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A GENERALIZATION OF PRIME HYPERIDEALS

M. ANBARLOEI∗

Abstract. Let R be a multiplicative hyperring. In this paper, we
introduce and study the concept of n-absorbing hyperideal which is
a generalization of prime hyperideal. A proper hyperideal I of R is
called an n-absorbing hyperideal of R if whenever α1o . . . oαn+1 ⊆
I for α1, . . . , αn+1 ∈ R, then there are n of the α,

is whose product
is in I.

1. Introduction

The theory of algebraic hyperstructures was first initiated by Marty
in 1934 [13] when he defined the hypergroups. Since then, several books
and hundreds of papers have been written on this topic. A short review
of the theory of hyperstructures appears in [5, 6, 9, 14, 15, 19].

The hyperrings were introduced and studied by different researchers.
Contrary to classical algebra, in hyperstructure theory, there are vari-
ous kinds of hyperrings. One important class of hyperrings was intro-
duced by Rota in 1982, where the multiplication is a hyperoperation,
while the addition is an operation, which is called multiplicative hy-
perrings [16]. Moreover, there exists a general type of hyperrings that
both the addition and multiplication are hyperoperations. This type
of hyperrings can be found in [20]. For more study on other types of
hyperrings, we refer to [9].

The notion of prime ideal, which is a generalization of the notion
of prime number in the ring of integers, plays a prominent role in
the theory of rings. Badawi [3] and later Anderson and Badawi [4]
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introduced the concepts of 2-absorbing ideals and n-absorbing ideals
which are two generalizations of prime ideals. The concept of prime
and primary hyperideals in a multiplicative hyperring was introduced
by Dasgupta [7]. Afterward, the notion was investigated by Sevim et al.
[17]. Ghiasvand [2] introduced the concept of 2-absorbing hyperideal in
a multiplicative hyperring which is a generalisation of prime hyperideal.
Several authors have extended and generalized this concept in several
ways [11, 12, 18]. Let R be a multiplicative hyperring. A proper
hyperideal I of R is siad to be a 2-absorbing hyperideal of R if xoyoz ⊆
I for x, y, x ∈ R then xoy ⊆ I or xoz ⊆ I or yoz ⊆ I.

In this paper, we introduce and study the concept of n-absorbing
hyperideal in a multiplicative hyperring and obtain their basic proper-
ties.

The paper is organized as follows. In Section 2, we give some defini-
tions and notions from some references which we need to develop our
paper. In Section 3, we introduce the notion of n-absorbing hyperideal.
In Section 4, we study many properties of n-absorbing hyperideas. Fi-
nally, in Section 5, we study the stability of n-absorbing hyperideals
with respect to various hyperring-theoric constructions.

2. Preliminaries

In this section we give some definitions and results of the hyperstruc-
ture which we need to develop our paper.

A triple (R,+, o) is called a multiplicative hyperring if
(1) (R,+) is an abelian group;
(2) (R, o) is semihypergroup;
(3) for all a, b, c ∈ R, we have ao(b+ c) ⊆ aob+ aoc and (b+ c)oa ⊆

boa+ coa;
(4) for all a, b ∈ R, we have ao(−b) = (−a)ob = −(aob).

If in (2) the equality holds, then we say that the multiplicative hyper-
ring is strongly distributive. We assume throughout this paper that all
multiplicative hyperrings are strongly distributive. For any two non-
empty subsets A and B of R and x ∈ R, we define

AoB =
∪

a∈A, b∈B

aob, Aox = Ao{x}

A non-empty subset I of R is a hyperideal of R if
(1) a, b ∈ I, then a− b ∈ I;
(2) x ∈ I and r ∈ R, then rox ⊆ I.
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Definition 2.1. [7] A proper hyperideal P of R is called a prime hy-
perideal of R if αoβ ⊆ P for α, β ∈ R implies that α ∈ P or β ∈ P .
The intersection of all prime hyperideals of R containing I is called
the prime radical of I, being denoted by r(I). If the multiplicative hy-
perring R does not have any prime hyperideal containing I, we define
r(I) = R.
Definition 2.2. [7] A proper hyperideal Q of R is called a primary
hyperideal of R if αoβ ⊆ Q for α, β ∈ R implies that α ∈ Q or βn ⊆ Q
for some n ∈ N. We refer to the prime hyperideal P = r(Q) as the
associated prime hyperideal of Q and on the other hand Q is referred
to as a P -primary hyperideal of R.
Definition 2.3. [7] Let C be the class of all finite products of elements
of R i.e. C = {r1or2o...orn | ri ∈ R, n ∈ N} ⊆ P ∗(R). A hyperideal I
of R is said to be a C-hyperideal of R, if whenever A ∩ I ̸= ∅ for any
A ∈ C, then A ⊆ I.
Theorem 2.4. [7, Proposition 3.2] Let I be a hyperideal of R. Then,
D ⊆ r(I) where D = {r ∈ R | rn ⊆ I for some n ∈ N}. The equality
holds when I is a C-hyperideal of R.

