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WOVEN FRAMES IN TENSOR PRODUCT OF
HILBERT SPACES

S. AFSHAR JAHANSHAHI AND A. AHMADI∗

Abstract. The tensor product is the fundamental ingredient for
extending one-dimensional techniques of filtering and compression
in signal preprocessing to higher dimensions. Woven frames play a
crucial role in signal preprocessing and distributed data processing.
Motivated by these facts, we have investigated the tensor product
of woven frames and presented some of their properties. Besides,
we have studied some effects of operators on woven frames in the
tensor products of Hilbert spaces.

1. Introduction

Packets of data in communication networks are sequences of informa-
tion bits, surrounded by timing, addressing and error control, which
assure that the packet has been delivered to a receiver without any
error from a source. The packet will not be delivered if it contains
errors. In this case, lost packets would be retransmitted, which would
take longer than the main transfer. In many applications, retransmis-
sion of lost packets is not feasible and the potential for the large delay
is unacceptable [4].

If a lost packet was independent of the other transmitted data, the
information would be entirely lost to the receiver. However, if there
were dependencies between transmitted packets, one could have partial
or completed recovery despite losses. This leads to the use of frames for
encoding. Frame theory has significant applications in different areas
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like filter bank theory [9], sampling theory [13], wireless communication,
internet coding [10], digital signal and image processing [11] and more.

Signal processing methods are defined as changes of the bases for
vectors or functions of one variable and therefore cannot be directly
applied to higher dimensional data like images. The tensor product
can be used to generalize the filtering and compression techniques from
audio to images [2]. Furthermore, the concept of woven frames in
Hilbert spaces has been introduced by Bemrose et al. [1] in one of the
applications of frames in signal processing and wireless sensor networks,
which requires distributed processing under different frames.

Two frames {φi}i∈I and {ψi}i∈I for a Hilbert space H are woven if
there are constants 0 < A ≤ B < ∞ so that for every subset σ of
countable index set I, the family {φi}i∈σ ∪ {ψi}i∈σc is a frame for H
with frame bounds A and B. The woven frames have potential appli-
cations in the preprocessing of signals using Gabor frames. Casazza
and Lynch in [5], have reviewed the fundamental properties of weaving
frames. They have shown the connection between frames and projec-
tions and considered a weaving equivalent of an unconditional basis for
weaving Riesz bases. In [4], the concept of weaving Hilbert space frames
extended to the Banach spaces and woven Schauder frames have been
introduced and studied. Deepshikha and Vashisht have studied contin-
uous woven frames for Hilbert spaces regarding the measure space in
[12].

This paper focuses on the study of the properties of the tensor prod-
uct of woven frames, which has been organized as follows: In Section
2, we have given basic definitions of frames, the tensor products, and
woven frames. In Section 3, we have provided some structural results
of woven frames on the tensor product of two Hilbert spaces and given
some examples.

2. Preliminaries

We begin with a brief overview of the basic definitions related to
the frames, the tensor product of frames and woven frames. We refer
to [6, 7, 8] for more information. Throughout the paper, I and J can
represent a finite or countably infinite index set and H, K will denote
either finite or infinite dimensional Hilbert space with an orthonormal
basis {ei}i∈I and {uj}j∈J , respectively.
2.1. Frames. A frame is an overcomplete family of vectors with spe-
cific properties permitting it to act approximately as a basis.
Definition 2.1. A family of vectors Φ = {φi}i∈I in H is said to be a
frame if there are constants 0 < A ≤ B <∞ so that
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A∥f∥2 ≤
∑∞

i=1 |⟨f, φi⟩|2 ≤ B∥f∥2, f ∈ H.

The numbers A and B are called lower and upper frame bounds
respectively. A frame is called tight if A = B, when A = B = 1 it is
a Parseval frame. If only right hand side inequality is assumed, then
it is called a B-Bessel sequence. The values {⟨f, φi⟩}i∈I are called the
frame coefficients of the vector f ∈ H with respect to the frame Φ.

