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ϕ-ALMOST DEDEKIND RINGS AND Φ-ALMOST
DEDEKIND MODULES

M. RAHMATINIA∗ AND A. YOUSEFIAN DARANI

Abstract. The purpose of this paper is to introduce some new
classes of rings and modules that are closely related to the classes
of almost Dedekind domains and almost Dedekind modules. We
introduce the concepts of ϕ-almost Dedekind rings and Φ-almost
Dedekind modules and study some properties of this classes. In
this paper we get some equivalent conditions for ϕ-almost Dedekind
rings and Φ-almost Dedekind modules and obtain the relationship
between ϕ-almost Dedekind rings and Φ-almost Dedekind modules.

1. Introduction

We assume throughout this paper all rings are commutative with
1 ̸= 0 and all modules are unitary. Let R be a ring with identity
and Nil(R) be the set of nilpotent elements of R. Recall from [19]
and [11], that a prime ideal P of R is called a divided prime ideal if
P ⊂ (x) for every x ∈ R \ P ; thus a divided prime ideal is comparable
to every ideal of R. Badawi in [9], [10], [11], [12], [13] and [14] inves-
tigated the class of rings H = {R | R is a commutative ring with 1 ̸=
0 and Nil(R) is a divided prime ideal of R}. Anderson and Badawi in
[6] and [7] generalized the concept of Prüfer, Dedekind, Krull and Be-
zout domain to context of rings that are in the class H. Also, Lucas
and Badawi in [15] generalized the concept of Mori domains to the
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context of rings that are in the class H. Let R be a ring, Z(R) the set
of zero divisors of R and S = R \ Z(R). Then T (R) := S−1R denoted
the total quotient ring of R. We start by recalling some background
material. A nonzero divisor of a ring R is called a regular element and
an ideal of R is said to be regular if it contains a regular element. An
ideal I of a ring R is said to be a nonnil ideal if I ⊈ Nil(R). If I is a
nonnil ideal of R ∈ H, then Nil(R) ⊂ I. In particular, it holds if I is
a regular ideal of a ring R ∈ H. Recall from [6] that for a ring R ∈ H,
the map ϕ : T (R) −→ RNil(R) given by ϕ(a/b) = a/b, for a ∈ R and
b ∈ R \ Z(R), is a ring homomorphism from T (R) into RNil(R) and ϕ
restricted to R is also a ring homomorphism from R into RNil(R) given
by ϕ(x) = x/1 for every x ∈ R.
For a nonzero ideal I of R let I−1 = {x ∈ T (R) : xI ⊆ R}. It is obvious
that II−1 ⊆ R. An ideal I of R is called invertible, if II−1 = R. An
integral domain R is called a Dedekind domain if every nonzero ideal
of R is invertible. Recall from [21] that a ring R is called a Dedekind
ring if every regular ideal of R is invertible. An integral domain R
is called almost Dedekind if for each nonzero prime ideal P of R, RP

is a Dedekind domain. We generaliz the concept of almost Dedekind
domains to the context of commutative rings with zero divisors. A ring
R is an almost Dedekind if for each regular prime ideal P of R, RP

is a Dedeking ring. Let R ∈ H. Then a nonnil ideal I of R is called
ϕ-invertible if ϕ(I) is an invertible ideal of ϕ(R). Recall from [7] that
R is called ϕ-Dedekind ring if every nonnil ideal of R is ϕ-invertible.
Let R be a ring and M be an R-module. Then M is a multiplication
R-module if every submodule N of M has the form IM for some ideal
I of R. If M be a multiplication R-module and N a submodule of M ,
then N = IM for some ideal I of R. Hence I ⊆ (N :R M) and so
N = IM ⊆ (N :R M)M ⊆ N . Therefore N = (N :R M)M [16]. Let
M be a multiplication R-module, N = IM and L = JM be submod-
ules of M for ideals I and J of R. Then, the product of N and L is
denoted by N.L or NL and is defined by IJM [5]. An R-module M is
called a cancellation module if IM = JM for two ideals I and J of R
implies I = J [1]. By [24, Corollary 1 to Theorem 9], finitely generated
faithful multiplication modules are cancellation modules. It follows
that if M is a finitely generated faithful multiplication R-module, then
(IN :R M) = I(N :R M) for all ideals I of R and all submodules
N of M . If R is an integral domain and M a faithful multiplication
R-module, then M is a finitely generated R-module [17]. Let M be an
R-module and set

T = {t ∈ S : for all m ∈ M, tm = 0 implies m = 0}
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= (R \ Z(M)) ∩ (R \ Z(R)).