In this paper, we assume that all hyperideals are C-hyperideal.
Definition 2.5. [8] Let U = {

∑n
i=1Ai | Ai ∈ C, n ∈ N} and C =

{r1or2o...orn | ri ∈ R, n ∈ N}. A hyperideal I of R is called a strong
C-hyperideal of R if whenever E ∩ I ̸= ∅ for any E ∈ U, then E ⊆ I.
Definition 2.6. [9] Let (R1,+1, o1) and (R2,+2, o2) be multiplica-
tive hyperrings. A mapping f from R1 into R2 is said to be a good
homomorphism if for all a, b ∈ R1, f(a +1 b) = f(a) +2 f(b) and
f(ao1b) = f(a)o2f(b).
Definition 2.7. [1] Let R be a multiplicative hyperring and I, J be
hyperideals of R with scalar identity 1. We said that I, J are coprime
(comaximal) if I + J = R.

Let I, J be two hyperideals of R. We define
(I :R J) = {α ∈ R | αoJ ⊆ I}.

3. on n-absorbing hyperideals of multiplicative
hyperrings

Definition 3.1. Let R be a multiplicative hyperring. A proper hy-
perideal I of R is called an n-absorbing hyperideal of R if whenever
α1o . . . oαn+1 ⊆ I for α1, . . . , αn+1 ∈ R, then there are n of the α,

is
whose product is in I.
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Example 3.2. Let (Z,+, ·) be the ring of integers. We define the
hyperoperation a ⊙ b = {2ab, 4ab}, for all a, b ∈ Z. Then (Z,+,⊙)
is a multiplicative hyperring. In this multiplicative hyperring, 15Z =
{15n | n ∈ Z} is an n-absorbing hyperideal for n ≥ 2 and 105Z =
{105n | n ∈ Z} is an n-absorbing hyperideal for n ≥ 3.
Example 3.3. Consider the ring (Z6,⊕,⊙) that for all x̄, ȳ ∈ Z6, x̄⊕ ȳ
and x̄⊙ ȳ are the remainder of x+y

6
and x.y

6
, respectively, which + and

· are ordinary addition and multiplication, and x, y ∈ Z. We define
the hyperoperation x̄ ⊡ ȳ = {xy, 2xy, 3xy, 4xy, 5xy}. Then (Z6,⊕,⊡)
is a commutative multiplicative hyperring and ¯{0} is an n-absorbing
hyperideal of Z6 for n ≥ 2.
Theorem 3.4. If P1, . . . , Pn are prime hyperideals of R, then P1∩· · ·∩
Pn is an n-absorbing hyperideal of R.
Proof. It is routine. □
Example 3.5. In the multiplicative hyperring of integers ZA with A =
{7, 11}, ⟨2⟩, ⟨3⟩ and ⟨5⟩ are prime hyperideals (see [7, Proposition 4.3]).
Hence, ⟨2⟩ ∩ ⟨3⟩ ∩ ⟨5⟩ is a 3-absorbing hyperideal of ZA, by Theorem
3.4.
Theorem 3.6. Let I be an n-absorbing hyperideal of R. Then r(I) is
an n-absorbing hyperideal of R and xn ⊆ I for all x ∈ r(I).
Proof. Let x ∈ r(I). Then xm ⊆ I for some m ∈ N. If m ≤ n, we
are done. If m > n, by using the n-absorbing property on products
xnoxk, we conclude that xn ⊆ I. Now, let x1o . . . oxn+1 ⊆ r(I) for
x1, . . . , xn+1 ∈ R. Then (x1o . . . oxn+1)

n = xn
1o . . . ox

n
n+1 ⊆ I. Since I is

an n-absorbing hyperideal of R, we may assume that xn
1o . . . ox

n
n ⊆ I.

Thus (x1o . . . oxn)
n ⊆ I, and so x1o . . . oxn ⊆ r(I), which implies r(I)

is an n-absorbing hyperideal of R. □
Let I be a proper hyperideal of R. It is clear that an n-absorbing

hyperideal is also an k-absorbing hyperideal for all integers k ≥ n.
If I is an n-absorbing hyperideal of R for some n ∈ N, then define
Abs(I) = min{n| I is an n-absorbing hyperideal of R}, otherwise, set
Abs(I) = ∞ (we will just write Abs(I) when the context is clear). We
define Abs(R) = 0. Hence for any hyperideal I of R, we get Abs(I) ∈
N∪ {0,∞} with Abs(I) = 1 if and only if I is a prime hyperideal of R
and Abs(I) = 0 if and only if I = R. Thus Abs(I) measures, in some
sense, how far I is from being a prime hyperideal of R.
Lemma 3.7. Let I ⊆ P be a hyperideal of R, where P is a prime
hyperideal. Then the following conditions are equivalent:
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(1) P is a minimal prime hyperideal of I.
(2) For each x ∈ P , there is a y /∈ P and a non-negative integer i

such that yoxi ⊆ I.

