3}(4)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	12	$L_{3}(8)$	$2^{9} \cdot 3^{2} \cdot 7^{2} .73$	6
\mathbb{A}_{8}	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	2	$L_{2}\left(2^{9}\right)$	$2^{9} \cdot 3^{3} \cdot 7.19 .73$	9
A_{9}	$2^{6} \cdot 3^{4} \cdot 5 \cdot 7$	2	$G_{2}(8)$	$2^{18} \cdot 3^{5} \cdot 7^{2} \cdot 19.37$	3
\mathbb{A}_{10}	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7$	2	$U_{3}(9)$	$2^{5} \cdot 3^{6} \cdot 5^{2} .73$	2
$U_{4}(3)$	$2^{7} \cdot 3^{6} \cdot 5 \cdot 7$	8	${ }^{3} D_{4}(3)$	$2^{6} \cdot 3^{12} \cdot 7^{2} .13^{2} .73$	1
$S_{4}(7)$	$2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7^{4}$	2	$L_{2}\left(3^{7}\right)$	$2^{3} \cdot 3^{6} \cdot 5.7 \cdot 13 \cdot 73$	14
$S_{6}(2)$	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7$	1	$L_{2}\left(3^{6}\right)$	$2^{3} \cdot 3^{6} \cdot 5.7 .13 .73$	12
$O_{8}^{+}(2)$	$2^{12} \cdot 3^{5} \cdot 5^{2} \cdot 7$	6	$S_{4}(27)$	$2^{6} \cdot 3^{12} \cdot 5 \cdot 7^{2} .13^{2} .73$	6
$L_{2}(11)$	$2^{2} \cdot 3 \cdot 5 \cdot 11$	3	$G_{2}(9)$	$2^{8} \cdot 3^{12} \cdot 5^{2} \cdot 7.13 .73$	4
M_{11}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$	1			
M_{12}	$2^{6} \cdot 3^{3} \cdot 5 \cdot 11$	2			

3. Main results

In this section, we study the characterization problem of the simple groups $G_{2}(q)$ for $q \in\{7,8,9,11\}$ by their orders and the largest element orders. We denote the largest element order of G by $m(G)$.

Proposition 3.1. If G is a finite group such that $m(G)=m\left(G_{2}(7)\right)$ and $|G|=\left|G_{2}(7)\right|$, then $G \cong G_{2}(7)$.

Proof. According to Corollary 2.2, $m\left(G_{2}(7)\right)=57$. Since $|G|=\left|G_{2}(7)\right|=$ $2^{8} .3^{3} .7^{6} .19 .43$ and $m(G)=m\left(G_{2}(7)\right)=57$, it follows that 43 is an isolated vertex of $\Gamma(G)$, and therefore $t(G) \geq 2$. Now, we show that G is neither Frobenius group nor 2-Frobenius group.

Assume that $G=K H$ is a Frobenius group with kernel K and complement H. By Lemma 2.3(c), $T(G)=\{\pi(H), \pi(K)\}$. Since $|H|$ divides $|K|-1$ by Lemma 2.3(b), it follows that $|H|=43$ and $|K|=$ $2^{8} .3^{3} .7^{6} .19$. Let $K_{19} \in S y l_{19}(K)$, then by nilpotency of K we have $K_{19} \unlhd G$. Hence, H acts on K_{19} by conjugation. This action is fixed-point-free on K_{19}, by Lemma 2.3(d), and so $K_{19} H$ is a Frobenius group. Therefore by Lemma 2.3(b), $|H|\left|\left|K_{19}\right|-1\right.$ which implies that 43$| 19-1$, a contradiction.

Suppose that G is a 2 -Frobenius group. By Lemma 2.5, G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $\pi(H) \cup \pi\left(\frac{G}{K}\right)=\pi_{1}, \pi\left(\frac{K}{H}\right)=\pi_{2}$ and $\left|\frac{G}{K}\right|\left|\left|\operatorname{Aut}\left(\frac{K}{H}\right)\right|\right.$. As 43 is an isolated vertex of $\Gamma(G)$, it follows that $\pi(H) \cup \pi\left(\frac{G}{K}\right)=\{2,3,7,19\}$ and $\left|\frac{K}{H}\right|=43$. Since $\left|\frac{G}{K}\right|\left|\left|\operatorname{Aut}\left(\frac{K}{H}\right)\right|=42\right.$,
we conclude that $19 \in \pi(H)$. Let $H_{19} \in S y l_{19}(H)$, then H_{19} is a normal Sylow 19-subgroup of G by nilpotency of H. Because of $\left(43,\left|\operatorname{Aut}\left(H_{19}\right)\right|\right)=1$, Lemma 2.8 implies that $19.43 \in \pi_{e}(G)$, a contradiction.