2.2. Woven Frames. In distributed signal processing when two sets
{φi}i∈I and {ψi}i∈I of linear measurements with steady recovery are
given, each set is a frame tagged by a node i ∈ I. A signal F at each
node measures either with φi or ψi, so the gathered information is the
set of numbers {⟨F, φi⟩}i∈σ ∪{⟨F, ψi⟩}i∈σc for some subset σ ⊂ I. This
leads to the definition of a new concept in the frame theory called ”
woven frames”. Many useful and interesting results of woven frames are
obtained in the literature; we refer to [1, 3, 5, 12] for more information
in this subject.

Definition 2.2. Two frames {φi}i∈I and {ψi}i∈I for a Hilbert space H
are called woven if there exist constants 0 < A ≤ B <∞ so that for any
partition σ ⊂ I the weaving {φi}i∈σ ∪ {ψi}i∈σc is a frame with bounds
A,B. Furthermore, they are called weakly woven if {φi}i∈σ ∪ {ψi}i∈σc

is a frame for H.

Bemrose et al. [1] have proven that weakly woven frames and woven
frames are essentially equivalent. The next example introduces two
woven frames for Hilbert space R2. Weaving frame bounds can be
obtained easily.

Example 2.3. Let {ei}i=12 be an orthonormal basis of R2 and let Φ
and Ψ be the sets

Φ = {φi}3i=1 = {2e2, 3e1, 2e1 + 3e2}

and
Ψ = {ψi}3i=1 = {e1, e2, 3e1 + e2}.

Then, Φ is a frame for Euclidean space R2 with lower and upper (not
necessarily optimal) bounds 4 and 22 and Ψ is a frame with bounds 1
and 19.

The frames Φ and Ψ constitute woven frames. For example, if we
assume that σ1 = {1, 2} then for any f

4∥f∥2 ≤
∑
i∈σ1

|⟨f, φi⟩|2 +
∑
i∈σc

1

|⟨f, ψi⟩|2 ≤ 27∥f∥2,
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so {φi}i∈σ1

∪
{ψi}i∈σc

1
is a frame with lower and upper bounds A1 = 4

and B1 = 27, respectively. Now, if we take
A = max{Ai; 1 ≤ i ≤ 8}

and
B = min{Bi; 1 ≤ i ≤ 8},

then Φ and Ψ are woven frames with universal bounds A and B, re-
spectively.

Woven frames are preserved under a bounded invertible operator [1].
Proposition 2.4. Assume that {φi}i∈I and {ψi}i∈I are woven frames
for H with frame bounds A, B and F is an invertible operator on H.
Then {Fφi}i∈I and {Fψi}i∈I are also woven with bounds A ∥F−1∥−2 and
B ∥F∥2.
2.3. Tensor Product of Frames. The tensor product has been
highly regarded in recent decades. For instance, it suggests a natu-
ral language for expressing the algorithms of digital signal processing
based on matrix factorization. Some tensor product properties, which
are required in studying this section, are presented below [7, 8].
Definition 2.5. Let H and K be complex separable Hilbert spaces.
An operator T from K to H is said to be antilinear if

T (af + bg) = aT (f) + bT (g), f, g ∈ K,

for all complex numbers a, b where a, b are the complex conjugate of a
and b respectively. The adjoint of a bounded antilinear map T is an
antilinear map defined by

⟨T ∗f, g⟩ = ⟨Tg, f⟩, f ∈ H and g ∈ K.
Definition 2.6. The tensor product of Hilbert spaces H and K is
the set H ⊗ K of all bounded antilinear maps T : K → H such that∑

j ∥Tuj∥2 <∞ for every orthonormal basis {uj}j∈J of K.
For every T ∈ H ⊗ K, the norm of T is defined by

∥|T |∥2 =
∑

j ∥Tuj∥2.
Moreover, by the Parseval identity∑

i∈I

∥ T ∗ei ∥2=
∑
j∈J

∥ Tuj ∥2,

∥|T |∥ = ∥|T ∗|∥.
The space H⊗K is a Hilbert space with the norm ∥|·|∥ and associated

inner product
⟨Q, T ⟩ =

∑
j

⟨Quj, Tuj⟩. (2.1)
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Recall that for given x ∈ H and y ∈ K the antilinear map x⊗y from
K into H is defined by

(x⊗ y)(y′) = ⟨y, y′⟩x, y′ ∈ K, (2.2)
therefore by Parseval identity and (2.1)

∥|x⊗ y|∥ = ∥x∥∥y∥, (2.3)

⟨x⊗ y, x′ ⊗ y′⟩ = ⟨x, x′⟩⟨y, y′⟩, x′ ∈ H, y′ ∈ K. (2.4)
In [8] it has been proved that if {xn}n∈I and {ym}m∈J are two frames

for Hilbert spaces H, K respectively, then {xn ⊗ ym}n∈I,m∈J is a frame
for H⊗K. Also, if {Tn}n∈I is a frame for H⊗K then for each x0 ∈ H
and y0 ∈ K, {Tny0}n∈I and {T ∗

nx0}n∈I are respectively frames for H,
K.