Proof. (=⇒) Let P be a minimal prime hyperideal of I and Q,
is be other

minimal prime hyperideals of I. Then r(I) = P ∩ (
∩

Qi∈Min(I)Qi).
Suppose that x ∈ P but x /∈ r(I). We may assume that x ∈ P ∩
(
∩t

i=1Qi) such that x /∈
∪

i≥t+1Qi. Take any w ∈
∩

i≥t+1Qi\P . Hence
we have wox ⊆ P ∩ (

∩t
i=1Qi) ∩ (

∩
i≥t+1Qi), that is wox ⊆ r(x). It

implies that (wox)n = wnoxn ⊆ I. Now we take y ∈ wn. Therefore
yoxn ⊆ I.
(⇐=) We assume that P is not a mimimal prime hyperideal of I and
look for a contradiction. Our assumption means that we have I ⊆
Q ⊆ P for some prime hyperideal Q of R. Let x ∈ P\Q. Hence we
have yoxn ⊆ I ⊆ Q for some n ∈ N. This is a contradiction, since
x, y /∈ Q. □

Theorem 3.8. Let I be a n-absorbing hyperideal of R. Then there are
at most n prime hyperideals of R that are minimal over I. Moreover,
|MinR(I)| ≤ Abs(I)

Proof. Assume that P1, . . . , Pn+1 are distinct prime hyperideals of R
minimal over I. Hence we get αi ∈ Pi\((

∪
j ̸=i Pj)∪Pn+1), for 1 ≤ i ≤ n.

By Lemma 3.7, we have βi ∈ R\Pi for 1 ≤ i ≤ n, such that βioα
ni
i ⊆ I

for some ni ∈ N. Since I ⊆ Pn+1 and αi /∈ Pn+1 for 1 ≤ i ≤ n, then for
1 ≤ i ≤ n, βioα

n−1
i ⊆ I, which implies (β1+· · ·+βn)oα

n−1
1 o . . . oαn−1

n ⊆
I. Since αi ∈ Pi \ (

∪
j ̸=i Pj) and βioα

n−1
i ⊆ I ⊆ P1 ∩ · · · ∩ Pn for

1 ≤ i ≤ n, then for 1 ≤ i ≤ n, βi ∈ (
∩

j ̸=i Pj) \ Pi, which means
β1+ · · ·+βn /∈ Pi for 1 ≤ i ≤ n. We have (β1+ · · ·+βn)

∏
j ̸=i α

n−1
j ⊈ Pi

for 1 ≤ i ≤ n, hence (β1 + · · ·+ βn)
∏

j ̸=i α
n−1
j ⊈ I for 1 ≤ i ≤ n. Since

I is an n-absorbing hyperideal of R, αn−1
1 o . . . oαn−1

n ⊆ I ⊆ Pn+1. It
implies that αi ∈ Pn+1 for some 1 ≤ i ≤ n, which is a contradiction.
Thus, there are at most n prime hypeideals of R minimal over I. The
last assertion is obvious. □

The converse of Theorem 3.8 is not true in general, as is shown in
the following example.

Example 3.9. Let (Z,+, ·) be the ring of integers. We define the
hyperoperation a ⋆ b = {2ab, 3ab}, for all a, b ∈ Z. Then (Z,+, ⋆) is a
multiplicative hyperring. In the hyperring, 12Z = {12n | n ∈ Z} is not
a 2-absorbing hyperideal of Z. However, 2Z and 3Z are minimal prime
hyperideals over 12Z.
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Lemma 3.10. Let P1, . . . , Pn be incomparable prime hyperideals of R,
and let I be an n-absorbing hyperideal of R such that I ⊆ P1∩ · · ·∩Pn.
If xt1

1 o . . . ox
tn
n ⊆ I for xi ∈ Pi\(

∪
j ̸=i Pj) and for positive integers ti,

then x1o . . . oxn ⊆ I.
Proof. Since I is an n-absorbing hyperideal of R, then there exist in-
tegers s1, . . . , sn with 0 ≤ si ≤ ti and s1 + · · · + sn = n such that
xs1
1 o . . . oxsn

n ⊆ I. Assume that for one of s,is, say s1, we have s1 = 0.
Therefore xt2

2 o . . . ox
tn
n ⊆ I, that is xt2

2 o . . . ox
tn
n ⊆ P1, which is a con-

tradiction. Hence x1o . . . oxn ⊆ I. □
Theorem 3.11. Let I be an n-absorbing strong C-hyperideal of R
such that exactly n prime hyperideals P1, . . . , Pnof R are mimimal over
I. Let uj ∈ Pj\(

∪
s ̸=j Ps) for every j ̸= i with 1 ≤ i, j ≤ n. Then

Pio
∏

j ̸=i uj ⊆ I.

Proof. Suppose that x ∈ Pi. If x ∈ Pi but x /∈
∪

j ̸=i Pj, then by
Theorem 3.6 and Lemma 3.10, we obtain xo

∏
j ̸=i uj ⊆ I. Let x ∈

Pi ∩ (
∪

j ̸=i Pj) and z ∈ Pj\(
∪

j ̸=i Pi). Now, we want to show that
there exists an element y ∈ R such that for every v ∈ yoz, v + x ∈
Pi\(

∪
i ̸=j Pj). Suppose that S = {t | x ∈ Pt, 1 ≤ t ≤ n, t ̸= i} and

T = {t | x /∈ Pt, 1 ≤ t ≤ n}. We assume that y ∈
∏

s∈T us. Since
zo

∏
s∈T us ⊆ Pt and x /∈ Pt for every t ∈ T , we conclude that v+x /∈ Pt

for every v ∈ yoz and t ∈ T . Also, since zo
∏

s∈T us ⊈ Pt for every
t ∈ T and x ∈ Pt for every t ∈ S, we infer v + x /∈ Pt for every v ∈ yoz
and t ∈ S. Hence v+x ∈ Pi\(