Then T is a multiplicatively closed subset of R with T ⊆ S, and
if M is torsion-free then T = S. In particular, T = S if M is a
faithful multiplication R-module [17, Lemma 4.1]. Let N be a nonzero
submodule of M . Then we write N−1 = (M :RT

N) = {x ∈ RT : xN ⊆
M} and Nν = (N−1)−1. Then N−1 is an R-submodule of RT , R ⊆ N−1

and NN−1 ⊆ M . We say that N is invertible in M if NN−1 = M .
Clearly 0 ̸= M is invertible in M . An R-module M is called a Dedekind
module if every nonzero submodule of M is invertible, [23]. If N is an
invertible submodule of a faithful multiplication module M over an
integral domain R, then (N :R M) is invertible [3]. Let R be a ring
and M an R-module. Then M is said to be an almost Dedekind module
if for each prime ideal P of R, MP is an RP - Dedekind module. Clearly
Dedekind modules are almost Dedekind, [4].
Let M be an R-module. An element r ∈ R is said to be zero divisor
on M if rm = 0 for some 0 ̸= m ∈ M . The set of zero divisors of M
is denoted by ZR(M) (briefly, Z(M)). It is easy to see that Z(M) is
not necessarily an ideal of R, but it has the property that if a, b ∈ R
with ab ∈ Z(M), then either a ∈ Z(M) or b ∈ Z(M). A submodule
N of M is called a nilpotent submodule if [N :R M ]nN = 0 for some
positive integer n. An element m ∈ M is said to be nilpotent if Rm is
a nilpotent submodule of M [2]. We let Nil(M) to denote the set of all
nilpotent elements of M ; then Nil(M) is a submodule of M provided
that M is a faithful module, and if in addition M is multiplication, then
Nil(M) = Nil(R)M =

∩
P , where the intersection runs over all prime

submodules of M , [2, Theorem 6]. If M contains no nonzero nilpotent
elements, then M is called a reduced R-module. A submodule N of
M is said to be a nonnil submodule if N ⊈ Nil(M). Recall that a
submodule N of M is prime if whenever rm ∈ N for some r ∈ R and
m ∈ M , then either m ∈ N or rM ⊆ N . If N is a prime submodule
of M , then p := [N :R M ] is a prime ideal of R. In this case we
say that N is a p-prime submodule of M . Let N be a submodule of
multiplication R-module M , then N is a prime submodule of M if and
only if [N :R M ] is a prime ideal of R if and only if N = pM for some
prime ideal p of R with [0 :R M ] ⊆ p, [17, Corollary 2.11]. Recall from
[4] that a prime submodule P of M is called a divided prime submodule
if P ⊂ Rm for every m ∈ M \ P ; thus a divided prime submodule is
comparable to every submodule of M .

Now assume that T−1(M) = T(M). Set

H = {M | Nil(M) is a divided prime submodule of M}.
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For an R-module M ∈ H, Nil(M) is a prime submodule of M . So
P := [Nil(M) :R M ] is a prime ideal of R. If M is an R-module and
Nil(M) is a proper submodule of M , then [Nil(M) :R M ] ⊆ Z(R).
Consequently, R \ Z(R) ⊆ R \ [Nil(M) :R M ]. In particular, T ⊆
R \ [Nil(M) :R M ] [25]. Recall from [25] that we can define a mapping
Φ : T(M) −→ MP given by Φ(x/s) = x/s which is clearly an R-
module homomorphism. The restriction of Φ to M is also an R-module
homomorphism from M in to MP given by Φ(m/1) = m/1 for every
m ∈ M . A nonnil submodule N of M is said to be Φ-invertible if Φ(N)
is an invertible submodule of Φ(M) [22]. An R-module M is called
a Φ-Dedekind module if every nonnil submodule of M is Φ-invertible
[22]. In this paper we introduce the concepts ϕ-almost Dedekind rings
and Φ-almost Dedekind modules and get some properties of them.

