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TOP LOCAL COHOMOLOGY AND TOP FORMAL
LOCAL COHOMOLOGY MODULES WITH SPECIFIED

ATTACHED PRIMES

A. NAZARI∗ AND F. RASTGOO

Abstract. Let (R,m) be a Noetherian local ring, M be a finitely
generated R-module of dimension n and a be an ideal of R. In
this paper, generalizing the main results of Dibaei and Jafari [3]
and Rezaei [8], we will show that if T is a subset of AsshR M ,
then there exists an ideal a of R such that AttR Hn

a (M) = T .
As an application, we give some relationships between top local
cohomology modules and top formal local cohomology modules.

1. Introduction

Throughout this paper, let (R,m) be a commutative Noetherian local
ring, a be an ideal of R and M be a finitely generated R-module of
dimension n. For an R-module M , the i-th local cohomology module
of M with respect to a is defined as

Hi
a(M) = lim−−→

n≥1
ExtiR(R/an,M).

For the basic properties of local cohomology the reader can refer to
[2]. Also, for each i ≥ 0; Fi

a(M) := lim←−
t
Hi

m(M/atM) is called the i-th
formal local cohomology module of M with respect to a. The formal
local cohomology modules have been studied by several authors; see
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for example [1], [5] and [9]. Let M be a finitely generated R-module
of dimension n, then Max{i ∈ Z : Hi

a(M) ̸= 0} ≤ n by [2, Theorem
6.1.2] and Max{i ∈ Z : Fi

a(M) ̸= 0} ≤ n by [9, Theorem 4.5]. Recall
that the module Hn

a (M) is called a top local cohomology module if
Max{i ∈ Z : Hi

a(M) ̸= 0} = n and the module Fn
a (M) is called a top

formal local cohomology module if Max{i ∈ Z : Fi
a(M) ̸= 0} = n. For

each Artinian R-module A, we denote by AttR A the set of all attached
prime ideals of A.

In section 2, we show that any subset T of AsshR M , where

AsshR M = {p ∈ AssR M : dim(R/p) = dimM},

can be expressed as the set of attached primes of the top local cohomol-
ogy module Hn

a (M) for some ideal a of R. This generalizes a result of
Dibaei and Jafari [3] to Noetherian local rings that are not necessarily
complete.

We say that the top local cohomology module Hn
a (M) satisfies the

property (∗), if

AttR Hn
a (M) = {p ∈ AssR M : dim(R/p) = n and

√
a+ p = m}.

Rezaei in [8], showed that if (R,m) is a complete Noetherian local ring
and M is a finitely generated R-module of dimension n then for each
ideal a of R there exists an ideal b such that Hn

a (M) ∼= Fn
b (M) and

there exists an ideal c such that Fn
a (M) ∼= Hn

c (M). In section 3, we
generalize this result. In fact, we show that over Noetherian local rings
that are not necessarily complete, there exists an ideal c such that
Fn
a (M) ∼= Hn

c (M) and if Hn
a (M) satisfies the property (∗) then there

exists an ideal b such that Hn
a (M) ∼= Fn

b (M).
For any ideal a of R, the radical of a, denoted by

√
a, is defined

to be the set {x ∈ R : xn ∈ a for some n ∈ N}. Also, we denote
{p ∈ SpecR : p ⊇ a} by V(a) and MinV(a) by Min(a). For an R-
module M , we show the set of minimal members of associated primes
of M by mAssR(M). For any unexplained notation and terminology,
we refer the reader to [2] and [6].

2. top local cohomology modules with specified attached
primes

In this section, we study the set of attached primes of top local
cohomology modules.

Notation 2.1. Let a be an ideal of R and M be a finitely generated R-
module of dimension n. Let 0 =

∩
p∈AssR M N(p) be a reduced primary
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decomposition of the submodule 0 of M . Following [7], we set
AssR(a,M) = {p ∈ AssR M : dim(R/p) = n and

√
a+ p = m}.