∪
j ̸=i Pj) for every v ∈ yoz. On the other

hand, by Theorem 3.6 and Lemma 3.10, we have (v + x)o
∏

j ̸=i uj ⊆ I

for every v ∈ yoz and zo
∏

j ̸=i uj ⊆ I. Hence we get (v+ x)o
∏

j ̸=i uj ⊆
(vo

∏
j ̸=i uj) + (xo

∏
j ̸=i uj) ⊆ (yozoΠj ̸=iuj) + (xoΠj ̸=iuj). Since I is an

n-absorbing strong C-hyperideal of R and (v + x)o
∏

j ̸=i uj ⊆ I, then
we have (yozo

∏
j ̸=i uj) + (xo

∏
j ̸=i uj) ⊆ I. Since yozo

∏
j ̸=i uj ⊆ I,

then we have xo
∏

j ̸=i uj ⊆ I. Consequently, Pio
∏

j ̸=i uj ⊆ I. □
Corollary 3.12. Let P1, . . . , Pn are incomparable prime hyperideals of
R such that x ∈ Pi for some 1 ≤ i ≤ n. Then there exists y ∈ R and
z ∈ Pi\(

∪
j ̸=i Pj) such that for every v ∈ yoz, v + x ∈ Pi\(

∪
j ̸=i Pj)

Theorem 3.13. Let I be an n-absorbing strong C-hyperideal of R. If
I has exactly n mimimal prime hyperideals, then P1o . . . oPn ⊆ I.
Proof. Let P1, . . . , Pn be exactly n mimimal prime hyperideals over
I. Suppose that for each 1 ≤ j ≤ n, xj ∈ Pj. By Lemma 3.11,
we have x1o

∏
2≤j≤n uj ⊆ I for some uj ∈ Pj\(P1 ∪ (

∪
i ̸=j Pi)) with

2 ≤ j ≤ n. Now, we assume that (x1o . . . oxs)
∏

s+1≤j≤n uj ⊆ I for
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some 1 ≤ s ≤ n − 1 and uj ∈ Pj\(P1 ∪ (
∪

i ̸=j Pi)) with s + 1 ≤ i ≤
n. We prove that (x1o . . . oxsoxs+1)

∏
s+2≤j≤n uj ⊆ I for every uj ∈

Pj\(P1 ∪ (
∪

i ̸=j Pi)) with s+ 2 ≤ i ≤ n. There exist elements ys+1 ∈ R

and zs+1 ∈ Ps+1\(
∪

i ̸=s+1 Pi) such that for every vs+1 ∈ ys+1ozs+1, we
have vs+1 + as+1 ∈ Ps+1\(

∪
i ̸=s+1 Pi), by Corollary 3.12. Thus we get

(x1o . . . oxs)o(vs+1 + xs+1)o
∏

s+2≤j≤n uj

⊆ ((x1o . . . oxs)ovs+1o
∏

s+2≤j≤n uj)+(x1o . . . oxsoxs+1o
∏

s+2≤j≤n uj).
Let us+1 = vs+1 + xs+1. Since I is an n-absorbing strong C-hyperideal
of R and (x1o . . . oxs)o

∏
s+1≤j≤n uj ⊆ I, then we have

(x1o . . . oxs)ovs+1o
∏

s+2≤j≤n

uj + (x1o . . . oxsoxs+1o
∏

s+2≤j≤n

uj) ⊆ I.

Since (x1o . . . oxs)ovs+1o
∏

s+2≤j≤n uj ⊆ I, then we obtain

(x1o . . . oxsoxs+1)o
∏

s+2≤j≤n

uj ⊆ I.

Now, let s = n − 1, then (x1o . . . oxn−1)o(vn + xn) ⊆ I for every vn ∈
ynozn. It means that x1o . . . oxn ⊆ I. Consequently, P1o . . . oPn ⊆
I. □
Theorem 3.14. Let P1, . . . , Pn be prime hyperideals of a hyperring R
that are pairwise coprime. Then I = P1o . . . oPn is an n-absorbing
hyperideal of R. Moreover, Abs(I) = n.

Proof. Since P1, . . . , Pn are pairwise coprime, then we have
I = P1o . . . oPn = P1 ∩ · · · ∩ Pn.

Hence I is an n-absorbing hyperideal of R. Also, since P1,n are in-
comparable, we choose αi ∈ Pi \

∪
j ̸=i Pj for each 1 ≤ i ≤ n. Then

α1o . . . oαn ⊆ P1 ∩ · · · ∩ Pn, but no proper subproduct of the α,
is is in

P1 ∩ · · · ∩ Pn. Hence Abs(P1 ∩ · · · ∩ Pn) = Abs(P1o . . . oPn) ≥ n. On
the other hand, we have Abs(P1 ∩ · · · ∩ Pn) = Abs(P1 ∩ · · · ∩ Pn) ≤ n.
Thus Abs(I) = Abs(P1o . . . oPn) = n. □

Let M1, . . . ,Mn are distinct maximal hyperideals of R. Then I =
M1o . . . oMn is an n-absorbing hyperideal of R by Theorem 3.14. Now,
we show that Mn is an n-absorbing hyperideal of R for any maximal
hyperideal M of R. We show that the product of any n maximal
hyperideals of R is an n-absorbing hyperideal of R.