2. ϕ-almost Dedekind rings

Definition 2.1. A ring R is said to be a ϕ-almost Dedekind ring if for
each nonnil prime ideal P of R, RP is a ϕ-Dedekind ring.

Theorem 2.2. Let R ∈ H. Then R is a ϕ-almost Dedekind ring if
and only if R

Nil(R)
is an almost Dedekind domain.

Proof. Let R be a ϕ-almost Dedekind ring. Then for each nonnil prime
ideal P of R, RP is a ϕ-Dedekind ring. Then, by [7, Theorem 2.5],
( R
Nil(R)

) P
Nil(R)

= RP

Nil(RP )
is a Dedekind domain. Therefore R

Nil(R)
is an

almost Dedekind domain. Conversely, let R
Nil(R)

is an almost Dedekind
domain. Then for each nonzero prime ideal P

Nil(R)
, ( R

Nil(R)
) P
Nil(R)

=
RP

Nil(RP )
is a Dedekind domain. So, by [7, Theorem 2.5], RP is a ϕ-

Dedekind ring. Therefore, R is a ϕ-almost Dedekind ring. □
Corollary 2.3. Let R ∈ H. If R is a ϕ-Dedekind ring, then R is a
ϕ-almost Dedekind ring.

Proof. Suppose that R is a ϕ-Dedekind ring. Then, by [7, Theorem
2.5], R

Nil(R)
is a Dedekind domain and so R

Nil(R)
is an almost Dedekind

domain. Therefore, by Theorem 2.2, R is a ϕ-almost Dedekind ring. □
Theorem 2.4. Let R ∈ H. Then R is a ϕ-almost Dedekind ring if
and only if ϕ(R) is an almost Dedekind ring.

Proof. Let R be a ϕ-almost Dedekind ring. Then for each nonnil prime
ideal P of R, RP is a ϕ-Dedekind ring. So, by [7, Corollary 2.2],
ϕ(RP ) = ϕ(R)ϕ(P ) is a Dedekind ring for each regular prime ideal ϕ(P )
of ϕ(R). Therefore, ϕ(R) is an almost Dedekind ring. Conversely, let
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ϕ(R) is an almost Dedekind ring. Then for each regular prime ideal
ϕ(P ) of ϕ(R), ϕ(RP ) = ϕ(R)ϕ(P ) is a Dedekind ring. Hence, by [7,
Corollary 2.2], RP is a ϕ-Dedekind ring for each nonnil prime ideal P
of R. Therefore R is a ϕ-almost Dedekind ring. □

In veiw of Theorem 2.2, Theorem 2.4 and [6, Lemma 2.5], we have
the following result.

Corollary 2.5. Let R ∈ H. Then the following are equivalent:
(1) R is a ϕ-almost Dedekind ring;
(2) ϕ(R) is an almost Dedekind ring;
(3) R

Nil(R)
is an almost Dedekind domain;

(4) ϕ(R)
Nil(ϕ(R))

is an almost Dedekind domain.

Our non-domain examples of ϕ-almost Dedekind rings are provided
by the idealization construction R(+)B arising from a ring R and an
R-module B as in [21]. We recall this construction. For a ring R, let B
be an R-module. Consider R(+)B = {(r, b) : r ∈ R and b ∈ B}, and
let (r, b) and (s, c) be to elements of R(+)B. Define
(1) (r, b) = (s, c) if r = s and b = c.
(2) (r, b) + (s, c) = (r + s, b+ c).
(3) (r, b)(s, c) = (rs, bs+ rc).
Under these definitions, R(+)B becomes a commutative ring with iden-
tity.

Example 2.6. Let D be an almost Dedekind domain with quotient
field L. Set R = D(+)L. Then R ∈ H and R is a ϕ-almost Dedekind
ring which is not an almost Dedekind domain.

Proof. Since D is a domain, so {0} is a prime ideal of D. Hence
Nil(R) = {0}(+)L is a divided prime ideal of R. Let (a, x) ∈ R\Nil(R)
and (0, y) ∈ Nil(R). Then (0, y) = (a, x)(0, y/a) and hence R ∈ H.
Also, R/Nil(R) is ring-isomorphic to D and D is a almost Dedekind
domain, we conclude that R is a ϕ-almost Dedekind ring by Theorem
2.2. But R is not a domain. □

The following is an example of a ring R ∈ H which is an almost
Dedekind ring but not a ϕ-almost Dedekind ring.