3. Tensor product of woven frames

Extending and improving the notion of woven frames in the tensor
product of Hilbert spaces are discussed in this section. We have gen-
eralized some results of woven frames in the tensor product of Hilbert
spaces and examined the effects of operators on them.

In the next theorem, we show that the tensor product of woven
frames is a woven frame for tensor product space.

Theorem 3.1. Suppose {xn}n∈I and {x′n}n∈I are woven frames for
H with universal frame bounds A, B and {ym}m∈J and {y′m}m∈J are
woven frames for K with universal frame bounds C, D.
Then {xn ⊗ ym}(n,m)∈I×J and {x′n ⊗ y′m}(n,m)∈I×J are woven for H⊗K
with universal frame bounds AC, BD.

Proof. By definition of woven frames, for any partition σ1 of I, {xn}n∈σ1∪
{x′

n}n∈σc
1

is a frame with bounds A, B and for every partition σ2 of J ,
{ym}m∈σ2 ∪ {y′

m}m∈σc
2

is a frame with bounds C, D.
Let T ∈ H ⊗ K, similar to the proof in [8] we have

⟨T, xn ⊗ ym⟩ = ⟨Tym, xn⟩. (3.1)
Now let σ ⊂ I × J be any partition of I × J then∑

(n,m)∈σ

|⟨T, xn ⊗ ym⟩|2 +
∑

(n,m)∈σc

|⟨T, x′n ⊗ y′m⟩|2

=
∑

(n,m)∈σ

|⟨Tym, xn⟩|2 +
∑

(n,m)∈σc

|⟨Ty′m, x′n⟩|2,
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let I, J be partitioned by σ1 and σ2 respectively. Since {xn}n∈I and
{x′n}n∈I are woven frames, therefore

∑
(n,m)∈σ

|⟨Tym, xn⟩|2 +
∑

(n,m)∈σc

|⟨Ty′

m, x
′

n⟩|2

=

∑
m∈σ2

∑
n∈σ1

|⟨Tym, xn⟩|2 +
∑
m∈σ2

∑
n∈σc

1

|⟨Tym, x
′

n⟩|2


+

∑
m∈σc

2

∑
n∈σ1

|⟨Ty′

m, xn⟩|2 +
∑
m∈σc

2

∑
n∈σc

1

|⟨Ty′

m, x
′

n⟩|2


=
∑
m∈σ2

∑
n∈σ1

|⟨Tym, xn⟩|2 +
∑
n∈σc

1

|⟨Tym, x
′

n⟩|2


+
∑
m∈σc

2

∑
n∈σ1

|⟨Ty′

m, xn⟩|2 +
∑
n∈σc

1

|⟨Ty′

m, x
′

n⟩|2


≤ B

∑
m∈σ2

||Tym||2 +
∑
m∈σc

2

||Ty′

m||2
 .

Moreover, since {ei}i∈I is an orthonormal basis for H, then by the
Parseval identity

B

∑
m∈σ2

∥Tym∥2 +
∑
m∈σc

2

∥Ty′

m∥2


= B

∑
m∈σ2

∑
i∈I

|⟨Tym, ei⟩|2 +
∑
m∈σc

2

∑
i∈I

|⟨Ty′

m, ei⟩|2


= B
∑
i∈I

∑
m∈σ2

|⟨T ∗ei, ym⟩|2 +
∑
m∈σc

2

|⟨T ∗ei, y
′

m⟩|2
 ,

frames {ym}m∈J and {y′
m}m∈J are woven hence by definition of the

adjoint of a map and Parseval identity, we conclude
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B
∑
i∈I

∑
m∈σ2

|⟨T ∗ei, ym⟩|2 +
∑
m∈σc

2

|⟨T ∗ei, y
′

m⟩|2


≤ BD
∑
i∈I

||T ∗ei||2 = BD
∑
j∈J

||Tuj||2 = BD |∥ T ∥|2 .