Lemma 3.15. Let M be a maximal hyperideal of R and n be a pos-
itive integer. Then Mn is an n-absorbing hyperideal of R such that
Abs(Mn) ≤ n. Moreover, if Mn+1 ⊂ Mn then Abs(Mn) = n.
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Proof. Let α1o . . . oαn+1 ⊆ Mn for α1, . . . , αn+1 ∈ R. If α1, . . . , αn+1 ∈
M , then we are done. We may assume that αn+1 /∈ M . Hence
(Mn, αn+1) = R, so there exist β ∈ Mn and γ ∈ R such that 1 ∈
β + αn+1oγ. Hence
α1o . . . oαn ⊆ (α1o . . . oαn)o1 ⊆ (α1o . . . oαn)oβ+(α1o . . . oαn+1)γ ⊆ Mn.

Thus Mn is an n-absorbing hyperideal of R. Now, we assume that
Mn+1 ⊂ Mn. Then there are α1, . . . , αn ∈ M such that α1o . . . oαn ⊆
Mn \Mn+1. Hence all products of n−1 of the α,

is are not in Mn, since
otherwise α1o . . . oαn ⊆ Mn+1, and this is a contradiction. Thus Mn is
not an (n− 1)-absorbing hyperideal of R. Since Mn is an n-absorbing
hyperideal of R, then Abs(Mn) = n. □
Theorem 3.16. Let M1, . . . ,Mn are maximal hyperideals of R. Then
I = M1o . . . oMn is an n-absorbing hyperideal of R. Moreover, Abs(I) ≤
n.
Proof. Suppose that M1, . . . ,Mn are distinct maximal hyperideals of R
and n1, . . . , nk are positive integers such that n = n1 + · · · + nk. We
show that I = Mn1

1 o . . . oMnk
k is an n-absorbing hyperideal of R. By

Lemma 3.15, for all 1 ≤ i ≤ k, Mni
i is an ni-absorbing hyperideal of

R. Hence I = Mn1
1 o . . . oMnk

k = Mn1
1 ∩ · · · ∩ Mnk

k is an n-absorbing
hyperideal of R □

4. Some properties of n-absorbing hyperideals

In this section, we study some properties of n-absorbing hyperideals.
Theorem 4.1. Let P be a prime hyperideal of R, and let I be a P-
primary hyperideal of R such that P n ⊆ I for some positive integer
n. Then I is an n-absorbing hyperideal of R with Abs(I) ≤ n. In
particular, if P n is a P-primary hyperideal of R, then P n is an n-
absorbing hyperideal of R with Abs(P n) ≤ n. Moreover, if P n+1 ⊂ P n

then Abs(P n) = n.
Proof. Suppose that α1o . . . oαn+1 ⊆ I for α1, . . . , αn+1 ∈ R. Assume
that one of the α,

is is not in P . Since I is a P -primary hyperideal of R,
then we conclude that the product of the other α,

is is in I . Hence, we
may assume that αi ∈ P for every 1 ≤ i ≤ n. We get α1o . . . oαn ⊆ I
since P n ⊆ I. Hence I is an n-absorbing hyperideal of R. The rest of
the proof is obvious.

□
Theorem 4.2. Let I be an n-absorbing hyperideal of R. Then Iα =
(I :R α) is an n-absorbing hyperideal of R containing I for all α ∈ R\I.
Moreover, Abs(Iα) ≤ Abs(I) for all α ∈ R
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Proof. Suppose that α1o . . . oαn+1 ⊆ Iα for α1, . . . , αn+1 ∈ R. Thus
(αoα1)oα2o . . . oαn+1 ⊆ I which implies either the product of αoα1

with n − 1 of the α,
is for 2 ≤ i ≤ n + 1 is in I or α2o . . . oαn+1 ⊆ I.

Then there is a product of n of the α,
is that is in Iα. Hence Iα is

an n-absorbing hyperideal of R. It is clear that I ⊆ Iα. If α ∈ I,
then Iα = R, and then Abs(Iα) = o ≤ Abs(I). The last assertion is
obvious. □
Theorem 4.3. Let I ⊂ r(I) be an n-absorbing strong C-hyperideal of
R for n ≥ 2. If k ≥ 2 is the least positive integer such that αk ⊆ I
for α ∈ r(I) \ I, then Iαk−1 = (I :R αk−1)is an (n − k + 1)-absorbing
hyperideal of R containing I.

Proof. Let I be an n-absorbing strong C-hyperideal of R. Since 2 ≤
k ≤ n, then we have n − k + 1 ≥ 1. It is clear that I ⊆ Iαk−1 .
Suppose that c1o . . . ocn−k+2 ⊆ Iαk−1 for c1, . . . , cn−k+2 ∈ R. Since I
is an n-absorbing hyperideal of R and αk−1oc1o . . . ocn−k+2 ⊆ I, either
αk−2oc1o . . . ocn−k+2 ⊆ I or the product of αk−1 with some n − k + 1
of the c,is is in I. In the second case, we are done. Thus suppose that
the product of αk−1 with any n − k + 1 of the c,is is not in I. Hence
αk−2oc1o . . . ocn−k+2 ⊆ I. Since I is an strong C-hyperideal of R and
αoαk−2oc1o . . . ocn−k+1o(cn−k+2 + α) ⊆ I, then we get