Hence Lemma 2.6(b) implies that G has a normal series $1 \unlhd H \unlhd K \unlhd G$, where $\frac{K}{H}$ is a non-abelian simple group and $\frac{G}{K}$ is a π_{1}-group such that $\left|\frac{G}{K}\right|\left|\left|\operatorname{Out}\left(\frac{K}{H}\right)\right|\right.$. Moreover, each odd order component of G is an odd order component of $\frac{K}{H}$. Therefore 43 is an isolated vertex of prime graph of $\frac{K}{H}$. Now, according to the results collected in Table 1, we deduce that $\frac{K}{H}$ is isomorphic to one of the following groups: $L_{2}\left(7^{3}\right)$ or $G_{2}(7)$.

If $\frac{K}{H}$ is isomorphic to $L_{2}\left(7^{3}\right)$, then $\left(\left|\frac{G}{K}\right|, 19\right)=1$ by $\left|\operatorname{Out}\left(\frac{K}{H}\right)\right|=6$ and so the Sylow 19-subgroup of H is of order 19 and is normal in G. Since $\left(43,\left|\operatorname{Aut}\left(H_{19}\right)\right|\right)=1$, it follows that G has an element of order 19.43 by Lemma 2.8, which is a contradiction.

Therefore, $\frac{K}{H}$ is isomorphic to $G_{2}(7)$ and since $|G|=\left|G_{2}(7)\right|$, we obtain $|H|=1$ and $G \cong G_{2}(7)$.

Proposition 3.2. If G is a finite group such that $m(G)=m\left(G_{2}(8)\right)$ and $|G|=\left|G_{2}(8)\right|$, then $G \cong G_{2}(8)$.

Proof. By Corollary 2.2, $m\left(G_{2}(8)\right)=73$. As $|G|=\left|G_{2}(8)\right|=2^{18} .3^{5} .7^{2} .19$.73 and $m(G)=m\left(G_{2}(8)\right)=73$, it follows that 73 is an isolated vertex of $\Gamma(G)$ and $t(G) \geq 2$.

Suppose that G is a Frobenius group with kernel K and complement H. Then by Lemma 2.3(b), $|H|$ divides $|K|-1$ and so $|H|<|K|$, moreover $T(G)=\{\pi(H), \pi(K)\}$. Therefore, we have $|H|=73$ and $19 \in \pi(K)$. Now, by using the same technique as in the proof of Proposition 3.1, we get that $H K_{19}$ is a Frobenius group. Hence $|H|$ divides $\left|K_{19}\right|-1$, namely, $73 \mid 19-1$, a contradiction.

Assume that G is a 2-Frobenius group. By Lemma 2.5, G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $\pi(H) \cup \pi\left(\frac{G}{K}\right)=\{2,3,7,19\}$ and $\left|\frac{K}{H}\right|=73$. Since $\left|\frac{G}{K}\right|\left|\left|\operatorname{Aut}\left(\frac{K}{H}\right)\right|=72\right.$, it follows that $19 \in \pi(H)$. Let $H_{19} \in S l y_{19}(H)$, then by nilpotency of H we have $H_{19} \unlhd G$ and so by Lemma 2.8, $19.73 \in \pi_{e}(G)$ since $\left(73,\left|\operatorname{Aut}\left(H_{19}\right)\right|\right)=1$, a contradiction.

Therefore by Lemma 2.6(b), it follows that $\frac{K}{H}$ is a non-abelian simple group and $\frac{G}{K}$ is a π_{1}-group such that $\left|\frac{G}{K}\right|\left|\left|\operatorname{Out}\left(\frac{K}{H}\right)\right|\right.$. In addition, each odd-order component of G is also an odd order component of $\frac{K}{H}$. So 73 is an isolated vertex in $\Gamma\left(\frac{K}{H}\right)$. Now, Table 1 shows us that $\frac{K}{H}$ is isomorphic to $L_{2}\left(2^{9}\right)$ or $G_{2}(8)$.