Similarly,∑
(n,m)∈σ

|⟨T, xn ⊗ ym⟩|2 +
∑

(n,m)∈σc

|⟨T, x′

n ⊗ y
′

m⟩|2 ≥ AC |∥ T ∥|2 .

□
An example of the tensor product of woven frames is given below.

Example 3.2. Let {ei}3i=1 be an orthonormal basis for R3. Two frames

{xn}6n=1 = {e1,
e2√
2
,
e2√
2
,
e3√
3
,
e3√
3
,
e3√
3
}

and
{x′

n}6n=1 = {e1, e1, e2, e2, e3, e3}
are woven for R3 with universal lower and upper weaving bounds A=1,
B = 3.

A simple calculation shows that two frames {ym}2m=1 = {e1, e2} and
{y′

m}2m=1 = {e1 + e2, 2e1 + e2} are woven frames for R2 with universal
lower and upper bounds C = 1, D = 6.
According to the proof of the Theorem 3.1, we can conclude that two
frames {xn⊗ ym}6n=1,

2
m=1 and {x′

n⊗ y
′
m}6n=1,

2
m=1 are woven frames with

universal lower and upper frame bounds AC = 1, BD = 18 for R6.

Corollary 3.3. Assume that {xn}n∈I and {x′
n}n∈I are two woven

frames for H with universal frame bounds A, B and let {ym}m∈J and
{y′

m}m∈J be woven frames for K with universal frame bounds C, D.
If F , G are invertible bounded operators on H and K respectively,
then {Fxn ⊗Gym}(n,m)∈I×J and {Fx′

n ⊗Gy
′
m}(n,m)∈I×J are woven with

boundsAC∥(GF )−1∥2 and BD∥GF∥2.

Proof. Let U be an operator in H⊗K, applying an invertible operator
to woven frames leaves them woven, also using (3.1) we have

⟨U, Fxn ⊗Gym⟩ = ⟨UGym, Fxn⟩.
As stated in the proof of Theorem 3.1, we have∑

(n,m)∈σ

|⟨U, Fxn⊗Gym⟩|2+
∑

(n,m)∈σc

|⟨U, Fx′

n⊗Gy
′

m⟩|2 ≤ (BD∥GF∥2)|∥U∥|2,



136 AFSHAR AND AHMADI

and∑
(n,m)∈σ

|⟨U, Fxn⊗Gym⟩|2+
∑

(n,m)∈σc

|⟨U, Fx′

n⊗Gy
′

m⟩|2 ≥ (AC∥(GF )−1∥2)|∥U∥|2,

hence the lower and upper weaving bounds are AC∥(GF )−1∥2 and
BD∥GF∥2. □

Following [5, Proposition 13], we know that every frame is woven
with a copy of itself. Due to this we have the following result.
Corollary 3.4. Let {xn}n∈I , {yn}n∈I be woven frames for H and
{zm}m∈J be a frame for K. Then {xn⊗zm}n∈I,m∈J and {yn⊗zm}n∈I,m∈J
are woven frames for H ⊗ K.
Proof. Let {zm}m∈J be a frame with bounds C, D and {xn}n∈I , {yn}n∈I
be woven frames with universal bounds A, B. Since a frame is always
woven with a copy of itself then {zm}m∈J is woven with itself. Theorem
3.1 implies that {xn⊗zm}n∈I,m∈J and {yn⊗zm}n∈I,m∈J are woven with
universal frame bounds AC, BD. □

The following proposition shows that by having woven frames in
H ⊗ K, woven frames in H and K can be obtained.
Proposition 3.5. Let {Fn}n∈I and {Gn}n∈I be two woven frames for
H ⊗ K. For each nonzero x0 ∈ H and y0 ∈ K,

(i) the sequences {Fny0}n∈I and {Gny0}n∈I are woven frames for K
with bounds B∥y0∥2, A∥y0∥2.
(ii) the sequences {F ∗

nx0}n∈I and {G∗
nx0}n∈I are woven frames for H

with frame bounds B∥x0∥2, A∥x0∥2.
Proof. Let σ ⊂ I be any partition of I and y0 ∈ K. The sequences
{Fn}n∈I and {Gn}n∈I are woven frames, then there exist constants A,
B such that {Fn}n∈σ ∪ {Gn}n∈σc is a frame for H ⊗ K with bounds A
and B hence

A∥|x⊗ y0|∥2 ≤
∑
n∈σ

|⟨x⊗ y0, Fn⟩|2 +
∑
n∈σc

|⟨x⊗ y0, Gn⟩|2 ≤ B∥|x⊗ y0|∥2.