Example 2.7. Let D be an integral domain with quotient field L which
is not an almost Dedekind domain and set R = D(+)(L/D). Then
R ∈ H is an almost Dedekind ring which is not a ϕ-almost Dedekind
ring.
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Proof. By previous Example, Nil(R) = {0}(+)(L/D) is a divided
prime ideal of R and thus R ∈ H. Since every nonunit of R is zero di-
visor, we conclude that R is an almost Dedekind ring. Since R/Nil(R)
is ring-isomorphic to D and D is not an almost Dedekind domain, so
R is not a ϕ-almost Dedekind ring by Theorem 2.2. □
Theorem 2.8. Let R ∈ H. If R is a ϕ-almost Dedekind ring, then R
is an almost Dedekind ring.
Proof. Suppose that R is a ϕ-almost Dedekind ring. Then for each
nonnil prime ideal P of R, RP is a ϕ-Dedekind ring. Hence, by [7, The-
orem 2.12], RP is a Dedekind ring. Therefore R is an almost Dedekind
ring. □
Theorem 2.9. Let R ∈ H such that Nil(R) = Z(R). Then R is a
ϕ-almost Dedeking ring if and only if R is an almost Dedekind ring.
Proof. Suppose that R is an almost Dedekind ring. Then ϕ(R) = R is
an almost Dedekind ring. Therefore, by Theorem 2.4, R is a ϕ-almost
Dedekind ring. Conversely is clear by Theorem 2.8. □
Theorem 2.10. Let R ∈ H be a ϕ-almost Dedekind ring and I be an
ideal with I ⊂ Nil(R). Then R

I
is a ϕ-almost Dedekind ring.

Proof. Suppose that I ⊂ Nil(R). Then Nil(R
I
) = Nil(R)

I
is a divided

prime ideal of R
I
. Thus R

I
∈ H. Since

R
I

Nil(R
I
)

is ring-isomorphic to R
Nil(R)

and R
Nil(R)

is an almost Dedekind domain by Theorem 2.2, we conclude
that R

I
is a ϕ-almost Dedekind ring. □

Theorem 2.11. Let R ∈ H. Then R is a ϕ-almost Dedekind ring if
and only if
(1) nonnil prime ideals of R are nonnil maximal, and
(2) nonnil primary ideal of R are prime powers.
Proof. Let R be a ϕ-almost Dedekind ring. Then, by Theorem 2.2,

R
Nil(R)

is an almost Dedekind domain. Let P be a nonnil prime ideal of
R. So P

Nil(R)
is a nonzero prime ideal of R

Nil(R)
. Hence, by [20, Theorem

1], P
Nil(R)

is a maximal ideal of R
Nil(R)

. Thus P is a nonnil maximal of
R. For (2), suppose that Q is a nonnil primary ideal of R. Then Q

Nil(R)

a primary ideal of R
Nil(R)

. So, by [20, Theorem 1], Q
Nil(R)

= Pn

Nil(R)
for a

positive integer n. Therefore Q = P n. Conversely is clear by a same
argument. □
Proposition 2.12. Let R ∈ H. If R is a ϕ-almost Dedekind ring and
I a nonnil proper ideal of R, then

∩∞
n=1 I

n = (0).
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Proof. Suppose that R is a ϕ-almost Dedekind ring and I a nonnil
proper ideal of R. Then, by Theorem 2.2, R

Nil(R)
is an almost Dedekind

domain and I
Nil(R)

is a proper ideal of R
Nil(R)

. So, by [20, Corollary 1],∩∞
n=1(

I
Nil(R)

)n = (0). Therefore
∩∞

n=1 I
n = (0). □

Theorem 2.13. Let R ∈ H be a ϕ-almost Dedekind ring. Then R
is a ϕ-Dedekind ring if and only if every nonnil proper ideal of R is
contained in only finitely many nonnil maximal ideals.

Proof. Let R be a ϕ-almost Dedekind ring. Then, by Theorem 2.2,
R

Nil(R)
is an almost Dedekind domain.