If $\frac{K}{H} \cong L_{2}\left(2^{9}\right)$, then $19||H|$ because $| \frac{G}{K}\left|\left|\left|\operatorname{Out}\left(\frac{K}{H}\right)\right|=9\right.\right.$. Moreover, as $\left(73,\left|\operatorname{Aut}\left(H_{19}\right)\right|\right)=1$, it follows that $19.73 \in \pi_{e}(G)$ by Lemma 2.8, which is a contradiction.

Therefore, we have $\frac{K}{H} \cong G_{2}(8)$. Because $|G|=\left|G_{2}(8)\right|$, we can get that $|H|=1$, and thus $G \cong G_{2}(8)$.

Proposition 3.3. If G is a finite group such that $m(G)=m\left(G_{2}(9)\right)$ and $|G|=\left|G_{2}(9)\right|$, then $G \cong G_{2}(9)$.

Proof. In this case, we have $|G|=\left|G_{2}(9)\right|=2^{8} .3^{12} \cdot 5^{2} .7 .13 .73$ and $m(G)=m\left(G_{2}(9)\right)=91$. Hence 73 is an isolated vertex in the prime graph of G and $t(G) \geq 2$.

By similar argument as in the proof of Propositions 3.1 and 3.2, one can show that G is not a Frobenius group and 2-Frobenius group. So it follows by Lemma 2.6 that G has a normal series $1 \unlhd H \unlhd K \unlhd G$, where $\frac{K}{H}$ is a non-abelian simple group and $\frac{G}{K}$ is a π_{1}-group such that $\left|\frac{G}{K}\right|\left|\left|\operatorname{Out}\left(\frac{K}{H}\right)\right|\right.$. Thus 73 is an isolated vertex of the prime graph of G. Now, according to the results in Table 2, it follows that $\frac{K}{H} \cong L_{2}\left(3^{6}\right)$ or $G_{2}(9)$.

If $\frac{K}{H} \cong L_{2}\left(3^{6}\right)$, then $13 \in \pi(H)$ by $\left|\operatorname{Out}\left(\frac{K}{H}\right)\right|=12$. Moreover, since $\left(73,\left|\operatorname{Aut}\left(H_{13}\right)\right|\right)=1$, Lemma 2.8 implies that $13.73 \in \pi_{e}(G)$, which is impossible.

Thus $\frac{K}{H} \cong G_{2}(9)$. Since $|G|=\left|G_{2}(9)\right|$, we deduce that $|H|=1$ and $G \cong G_{2}(9)$.

Proposition 3.4. If G is a finite group such that $m(G)=m\left(G_{2}(11)\right)$ and $|G|=\left|G_{2}(11)\right|$, then $G \cong G_{2}(11)$.

Proof. Since $|G|=\left|G_{2}(11)\right|=2^{6} .3^{3} .5^{2} .7 .11^{6} .19 .37$ and also $m(G)=$ $m\left(G_{2}(11)\right)=133$, we have $5.37 \notin \pi_{e}(G)$ and $19.37 \notin \pi_{e}(G)$. Now, we divide the proof into two steps:

Step 1. Let K be the maximal normal solvable subgroup of G, Then K is a $\{5,19,37\}^{\prime}$-group. In particular, G is non-solvable.
Assume first that $\{p, q, r\}=\{5,19,37\}$ and $\{p, q, r\} \subseteq \pi(K)$. Since K is solvable, it includes the solvable Hall $\{19,37\}$-subgroup, which is a cyclic subgroup of order 19.37. Hence $19.37 \in \pi_{e}(K) \subseteq \pi_{e}(G)$, a contradiction.

Next, we assume that $\{p, q\} \subseteq \pi(K)$ and $r \notin \pi(K)$. Let T be a $\{p, q\}$-Hall subgroup of K of order $p^{i} q$, where $i=1$ or 2 . By calculating the number of Sylow subgroups of T, we get that T is a nilpotent subgroup of G.

If $\{p, q\} \neq\{5,19\}$, then $p \cdot q \in \pi_{e}(K) \subseteq \pi_{e}(G)$, a contradiction.

If $\{p, q\}=\{5,19\}$, then K is a $\{2,3,7,11, p\}$-group. Let K_{p} be a Sylow p-subgroup of K. By Frattini argument, we have $G=K N_{G}\left(K_{p}\right)$. Since $37 \notin \pi(K), 37$ must divide $\left|N_{G}\left(K_{p}\right)\right|$ and so $N_{G}\left(K_{p}\right)$ contains an element x of order 37. Now, it is seen that $\langle x\rangle K_{p}$ is a nilpotent subgroup of order $p^{i} .37$, where $i=1$ or 2 and so $p .37 \in \pi_{e}(K) \subseteq \pi_{e}(G)$, a contradiction.