By using equalities (2.3) and (3.1), we conclude that

A∥y0∥2∥x∥2 ≤
∑
n∈σ

|⟨x, Fny0⟩|2 +
∑
n∈σc

|⟨x,Gny0⟩|2 ≤ B∥y0∥2∥x∥2.

Therefore, {Fny0} and {Gny0} are woven frames with universal frame
bounds B∥y0∥2, A∥y0∥2. Similary, since for all y ∈ K and U ∈ H ⊗ K

⟨y, U∗x0⟩ = ⟨x0, Uy⟩ = ⟨x0 ⊗ y, U⟩,
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we conclude that {F ∗
nx0}n∈I and {G∗

nx0}n∈I are woven frames for Hilbert
space H with frame bounds B∥x0∥2, A∥x0∥2. □

In the following, we have proven that the adjoint of woven frames is
also woven.

Proposition 3.6. Let {Fn}n∈J and {Gn}n∈J be two frames for the
Hilbert space H ⊗ K then {Fn}n∈J and {Gn}n∈J are woven with uni-
versal frame bounds A, B if and only if {F ∗

n}n∈J and {G∗
n}n∈J are woven

frames for K ⊗ H with universal frame bounds A, B.

Proof. Let {Fn}n∈J and {Gn}n∈J be two woven frames in H ⊗ K with
universal frame bounds A, B then for every T ∈ K ⊗ H and arbitrary
partition σ of J we have∑
n∈σ

|⟨T, F ∗
n⟩|2 +

∑
n∈σc

|⟨T,G∗
n⟩|2 =

∑
n∈σ

|⟨T ∗, Fn⟩|2 +
∑
n∈σc

|⟨T ∗, Gn⟩|2

since ∥|T∥| = ∥|T ∗∥| and {Fn}n∈J , {Gn}n∈J are woven therefore, {F ∗
n}n∈J

and {G∗
n}n∈J are woven. Now let {F ∗

n}n∈J and {G∗
n}n∈J be woven in

K ⊗ H its enough to note that {F ∗∗
n }n∈J and {G∗∗

n }n∈J are woven in
H ⊗ K and F ∗∗

n = Fn and G∗∗
n = Gn. □

Next, we have shown that woven frames in tensor product spaces,
with some conditions, preserved under two different bounded invertible
operators.

Theorem 3.7. Let {Fn}n∈J and {Gn}n∈J be two woven frames for the
Hilbert space H ⊗ K with universal constants A, B and T1 , T2 be two
bounded invertible operators in L(H).

If there exists constant D > 0 such that D <
A(∥T1∥2 + ∥T2∥2)

2
and

for every I ⊂ J and T ∈ H ⊗ K,∑
n∈I

|⟨T, T2Fn⟩|2 ≤ D∥|T |∥2

and ∑
n∈Ic

|⟨T, T1Gn⟩|2 ≤ D∥|T |∥2,

then {T1Fn}n∈J and {T2Gn}n∈J are woven.
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Proof. Let T ∈ H ⊗ K and σ ⊂ J be an arbitrary partition of J , then

(
∑
n∈σ

|⟨T, T1Fn⟩|2 +
∑
n∈σc

|⟨T, T2Gn⟩|2

=
∑
n∈σ

|⟨T ∗
1 T, Fn⟩|2 +

∑
n∈σc

|⟨T ∗
2 T,Gn⟩|2

≤
∑
n∈J

|⟨T ∗
1 T, Fn⟩|2 +

∑
n∈J

|⟨T ∗
2 T,Gn⟩|2

≤ Bmax{∥T1∥2, ∥T2∥2}∥|T |∥2.