Suppose that R is a ϕ-Dedekind ring. So, by [7, Theorem 2.5], R
Nil(R)

is
a Dedekind domain. Hence, by [20, Theorem 3], every nonzero proper
ideal of R

Nil(R)
is contained in only finitely many maximal ideals. There-

fore every nonnil proper ideal of R is contained in only finitely many
nonnil maximal ideals. Conversely, let every nonnil proper ideal of R
be contained in only finitely many nonnil maximal ideals. Then ev-
ery nonzero proper ideal of R

Nil(R)
is contained in only finitely many

maximal ideals. So, by [20, Theorem 3], R
Nil(R)

is a Dedekind domain.
Therefore, by [7, Theorem 2.5], R is a ϕ-Dedekind ring. □

3. Φ-almost Dedekind modules

Ali in [4] generalized the concept of almost Dedekind domains to
faithful multiplication modules over a ring R as follow:

Definition 3.1. Let R be a ring and M an R-module. Then M is said
to be an almost Dedekind module if for each prime ideal P of R, MP

is an RP -module.

Recall from [4] that if R is an integral domain and M a faithful
multiplication R-module, then R is an almost Dedekind domain if and
only if M is an almost Dedekind module.

Theorem 3.2. Let R be an integral domain and M a faithful multipli-
cation R-module. Then M is an almost Dedekind module if and only if
(1) nonzero proper prime submodules of M are maximal, and
(2) primary submodules of M are prime powers.

Proof. Let M be an almost Dedekind module. Then, by [4], R is an
almost Dedekind domain. Let N be a nonzero proper prime submodule
of M . So (N :R M) is a nonzero prime ideal of R. Thus, by [20,
Theorem 1], (N :R M) is a maximal ideal of R. Hence N = (N :R M)M
is a maximal submodule of M and therefore (1) holds. Now, let N be
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a primary submodule of M . Then, by [3, Lemma 4], (N :R M) is a
primary ideal of R. Thus, by [20, Theorem 1], (N :R M) = P n for
some possitive integer n. Therefore N = (N :R M)M = P nM and
hence (2) is holds. By a same argument the converse is obvous. □
Proposition 3.3. Let R be an integral domain and M a faithful mul-
tiplication R-module. If M is an almost Dedekind module and N a
proper submodule of M , then

∩∞
n=1N

n = (0).

Proof. Suppose that M is an almost Dedekind module and N a proper
submodule of M . Then, by [4], R is an almost Dedekind domain
and (N :R M) is a proper ideal of R. Thus, by [20, Proposition 1],∩∞

n=1(N :R M)n = (0). Since M is multiplication,
∩∞

n=1 N
n = (0). □

Theorem 3.4. Let R be an integral domain and M a faithful multi-
plication almost Dedekind R-module. Then M is a Dedekind module if
and only if every nonzero proper submodule of M is contained in only
finitely many maximal submodules.

Proof. Since M is an almost Dedekind module, R is an almost Dedekind
module, by [4]. Let M be a Dedekind module and so R is a Dedekind
domain. Hence, by [20, Theorem 3], every nonzero proper ideal of R
is contained in only finitely many maximal ideals. Since M is multi-
plication, every nonzero proper submodule of M is contained in only
finitely many maximal submodules. By a similar argument the con-
verse is clear. □

Now we generalize the above properties to the class modules in H.

Definition 3.5. Let R be a ring and M be an R-module. Then M is
said to be a Φ-almost Dedekind module if for each prime ideal P of R,
MP is a Φ-Dedekind module.

Theorem 3.6. Let R be a ring and M ∈ H be a finitely generated
faithful multiplication R-module with Nil(M) = Z(R)M . Then M is a
Φ-almost Dedekind module if and only if M

Nil(M)
is an almost Dedekind

module.