αk−2oc1o . . . ocn−k+1(cn−k+2 + α) ⊆ A+B ⊆ I,

where A = αk−2oc1o . . . ocn−k+2 and B = αk−1oc1o . . . ocn−k+1. Since
αk−2oc1o . . . ocn−k+2 ⊆ I, we get αk−1oc1o . . . ocn−k+1 ⊆ I. It is a con-
tradiction, since the product of αk−1 with any n − k + 1 of the c,is is
not in I. Hence the product of αk−1 with some n− k + 1 of the c,is is
in I, which implies that Iαk−1 is an (n− k+1)-absorbing hyperideal of
R containing I. □
Corollary 4.4. Let I ⊂ r(I) be an n-absorbing strong C-hyperideal of
R for n ≥ 2. Let α ∈ r(I) \ I and αn ⊆ I such that αn−1 ⊈ I. Then
Iαn−1 = (I :R αn−1) is a prime hyperideal of R containing r(I).

Proof. By Theorem 5.5, Iαn−1 is an (n−n+1)-absorbing hyperideal of
R and then Iαn−1 is a prime hyperideal of R containing r(I). □
Corollary 4.5. Let I be an n-absorbing P-primary strong C-hyperideal
of R for some prime hyperideal P of R and n ≥ 2. If α ∈ r(I) \ I
and n is the least positive integer such that αn ⊆ I, then Iαn−1 = (I :R
αn−1) = P

Proof. Let I be an n-absorbing P -primary strong C-hyperideal of R.
By Corollary 4.4, P = r(I) ⊆ Iαn−1 . Assume that β ∈ Iαn−1 , hence
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αn−1oβ ⊆ I. We have β ∈ P , since I is a P -primary hyperideal and
αn−1 ⊈ I. Hence Iαn−1 = P . □

Theorem 4.6. Let I be a P -primary hyperideal of R such that P n ⊆ I
for some positive integer n, and let α ∈ P\I. If αk ⊈ I for some positive
integer k, then (I :R αk) = Iαk is an (n− k)-absorbing hyperideal of R.

Proof. Since P n ⊆ I, then k ≤ n. Therefore, we have n− k ≥ 1. It is
clear that Iαk is a P -primary hyperideal of R. Since P n ⊆ I, we have
αkoP n−k ⊆ I. Hence P n−k ⊆ Iαk . Thus Iαk is an (n − k)-absorbing
hyperideal of R by Theorem 4.1. □

5. stability of n-absorbing hyperideals

In this section, we will prove some theorems and corollaries general-
izing well-known results about prime hyperideals.

Theorem 5.1. Let f : R1 → R2 be a good homomorphism of multi-
plicative hyperrings. Then the following statements hold.
(i)If I2 is a n-absorbing primary hyperideal of R2, then f−1(I2) is a
n-absorbing hyperideal of R1.
(ii)If f is an epimorphism and I1 is an n-absorbing hyperideal of R1

containing Ker(f), then f(I1) is a n-absorbing hyperideal of R2.

Proof. (i) Assume that α1, . . . , αn+1 ∈ R1 and α1o . . . oαn+1 ⊆ f−1(I2).
Then f(α1o . . . oαn+1) = f(α1)o . . . of(αn+1) ⊆ I2. Since I2 is an n-
absorbing hyperideal of R2, then there are n of the f(αi)

,s whose
product is in I2. Without loss of generality, we may assume that
f(α1)o . . . of(αn) ⊆ I2 and hence α1o . . . oαn ⊆ f−1(I2). Thus, f−1(I2)
is an n-aborbing hyperideal of R1.
(ii) Assume that α

′
1, . . . , α

′
n+1 ∈ R2 and α

′
1o . . . oα

′
n+1 ⊆ f(I1). Then

there exist α1, . . . , αn+1 ∈ R1 such that f(α1) = α
′
1, . . . , f(αn+1) =

α
′
n+1, and f(α1o . . . oαn+1) = α

′
1o . . . oα

′
n+1. Now, take any element

u ∈ α1o . . . oαn+1. Then we get f(u) ∈ f(α1o . . . oαn+1) ⊆ f(I1) and so
f(u) = f(w) for some w ∈ I1. This implies that f(u − w) = 0 ∈ (0),
that is, u−w ∈ Ker(f) ⊆ I1 and so u ∈ I1. Since I1 is a C-hyperideal of
R1, then we conclude that α1o . . . oαn+1 ⊆ I1. Since I1 is an n-absorbing
hyperideal of R1, then there are n of the α,

is whose product is in I1.
Without loss of generality, we may assume that α1o . . . oαn ⊆ I1. This
means that α′

1o . . . oα
′
n ⊆ f(I1). Thus f(I1) is a n-absorbing hyperideal

of R2 □
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Corollary 5.2. Let I, J be hyperideals of a hyperring R such that
J ⊆ I. If I is an n-absorbing hyperideal of R then I

J
is an n-absorbing

hyperideal of R

J
.

Proof. Define f : R −→ R/J by f(r) = r + J . Clearly, f is a good
epimorphism. Since Ker(f) = J ⊆ I and I is an n-hyperideal of R ,
then the claim follows from Theorem 5.1 (i). □
Corollary 5.3. Let T is a subhyperring of R. If I is an n-absorbing
hyperideal of R such that T ⊈ I, then I∩T is an n-absorbing hyperideal
of T .