Set N a =
∩

p∈AssR(a,M)N(p). Note that N a does not depend on the
choice of the reduced primary decomposition of zero because

AssR(a,M) ⊆ mAssR M.

It is clear that AssR(a,M) = AssR(M/N a) and
AssR N a = AssR M \ AssR(a,M).

For each integer l ≥ 0 and any subset S of SpecR we define
Sl := {p ∈ S : dim(R/p) = l}.

Lemma 2.2. Let N a be defined as above. Then the following statements
are equivalent:

(i) Hn
a (N

a) = 0;
(ii) Hn

a (M) ∼= Hn
a (M/N a);

(iii) AttR Hn
a (M) = AttR Hn

a (M/N a) = AssR(a,M).
Proof. By the exact sequence

Hn
a (N

a) → Hn
a (M) → Hn

a (M/N a) → 0

it is enough for us to prove (iii)⇒(i). Suppose, on the contrary, that
Hn

a (N
a) ̸= 0. Then there exists p ∈ AttR Hn

a (N
a). By [4, Theorem

A], p ∈ AssR N a and cd(a, R/p) = n and so p ∈ AttR Hn
a (M) =

AttR Hn
a (M/N a). But by Notation 2.1, AttR Hn

a (M/N a) = AssR(a,M),
that means p ∈ AssR(a,M) = AssR(M/N a), a contradiction. □
Definition 2.3. Let a be an ideal of R, M be a finitely generated R-
module of dimension n and N a be defined as in Notation 2.1. We say
Hn

a (M) satisfies the property (∗), if one of the equivalent conditions of
Lemma 2.2 holds.

Proposition 2.4. Let a and b be two ideals of R such that Hn
a (M)

satisfies the property (∗). If AttR Hn
b (M) ⊆ AttR Hn

a (M), then there
exists an epimorphism Hn

a (M) → Hn
b (M).

Proof. Since Hn
a (M) satisfies the property (∗), we have

Hn
a (M) ∼= Hn

a (M/N a) ∼= Hn
m(M/N a)

and
AttR Hn

a (M) = AttR Hn
a (M/N a) = AssR(a,M) = AssR(M/N a)

where, N a =
∩

p∈AssR(a,M) N(p). Now we show that Hn
b (N

a) = 0. Sup-
pose, on the contrary, that Hn

b (N
a) ̸= 0. Then there exists a prime ideal
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p ∈ AttR Hn
b (N

a) and therefore for this prime ideal, by [4, Theorem A]
we have, p ∈ AssR N a and cd(b, R/p) = n. Since AssR N a ⊆ AssR M ,
we have p ∈ AttR Hn

b (M) and therefore p ∈ AttR Hn
a (M) that is a con-

tradiction by Notation 2.1. So, Hn
b (M) ∼= Hn

b (M/N a). By [2, Proposi-
tion 8.1.2], for each x ∈ m \ b, there is a long exact sequence

· · · −→ Hn
b+Rx(M/N a) −→ Hn

b (M/N a) −→ Hn
b ((M/N a)x) −→ · · ·

where (M/N a)x is the localization of M/N a at {xi : i ≥ 0}. Note
that Hn

b (M/N a) is Artinian and Hn
b ((M/N a)x) ∼= (Hn

b (M/N a))x. It
follows that Hn

b ((M/N a)x) = 0 and so there exists an epimorphism
Hn

b+Rx(M/N a) → Hn
b (M/N a). Repeating the argument with b + Rx

in place of b and continuing gives an epimorphism Hn
m(M/N a) →

Hn
b (M/N a) and so we have the epimorphism Hn

a (M) → Hn
b (M). □

Corollary 2.5. Let a and b be two ideals of R such that Hn
b (M) and

Hn
a (M) satisfy the property (∗). If AttR Hn

a (M) = AttR Hn
b (M), then

Hn
a (M) ∼= Hn

b (M).
Proof. As in the proof of Proposition 2.4, since

AttR Hn
a (M) = AttR Hn

b (M),

we have N a = N b and so
Hn

a (M) ∼= Hn
m(M/N a) ∼= Hn

m(M/N b) ∼= Hn
b (M).