Finally, assume that $\{p, q\} \cap \pi(K)=\emptyset$ and $r \in \pi(K)$. In this case, K is a $\{2,3,7,11, r\}$-group and we consider a Sylow r-subgroup K_{r} of K. Again using the Frattini argument, we have $G=K N_{G}\left(K_{r}\right)$. Since $\{p, q\} \cap \pi(K)=\emptyset$, it follows that p and q must divide $\left|N_{G}\left(K_{r}\right)\right|$ and thus $N_{G}\left(K_{r}\right)$ contains two elements of orders p and q, say x and y, respectively. Obviously, $\langle x\rangle K_{r}$ and $\langle y\rangle K_{r}$ are nilpotent subgroups of orders $p . r^{i}$ and $q \cdot r^{i}$, where $i=1$ or 2 , which implies that $\{p \cdot r, q \cdot r\} \subseteq \pi_{e}(G)$, a contradiction. Therefore, K is a $\{5,19,37\}^{\prime}$-group. In addition, since $G \neq K$ hence G is non-solvable.

Step 2. The quotient $\frac{G}{K}$ is an almost simple group. In fact, we have $S \leq \frac{G}{K} \lesssim \operatorname{Aut}(S)$, where S is a finite non-abelian simple group.
Let $\bar{G}=\frac{G}{K}$ and $S=\operatorname{Soc}(\bar{G})$. Since G is non-solvable group, it follows that $S=P_{1} \times P_{2} \times \cdots \times P_{m}$ where P_{i} 's are finite non-abelian simple groups and $S \unlhd \bar{G} \lesssim \operatorname{Aut}(S)$. Since $\pi\left(P_{i}\right) \subseteq \pi(G)=\{2,3,5,7,11,19,37\}$, from Table 1 it follows that the simple group P_{i} is isomorphic to one of tha following simple groups:

$$
\begin{aligned}
& A_{5}, A_{6}, L_{2}(7), L_{2}(8), U_{3}(3), A_{7}, L_{3}(4), A_{8}, L_{2}(11), M_{11}, M_{12}, L_{2}(19) \\
& J_{1}, L_{3}(11), L_{2}(37), U_{3}(11), L_{2}\left(11^{3}\right), G_{2}(11)
\end{aligned}
$$

It is clear that $\{5,19,37\} \subseteq \pi(\bar{G}) \subseteq \pi(\operatorname{Aut}(S))$, because K is a $\{5,19,37\}^{\prime}$-group. Now, we claim that $\{p, q, r\}=\{5,19,37\} \subseteq \pi(S)$. Assume to the contrary that $r \notin \pi(S)$. Then $r \in \pi(\operatorname{Out}(S))$ because $r||\operatorname{Aut}(S)|$ and $r \nmid| \operatorname{Inn}(S) \mid$. By Lemma 2.7, $\operatorname{Out}(S)=\operatorname{Out}\left(S_{1}\right) \times$ $\operatorname{Out}\left(S_{2}\right) \times \cdots \times \operatorname{Out}\left(S_{k}\right)$, where each S_{j} is a direct product of isomorphic $P_{i}^{\prime} s$ such that $S \cong S_{1} \times S_{2} \times \cdots \times S_{k}$. Therefore, $r\left|\left|\operatorname{Out}\left(S_{j}\right)\right|\right.$ for some j, where S_{j} is a direct product of t isomorphic simple groups P_{i}. By Lemma 2.7, we obtain $|\operatorname{Out}(S)|=\left|\operatorname{Out}\left(P_{i}\right)\right|^{t} . t$!. Since r does not divide $\left|\operatorname{Out}\left(P_{i}\right)\right|$ by Table 1, it follows that $r \mid t$. Therefore, $t \geq r \geq 5$ and hence 2^{10} must divides the order of G, which is a contradiction.

Now, using the facts that $\{5,19,37\} \subseteq \pi(S)$ and order consideration, it is easily checked from Table 1 , that $S \cong L_{2}\left(11^{3}\right)$ or $G_{2}(11)$.

If $S \cong L_{2}\left(11^{3}\right)$, then we have $e_{5}(\operatorname{Aut}(S))=1$ while $e_{5}(G)=2$, and this forces $5 \in \pi(K)$, which is a contradiction. Therefore $S \cong G_{2}(11)$
and so $G_{2}(11) \leq \frac{G}{K} \lesssim \operatorname{Aut}\left(G_{2}(11)\right)$. Now, by the fact that $|G|=$ $\left|G_{2}(11)\right|$, it follows that $K=1$ and $G \cong G_{2}(11)$.