Proof. Define j : T −→ R by j(t) = t. It is clear that j−1(I) = I ∩ T .
Thus I ∩ T an n-hyperideal of T , by 5.1 (i). □

Let R be a multiplicative hyperring. Then Mn(R) denotes the set
of all hypermatixes of R. Also, for all A = (Aij)n×n, B = (Bij)n×n ∈
P ⋆(Mn(R)), A ⊆ B if and only if Aij ⊆ Bij.

Theorem 5.4. Let R be a multiplicative hyperring with scalar identity
1 and I be a hyperideal of R. If Mn(I) is an n-absorbing hyperideal of
Mn(R), then I is an n-absorbing hyperideal of R.

Proof. Suppose that for x1, . . . , xn+1 ∈ R , x1o . . . oxn+1 ⊆ I. Then
x1o . . . oxn+1 0 · · · 0

0 0 · · · 0
... ... . . . ...
0 0 · · · 0

 ⊆ Mn(I).

It is clear that
x1o . . . oxn+1 0 · · · 0

0 0 · · · 0
... ... . . . ...
0 0 · · · 0

 =


x1 0 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 0

 . . .


xn+1 0 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 0

 .

Since Mn(I) is an n-absorbing hyperideal of Mn(R) then there are n
of the hypermatixes whose product is in I. Without loss of generality,
we may assume that

x1 0 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 0

 . . .


xn 0 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 0

 ⊆ Mn(I).
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It implies that 
x1o . . . oxn 0 · · · 0

0 0 · · · 0
... ... . . . ...
0 0 · · · 0

 ⊆ Mn(I).

It implies that x1o . . . oxn ⊆ I. Therefore I is an n-absorbing hyperideal
of R.

□
Theorem 5.5. Let R1 and R2 be multiplicative hyperrings with scalar
identity. Then, the following statements hold:
1) I1 is an n-absorbing hyperideal of R1 if and only if I1 × R2 is an
n-absorbing hyperideal of R1 ×R2.
2) I2 is an n-absorbing hyperideal of R2 if and only if R1 × I2 is an
n-absorbing hyperideal of R1 ×R2.
Proof. (1) (=⇒) Assume that I1 is a n-absorbing hyperideal of R1. Let
(x1, y1)o . . .
o(xn+1, yn+1) ⊆ I1 × R2 for some x1, . . . , xn+1 ∈ R1 and y1, . . . , yn+1 ∈
R2. Therefore x1o . . . oxn+1 ⊆ I1. Since I1 is an n-absorbing hyperideal
of R1, then there are n of the x,

is whose product is in I1. Without
loss of generality, we may assume that x1o . . . oxn ⊆ I1. This implies
that (x1, y1)o . . . o(xn, yn) ⊆ I1 × R2. Thus I1 × R2 is an n-absorbing
hyperideal of R1 ×R2.
(⇐=) Suppose that I1 × R2 is an n-absorbing hyperideal of R1 × R2.
Let x1o . . . oxn+1 ⊆ I1 for some x1, . . . , xn+1 ∈ R1. Then we get
(x1, 1)o . . . o(xn+1, 1) ⊆ I1 × R2. Since I1 × R2 is an n-absorbing
hyperideal of R1 × R2, then there are n of the (xi, 1)

,s whose prod-
uct is in I1 × R2. Without loss of generality, we may assume that
(x1, 1)o . . . o(xn, 1) ⊆ I1×R2, which means x1o . . . oxn ⊆ I1. Thus I1 is
an n-absorbing hyperideal of R1.
(2) It is similar to (1). □

Let (R,+, o) be a hyperring. We define the relation γ as follows:
aγb if and only if {a, b} ⊆ U where U is a finite sum of finite products
of elements of R, i.e.,

a γb ⇐⇒ ∃z1, . . . , zn ∈ R such that {a, b} ⊆
∑

j∈J
∏

i∈Ij zi; Ij, J ⊆
{1, . . . , n}.

We denote the transitive closure of γ by γ∗. The relation γ∗ is the
smallest equivalence relation on a multiplicative hyperring (R,+, o)
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such that the quotient R/γ∗, the set of all equivalence classes, is a
fundamental ring. Let U be the set of all finite sums of products of
elements of R. We can rewrite the definition of γ∗ on R as follows:

aγ∗b ⇐⇒ ∃z1, . . . , zn ∈ R with z1 = a, zn+1 = b and u1, . . . , un ∈ U
such that {zi, zi+1} ⊆ ui for i ∈ {1, . . . , n}.

Suppose that γ∗(a) is the equivalence class containing a ∈ R. Then,
both the sum ⊕ and the product ⊙ in R/γ∗ are defined as follows:γ∗(a)⊕
γ∗(b) = γ∗(c) for all c ∈ γ∗(a) + γ∗(b) and γ∗(a)⊙ γ∗(b) = γ∗(d) for all
d ∈ γ∗(a)oγ∗(b). Then R/γ∗ is a ring, which is called a fundamental
ring of R (see also [19]).