Proof. Let M be a Φ-almost Dedekind module. Then for each prime
ideal P of R, MP is a Φ-Dedekind module. So, by [22, Theorem 2.10],
( M
Nil(M)

)P = MP

Nil(MP )
is a Dedekind module. Therefore M

Nil(M)
is an

almost Dedekind module. Conversely, let M
Nil(M)

is an almost Dedekind
module. Then for each prime ideal P of R, ( M

Nil(M)
)P = MP

Nil(MP )
is a

Dedekind module. Thus, by [22, Theorem 2.10], MP is a Φ-Dedekind
module. Therefore M is a Φ-almost Dedekind module. □
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Theorem 3.7. ([22, Lemma 2.6]) Let R be a ring and M a finitely
generated faithful multiplication R-module with M ∈ H. Then M

Nil(M)

is isomorphic to Φ(M)
Nil(Φ(M))

as R-module.

Corollary 3.8. Let R be a ring and M a finitely generated faithful
multiplication R-module with M ∈ H. Then M is a Φ-almost Dedekind
module if and only if Φ(M)

Nil(Φ(M))
is an almost Dedekind module.

Corollary 3.9. Let R be a ring and M ∈ H be a finitely generated
faithful multiplication R-module with Nil(M) = Z(R)M . If M is a
Φ-Dedekind module, then M is a Φ-almost Dedekind module.

Proof. Suppose that M is a Φ-Dedekind module. Then, by [22, The-
orem 2.10], M

Nil(M)
is a Dedekind module and so M

Nil(M)
is an almost

Dedekind module. Therefore, by Theorem 3.6, M is a Φ-almost Dedekind
module. □

Theorem 3.10. Let R be a ring and M ∈ H be a finitely generated
faithful multiplication R-module with Nil(M) = Z(R)M . Let M be a
Φ-almost Dedekind module and N a submodule of M such that N ⊂
Nil(M). Then M

N
is a Φ-almost Dedekind module.

Proof. Suppose that N ⊂ Nil(M). Then Nil(M
N
) = Nil(M)

N
is a di-

vided prime submodule of M
N

. Thus M
N

∈ H. Since
M
N

Nil(M
N

)
is module-

isomorphic to M
Nil(M)

and M
Nil(M)

is an almost Dedekind module by The-
orem 3.6, we conclude that M

N
is a Φ-almost Dedekind module. □

Lemma 3.11. Let R be a ring and M be a finitely generated faithful
multiplication R-module. The following statements are hold:
(1) If R ∈ H is a ϕ-Dedekind ring, then M is a Φ-Dedekind module;
(2) If M ∈ H is a Φ-Dedekind module, then R is a ϕ-Dedekind ring.

Proof. Since Nil(R) ⊆ Ann( M
Nil(R)M

) = Ann( M
Nil(M)

), we have:
(1) Let R ∈ H. Then, by [25, Proposition 3], M ∈ H. If R is a ϕ-
Dedekind ring, then [7, Theorem 2.5], R

Nil(R)
is a Dedekind domain. So,

by [4], M
Nil(M)

is a Dedekind module. Therefore, by [22, Theorem 2.10],
M is a Φ-Dedekind module.
(2) Let M ∈ H. Then, by [25, Proposition 3], R ∈ H. If M is a
Φ-Dedekind module, then by [22, Theorem 2.10], M

Nil(M)
is a Dedekind

module. So, by [4], R
Nil(R)

is a Dedekind domain. Therefore, by [7,
Theorem 2.5], R is a ϕ-almost Dedekind ring. □
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Theorem 3.12. Let R be a ring and M ∈ H be a finitely generated
faithful multiplication R-module with Nil(M) = Z(R)M . Then M is a
Φ-almost Dedekind module if and only if Φ(M) is an almost Dedekind
module.
Proof. Let M be a Φ-almost Dedekins R-module. Then for each prime
ideal P of R, MP is a Φ-Dedekind RP -module. So, by Lemma 3.11, RP

is a ϕ-Dedekind ring. Hence, by [7, Corollary 2.2], ϕ(RP ) = ϕ(R)ϕ(P ) is
a Dedekind ring. Thus Φ(M)ϕ(P ) is a Dedekind ϕ(R)-module. There-
fore, Φ(M) is an almost Dedekind ϕ(R)-module. By a same argument
conversely is clear. □

In veiw of Theorem 3.6, Corollary 3.8 and Theorem 3.12, we have
the following result.
Corollary 3.13. Let R be a ring and M ∈ H be a finitely generated
faithful multiplication R-module with Nil(M) = Z(R)M . The follow-
ing are equivalent:
(1) M is a Φ-almost Dedekind module;
(2) Φ(M) is an almost Dedekind module;
(3) M

Nil(M)
is an almost Dedekind module;

(4) Φ(M)
Nil(Φ(M))

is an almost Dedekind module.