□
Dibaei and Jafari in [3], have shown that if R is a complete Noether-

ian local ring and M is a finitely generated R-module of dimension n,
then any subset T of AsshR M can be expressed as the set of attached
primes of the top local cohomology module Hn

a (M) for some ideal a of
R (see [3, Theorem 2.8]). In the next theorem, we generalize this result
to Noetherian local rings that are not necessarily complete.

Theorem 2.6. Let M be a finitely generated R-module of dimension
n and T be a subset of AsshR(M), then there exists an ideal a of R
such that AttR Hn

a (M) = T .
Proof. Let AsshR M = {p1, . . . , pk} and T = {p1, . . . , pr}, where r ≤ k.
When r = k, the result is immediate from [2, Theorem 7.3.2], just
take a = m. We therefore assume henceforth in this proof that r < k.
So AsshR M \ T = {pr+1, . . . , pk}. Since, for each 1 ≤ i ≤ k, pi is a
minimal associated prime of M , we have

∩k
i=r+1 pi ⊈

∪r
i=1 pi. So we

can choose an element y ∈
∩k

i=r+1 pi \
∪r

i=1 pi. Set M =
M

(
∩r

i=1 pi)M
,

then AsshR M = T and dim(M) = n. Since y /∈
∪r

i=1 pi, there are
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elements x1, . . . , xn−1 such that y, x1, . . . , xn−1 forms a system of pa-
rameters for R-�module M . Set a = ⟨y, x1, . . . , xn−1⟩. It follows from
[2, Independence Theorem 4.2.1 and Exercise 6.1.9] that

Hn
a (M)⊗ R∩r

i=1 pi
∼= Hn

a (M ⊗ R∩r
i=1 pi

) ∼= Hn
a (M) ∼= Hn

m(M) ̸= 0.

We can now use [2, Theorem 7.3.2 and Exercise 7.2.6] to deduce that

T = AttR Hn
m(M) ⊆ AttR Hn

a (M).

On the other hand, if pi ∈ AsshR M \ T , then

Hn
a (

R
pi
) = Hn

⟨y,x1,...,xn−1⟩(
R
pi
)

[Since y ∈ pi] ∼= Hn
⟨x1,...,xn−1⟩(

R
pi
)

by [2, Theorem 3.3.1] = 0.

It follows from this observation and [4, Theorem A] that AttR Hn
a (M) ⊆

T . Hence AttR Hn
a (M) = T and this completes the proof. □

Remark 2.7. Let M be a finitely generated R-module of dimension n
and T be a subset of AsshR M . By Theorem 2.6, there exists an ideal
a of R such that AttR Hn

a (M) = T . By the choice of this ideal in the
proof of Theorem 2.6, one can see that, for each p ∈ T ,√a+ p = m.
Therefore

AttR Hn
a (M) = {p ∈ AsshR M :

√
a+ p = m} = AssR(a,M)

and so AttR Hn
a (M) = AttR Hn

a (M/N a). Hence Hn
a (M) satisfies the

property (∗).

3. some results on top formal local cohomology

In [8], Rezaei proved that if (R,m) is a complete Noetherian local
ring and M is a finitely generated R-module of dimension n, then for
each ideal a of R there exists an ideal b such that Hn

a (M) ∼= Fn
b (M)

and there exists an ideal c such that Fn
a (M) = Hn

c (M). In this section
we give a generalization of this result.

Lemma 3.1. (See [8, Theorem 2.2].) Let (R,m) be a Noetherian local
ring and M be a finitely generated R-module of dimension n. If T is a
proper subset of AsshR M , then AttR Fn

a (M) = T where a :=
∩

pi∈T pi
is an ideal of R.