Theorem 5.6. Let R be a multiplicative hyperring with scalar identity
1. Then the hyperideal I of R is an n-absorbing if and only if I/γ∗ be
an n-absorbing ideal of R/γ∗.

Proof. (=⇒) Let α
′
1 . . . , α

′
n+1 ∈ R/γ∗ and α

′
1 ⊙ · · · ⊙ α

′
n+1 ∈ I/γ∗.

Thus, there exist α1, . . . , αn+1 ∈ R such that α
′
1 = γ∗(α1), . . . , α

′
n+1 =

γ∗(αn+1) and α
′
1⊙· · ·⊙α

′
n+1 = γ∗(α1)⊙· · ·⊙γ∗(αn+1) = γ∗(α1o . . . oαn+1).

So, γ∗(α1)⊙· · ·⊙γ∗(αn+1) = γ∗(α1o...oαn+1) ∈ I/γ∗, then α1o . . . oαn+1 ⊆
I. Since I is an n-absorbing hyperideal of R, then there are n of the α,

is
whose product is in I. Without losing the generality, we may assume
that α1o . . . oαn ⊆ I. Therefore α

′
1⊙· · ·⊙α

′
n = γ∗(α1)⊙· · ·⊙γ∗(α

′
n) =

γ∗(α1o . . . oαn) ∈ I/γ∗. Thus I/γ∗ is an n-absorbing ideal of R/γ∗.
(⇐=) Let α1o . . . oαn+1 ⊆ I for α1, . . . , αn+1 ∈ R. Then we obtain
γ∗(α1), . . . , γ

∗(αn+1) ∈ R/γ∗ and
γ∗(α1)⊙ · · · ⊙ γ∗(αn+1) = γ∗(α1o . . . oαn+1) ∈ I/γ∗.

Since I/γ∗ is an n-absorbing ideal of R/γ∗, then there are n of the
γ∗(αi)

,s whose product is in I/γ∗. Without loss of generality, we may
assume that γ∗(α1) ⊙ · · · ⊙ γ∗(αn) = γ∗(α1o . . . oαn) ∈ I/γ∗. Hence
α1o . . . oαn ⊆ I. Thus I is an n-absorbing hyperideal of R. □

Let (R,+, o) be a commutative multiplicative hyperring with scalar
identity 1 and S be a multiplicative closed subset of R (i.e., 1 ∈ S and
aoS = Soa = S for all a ∈ S). Then (S−1R,⊕,⊙) with the following
hyperoperations is a commutative hyperring with scalar identity.
(i) (r1, r2) ⊕ (r2, s2) = (r1os2 + r2os1, s1os2) = {(r, s) | r ∈ r1os2 +
r2os1, s ∈ s1os2}.
(ii) (r1, r2)⊙ (r2, s2) = (r1or2, s1os2) = {(r, s) | r ∈ r1or2, s ∈ s1os2}.
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Let I be a hyperideal of R, then we can define that S−1I = {(i, s) | i ∈
I, s ∈ S}, which is a hyperideal of S−1R. If (r, s) ∈ S−1I we don,t have
necessarily r ∈ I, because maybe (r, s) = (r′, s) with r′ ∈ I, r /∈ I (see
also [1]).

Theorem 5.7. Let P1,k be incomparable prime hyperideals of R, I =
P n1
1 o . . . oP nk

k for positive integers n1, . . . , nk with n = n1 + · · · + nk,
and S = R \ (P1 ∪ · · · ∪ Pk). Then E(I) = {α ∈ R | (α, 1) ∈ S−1I} is
an n-absorbing hyperideal of R.

Proof. Let f : R → S−1R be the homomorphism f(α) = (α, 1). Then
S−1P1, . . . , S

−1Pk are maximal hyperideals of S−1R. Hence S−1I =
S−1(P n1

1 o . . . oP nk
k ) is an n-absorbing hyperideal of S−1R, by Theorem

3.16. Thus E(I) = f−1(S−1(P n1
1 o . . . oP nk

k )) is an n-absorbing hyper-
ideal of R, by Theorem 5.1. □

6. Conclusion

The main purpose of this paper is to introduce the notion of n-
absorbing hyperideal which is a generalization of 2-absorbing hyper-
ideal. Several properties of this new notion are provided. It is clear
that if I is an n-absorbing hyperideal of R, then I is an m-absorbing
hyperideal of R for all m ≥ n. The converse is not true in general. For
instance, 105Z is a 3-absorbing hyperideal of multiplicative hyperring
(Z,+,⊙), but it is not a 2-absorbing hyperideal.
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اول ابرایده آل  های از تعمیمی

انبارلویی مهدی
ایران قزوین، (ره)، خمینی امام بین المللی دانشگاه پایه، علوم دانشکده

به n-جاذب ابرایده آل های مطالعه و معرفی به مقاله این در باشد. ضربی ابرحلقه یک R کنید فرض
هر گاه گوییم n-جاذب را R ابرحلقه از I ابرایده آل می شود. پرداخته اول ابرایده آل های از تعمیمی عنوان
زیرمجموعه ها αi از تا n حاصل ضرب آن گاه ،α١o . . . oαn+١ ⊆ I اگر α١, . . . , αn+١ ∈ R برای

باشد. I

ابرحلقه. ابتدائی، ابرایده آل n-جاذب، ابرایده آل اول، ابرایده آل کلیدی: کلمات
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