Theorem 3.14. Let R be a ring and M be a finitely generated faithful
multiplication R-module. The following statements are hold:
(1) If R ∈ H is a ϕ-almost Dedekind ring, then M is a Φ-almost
Dedekind module;
(2) If M ∈ H is a Φ-almost Dedekind module, then R is a ϕ-almost
Dedekind ring.
Proof. Since Nil(R) ⊆ Ann( M

Nil(R)M
) = Ann( M

Nil(M)
), we have:

(1) Let R ∈ H. Then, by [25, Proposition 3], M ∈ H. If R is a ϕ-
almost Dedekind ring, then Theorem 2.2, R

Nil(R)
is an almost Dedekind

domain. So, by [4], M
Nil(M)

is an almost Dedekind module. Therefore,
by Theorem 3.6, M is a Φ-almost Dedekind module.
(2) Let M ∈ H. Then, by [25, Proposition 3], R ∈ H. If M is a
Φ-almost Dedekind module, then by Theorem 3.6, M

Nil(M)
is an almost

Dedekind module. So, by [4], R
Nil(R)

is an almost Dedekind domain.
Therefore, by Theorem 2.2, R is a ϕ-almost Dedekind ring. □
Lemma 3.15. Let R be a ring, M a finitely generated faithful mul-
tiplication R-module and N a nonnil submodule of M . Then N is a
Φ-invertible submodule of M if and only if (N :R M) is an invertible
ideal of R.
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Proof. Suppose that N is a Φ-invertible submodule of M . Then Φ(N)
is an invertible submodule of Φ(M). So Φ(NN−1) = Φ(N)Φ(N−1) =
Φ(M). Thus, by [26, Lemma 3.3], NN−1 = M . Hence, by [3, Lemma
1], (N :R M)(N :R M)−1 = R. Therefore (N :R M) is an invertible
ideal of R. Conversely, suppose that (N :R M) is an invertible ideal of
R. Then (N :R M)(N :R M)−1 = R. So, by [3, Lemma 1], NN−1 = M .
Thus Φ(NN−1) = Φ(N)Φ(N−1) = Φ(M). Hence Φ(N) is an invertible
submodule of Φ(M). Therefore N is a Φ-invertible submodule of M .

□
Lemma 3.16. Let R be an integral domain and M ∈ H a faithful
multiplication R-module. Then M is Φ-Dedekind module if and only if
R is a Dedekind domain.

Proof. Let M be a Φ-Dedekind module. Then every nonnil submodule
N of M is Φ-invertible. So, by Lemma 3.15, (N :R M) is an invertible
ideal of R. Therefore R is a Dedekind domain. By a similar argument
the converse is clear. □
Proposition 3.17. Let R be an integral domain and M ∈ H a faithful
multiplication R-module. Then M is a Φ-almost Dedekind module if
and only if R is an almost Dedekind domain.

Proof. Suppose that M is Φ-almost Dedekind module. Then for each
prime ideal P of R, MP is a Φ-Dedekind module. Hence, by Lemma
3.16, RP is a Dedekind domain. Therefore R is an almost Dedekind
domain. Conversely, let R is an almost Dedekind domain. Then for
each nonzero prime ideal P of R, RP is a Dedekind domain. So, by
Lemma 3.16, MP is a Φ-Dedekind module for each prime ideal P of R.
Therefore M is a Φ-almost Dedekind module. □
Theorem 3.18. Let R be a ring and M ∈ H be a finitely generated
faithful multiplication R-module with Nil(M) = Z(R)M . Then M is
an Φ-almost Dedekind module if and only if
(1) nonnil prime submodules of M are nonnil maximal, and
(2) nonnil primary submodules of M are prime powers.