So, upper frame bound is Bmax{∥T1∥2, ∥T2∥2}. On the other hand,
∥|T |∥2 = ∥|T−1

1 T1T |∥2 ≤ ∥T−1
1 ∥2∥|T ∗

1 T |∥2

≤ ∥T−1
1 ∥2

A

(∑
n∈σ

|⟨T ∗
1 T, Fn⟩|2 +

∑
n∈σc

|⟨T ∗
1 T,Gn⟩|2

)

≤ 1

A∥T1∥2

(∑
n∈σ

|⟨T, T1Fn⟩|2 +D∥|T |∥2
)
,

therefore,
(A∥T1∥2 −D)∥|T |∥2 ≤

∑
n∈σ

|⟨T, T1Fn⟩|2. (3.2)

In a similar way,

(A∥T2∥2 −D)∥|T |∥2 ≤
∑
n∈σc

|⟨T, T2Gn⟩|2. (3.3)

Via (3.2) and (3.3), we conclude that(
A(∥T1∥2 + ∥T2∥2)− 2D

)
∥|T |∥2 ≤

∑
n∈σ

|⟨T, T1Fn⟩|2 +
∑
n∈σc

|⟨T, T2Gn⟩|2.

Hence, {T1Fn}n∈σ ∪{T2Gn}n∈σc is a frame with lower and upper frame
bound A(∥T1∥2 + ∥T2∥2)− 2D and Bmax{∥T1∥2, ∥T2∥2}. □

In general, frames may be woven without their canonical dual frames
being woven [1]. In the following theorem, we have shown that by tak-
ing a condition, canonical duals of woven frames in the tensor product
of Hilbert spaces can be woven.

Theorem 3.8. Let F = {Fn}n∈J and G = {Gn}n∈J be two woven
frames for the Hilbert space H ⊗ K with universal frame bounds A, B

and frame operators SF and SG. If ∥|S−1
F ⊗ (SF − SG)|∥ <

√
A
B then

{S−1
F Fn}n∈J , {S−1

G Gn}n∈J are woven.
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Proof. Let T ∈ H ⊗ K and σ ⊂ J be an arbitrary partition of J , then(∑
n∈σ

|⟨T, S−1
F Fn⟩|2 +

∑
n∈σc

|⟨T, S−1
G Gn⟩|2

)1/2

=

(∑
n∈σ

|⟨S−1
F T, Fn⟩|2 +

∑
n∈σc

|⟨S−1
F T + (S−1

G − S−1
F )T,Gn⟩|2

)1/2

≥

(∑
n∈σ

|⟨S−1
F T, Fn⟩|2 +

∑
n∈σc

|⟨S−1
F T,Gn⟩|2

)1/2

−

(∑
n∈σc

|⟨(S−1
G − S−1

F )T,Gn⟩|2)

)1/2

≥
√

A|∥S−1
F T∥| −

√
B|∥(S−1

G − S−1
F )T∥|

=

( √
A

∥SF∥
−

√
B∥S−1

G − S−1
F ∥

)
|∥T∥|.

The condition |∥S−1
F ⊗ (SF − SG)∥| <

√
A
B implies that

(

√
A

∥SF∥
−

√
B∥S−1

G − S−1
F ∥) > 0, thus {S−1

F Fn}n∈σ ∪ {S−1
G Gn}n∈σc is a

frame. □
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هیلبرت فضاهای تانسوری ضرب در بافتنی قاب های

احمدی احمد و جهانشاهی افشار سمیه
ایران بندرعباس، هرمزگان، دانشگاه ریاضی، گروه

و فیلتر بعدی یک روش های گسترش منظور به سیگنال پردازش در اصلی عنصر تانسوری، ضرب
شده توزیع داده های پردازش و سیگنال پردازش در بافتنی قاب های است. بالاتر ابعاد به فشرده سازی
برخی تاًثیر و نموده ارائه را بافتنی قاب های تانسوری ضرب انگیزه، این با هستند. اساسی نقشی دارای
مورد را آنها ویژگی های سایر و هیلبرت فضاهای تانسوری ضرب در بافتنی قاب های روی بر عملگرها

می دهیم. قرار بررسی

تانسوری. ضرب بافتنی، قاب های قاب، کلیدی: کلمات

١٢
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