References

1. G. Y. Chen, On structure of frobenius groups and 2-frobenius groups, J. Southwest China Normal Univ., 20 (1995), 485-487.
2. G. Y. Chen, L. G. He and J. H. Xu, A new characterization of sporadic simple groups, Ital. J. Pure Appl. Math., 30 (2013), 373-392.
3. Y. H. Chen, G. Y. Chen and J. B. Li, Recognizing simple K_{4}-groups by few special conjugacy class sizes, Bull. Malays. Math. Sci. Soc., 38 (2015), 51-72.
4. D. Deriziotis, Conjugacy class and centralizers of semisimple elements in finite groups of lie type, Vorlesungen Fachbereich Math. Univ. Essen 1984.
5. B. Ebrahimzadeh, A. Iranmanesh, A. Tehranian and H. Parvizi Mosaed, A characterization of Suzuki groups by order and the largest element order, J. Sci. I. R. Iran. 27 (2016), 353-355.
6. L. G. He and G. Y. Chen, A new characterization of $L_{2}(q)$ where $q=p^{n}<125$, Ital. J. Pure Appl. Math., 28 (2011), 127-136.
7. L. G. He and G. Y. Chen, A new characterization of some simple groups, J. Sichuan Normal Univ. (Natur. Sci)., 35 (2012), 590-594.
8. L. G. He and G. Y. Chen, A new characterization of simple K_{3}-groups, Comm. Algebra, 40 (2012), 3903-3911.
9. L. G. He and G. Y. Chen, A new characterization of simple K_{4}-groups, J. Math. Research Appl. 35 (2015), 400-406.
10. D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
11. W. M. Kantor and A. Seress, Prime power graphs for groups of Lie type, J. Algebra, 247 (2002), 370-434.
12. J. B. Li, W. J. Shi and D. P. Yu, A characterization of some $P G L(2, q)$ by maximum element orders, Bull. Korean Math. Soc., 52 (2015), 2025-2034.
13. J. B. Li, D. P. Yu, G. Y. Chen and W. J. Shi, A new characterization of simple K_{4}-groups of type $L_{2}(q)$ and their automorphism groups, Bull. Iran. Math. Soc., 43 (2017), 501-514.
14. J. S. Robinson Derek, A Course in the Theory of Groups, second edition, Springer Verlag, New York, 2003.
15. W. J. Shi, A new characterization of the sporadic simple groups, Group theory, Walter de Gruytern, Berlin-New York. (1989), 531- 540.
16. A. V. Vaseliev, M. A. Grechkoseeva and V. D. Mazurov, Characterization of finite simple groups by spectrume and order, Algebra Logic, 48 (2009), 385-409.
17. J. S. Williams, Prime graph componeents of finite group, J. Algebra, 69 (1981), 487-513.
18. D. P. Yu, G. Y. Chen, L.G. Zhang and W. J. Shi, A new characterization of simple K_{5}-groups of type $L_{3}(p)$, Bull. Iran. Math. Soc., 45 (2019), 771-781.

Masoumeh Bibak

Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-
3697, Tehran, Iran.
Email: m.bibak@pnu.ac.ir

Gholamreza Rezaeezadeh

Faculty of Mathematical Sciences, Department of Pure Mathematics, University of Shahrekord, P.O. Box 88186-34141, Shahrekord, Iran.
Email: rezaeezadeh@sci.sku.ac.ir

Elham Esmaeilzadeh

Department of Mathematics, Payame Noor University (PNU), P.O. Box 193953697, Tehran, Iran.
Email: e.esmaeilzadeh@chmail.ir

Journal of Algebraic Systems

A NEW CHARACTERIZATION OF SIMPLE GROUP $G_{2}(q)$ WHERE $q \leq 11$
M. BIBAK, GH. REZAEEZADEH AND E. ESMAEILZADE
ا دانشكده رياضى، دانشگاه پيام نور، تهران، ايران

 وجود داشته باشد بهطورىكه كه أه

كلمات كليدى: تشخيص پذيرى، بزرگترين مرتبهى عضوهاى گروه، گروه ساده.

[^0]: MSC(2010): Primary: 20D60; Secondary: 20D06.
 Keywords: Characterization, simple group, largest element order. Received: 16 November 2018, Accepted: 27 December 2019.

 * Corresponding author.