Proof. Let M be a Φ-almost Dedekind module. Then, by Theorem
3.6, M

Nil(M)
is an almost Dedekind module. So, by [4], R is an almost

Dedekind domain. Suppose that N is a nonnil prime submodule of M .
Then N

Nil(M)
is a prime submodule of M

Nil(M)
and so ( N

Nil(M)
:R

M
Nil(M)

is a prime ideal of R. Hence, by [20, Theorem 1], ( N
Nil(M)

:R
M

Nil(M)
is

a maximal ideal of R. Thus N
Nil(M)

is a maximal submodule of M
Nil(M)

.
Therefore N is a nonnil maximal submodule of M . For (2), let N be a
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nonnil primary submodule of M . Then N
Nil(M)

is a primary submodule
of M

Nil(M)
and so ( N

Nil(M)
:R

M
Nil(M)

) is a primary ideal of R, by [3, Lemma
4]. So, by [20, Theorem 1], ( N

Nil(M)
:R

M
Nil(M)

) = P n for a positive integer
n. Hence N

Nil(M)
= PnM

Nil(M)
. Thus N = P nM . By a similar argument,

the converse is clear. □

Proposition 3.19. Let R be a ring and M ∈ H be a finitely generated
faithful multiplication R-module with Nil(M) = Z(R)M . If M is an
Φ-almost Dedekind module and N a nonnil proper submodule of M ,
then

∩∞
n=1 N

n = (0).

Proof. Let M be a Φ-almost Dedekind module and N a nonnil proper
submodule of M . Then, by Theorem 3.6, M

Nil(M)
is an almost Dedekind

module and N
Nil(M)

is a proper submodule of M
Nil(M)

. So, by [4], R is an
almost Dedekind domain and ( N

Nil(M)
:R

M
Nil(M)

) is a proper ideal of R.
So, by [20, Corollary 1],

∩∞
n=1((

N
Nil(M)

:R
M

Nil(M)
))n = (0). Since M is

multiplication,
∩∞

n=1(
N

Nil(M)
)n = (0). Therefore

∩∞
n=1N

n = (0). □

Theorem 3.20. Let R be a ring and M ∈ H be a finitely generated
faithful multiplication Φ-almost Dedekind R-module with Nil(M) =
Z(R)M . Then M is a Φ-Dedekind module if and only if every non-
nil proper submodule of M is contained in only finitely many nonnil
maximal submodules.

Proof. Suppose that M is a Φ-almost Dedekind module. Then, by
Theorem 3.6, M

Nil(M)
is an almost Dedekind module. So, by [4], R is an

almost Dedekind domain. Now, if M is a Φ-Dedekind module, then, by
[22, Theorem 2.10], M

Nil(M)
is a Dedekind module and so R is a Dedekind

domain. Hence, by [20, Theorem 1], every nonzero proper ideal of R is
contained in only finitely many maximal ideals. Since M is multipli-
cation, every nonzero proper submodule of M

Nil(M)
is contained in only

finitely many maximal submodules. Therefore, every nonnil proper
submodule of M is contained in only finitely many nonnil maximal
submodules. The converse part can be handled similarly.
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ϕ-ALMOST DEDEKIND RINGS AND Φ-ALMOST DEDEKIND MODULES

M. RAHMATINIA AND A. YOUSEFIAN-DARANI

ددکیند تقریباً -Φ مدول های و ددکیند تقریباً -ϕ حلقه های

دارانی٢ یوسفیان احمد و رحمتی نیا١ مهدی

ایران اردبیل، اردبیلی، محقق دانشگاه کاربردها، و ریاضیات دانشکده ١,٢

تقریباً دامنه های با نزدیکی ارتباط که مدول ها و حلقه ها از جدید رده یک معرفی مقاله این از هدف
و ددکیند تقریباً -ϕ حلقه های مفاهیم مقاله، این در می باشد. دارند، ددکیند تقریباً مدول های و ددکیند
را مدول ها و حلقه ها از رده این ویژگی های از بعضی و می کنیم معرفی را ددکیند تقریباً -Φ مدول های
به دست ددکیند تقریباً -Φ مدول های و ددکیند تقریباً -ϕ حلقه های برای معادلی شرایط می کنیم. مطالعه

می کنیم. بررسی را ددکیند تقریباً -Φ مدول های و ددکیند تقریباً -ϕ حلقه های بین روابط و می آوریم

ددکیند. -Φ مدول ددکیند، تقریباً -Φ مدول ددکیند، -ϕ حلقه ددکیند، تقریباً -ϕ حلقه کلیدی: کلمات
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