Lemma 3.2. (See [8, Lemma 2.4].) Let a be an ideal of a Noetherian
local ring R and M be a finitely generated R-module. If M is an
a-torsion module, then Fi

a(M) ∼= Hi
m(M) for all i ≥ 0.
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By [5, Proposition 2.1], if a is an ideal of R and M is a finitely
generated R-module of dimension n, then Fn

a (M) is an Artinian R-
module and there exists an integer n0 such that Fn

a (M) ∼= Hn
m(M)

an0 Hn
a (M)

.
Now we can reduce the completeness assumption in [8, Theorem 2.5]
to the assumption that Hn

a (M) satisfies the property (∗).

Theorem 3.3. Let a and b be two ideals of a Noetherian local ring
(R,m) and M be a finitely generated R-module of dimension n such
that Hn

a (M) satisfies the property (∗). If AttR Hn
a (M) = AttR Fn

b (M),
then Hn

a (M) ∼= Fn
b (M).

Proof. Since Hn
a (M) satisfies the property (∗), by Notation 2.1 and

Definition 2.3 we have Hn
a (N

a) = 0 and
AttR Fn

b (M) = AttR Hn
a (M)

= {p ∈ AssR M : dim(R/p) = n and
√
a+ p = m}

= AssR(a,M).

Now we show that the Artinian module Fn
b (N

a) is zero. Suppose, on
the contrary, that Fn

b (N
a) ̸= 0. Therefore there exists a prime ideal

p ∈ AttR Fn
b (N

a). By [5, Proposition 2.1], p ∈ AssR Na, dim(R/p) = n
and b ⊆ p. Therefore p ∈ AttR Fn

b (M) = AttR Hn
a (M) = AssR(a,M),

a contradiction. Therefore Fn
b (N

a) = 0 and Fn
b (M) ∼= Fn

b (M/N a).
On the other hand, since AttR Fn

b (M) = AssR(M/N a), we have b ⊆∩
p∈AssR(M/Na) p. Therefore M/N a is a b-torsion R-module and by

Lemma 3.2, we have Fn
b (M/N a) ∼= Hn

m(M/N a) ∼= Hn
a (M/N a) ∼= Hn

a (M).
□

Corollary 3.4. Let a be an ideal of a Noetherian local ring (R,m) such
that Hn

a (M) satisfies the property (∗). Then Hn
a (M) ∼= Fn

b (M), where
b = AnnR Hn

a (M).

Proof. Let b = AnnR Hn
a (M), then

√
b =

∩
p∈AttR Hn

a (M) p. Since

AttR Hn
a (M) ⊆ AsshR M,

it follows from Lemma 3.1 that AttR Hn
a (M) = AttR Fn√

b
(M) and so by

Theorem 3.3, we have Hn
a (M) ∼= Fn√

b
(M) ∼= Fn

b (M). □

Now we can generalize [8, Theorem 2.6 (ii)] and [8, Corollary 2.7] to
Noetherian local rings that are not necessarily complete.

Theorem 3.5. Let a be an ideal of a Noetherian local ring (R,m) and
M be a finitely generated R-module of dimension n. Then there exists
an ideal c of R such that Fn

a (M) ∼= Hn
c (M).
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Proof. Since AttR Fn
a (M) ⊆ AsshR M , it follows from Theorem 2.6 that

there exists an ideal c of R such that AttR Hn
c (M) = AttR Fn

a (M). By
Remark 2.7, Hn

c (N
c) = 0, where N c is defined as in Notation 2.1.

Therefore Hn
c (M) satisfies the property (∗). Now by Theorem 3.3,

Fn
a (M) ∼= Hn

c (M). □
Corollary 3.6. Let a be an ideal of a Noetherian local ring (R,m) and
M be a finitely generated R-module of dimension n. Then

Fn
a (M) ∼= Fn

AnnR Fn
a (M)(M).

Proof. By Theorem 3.5, there exists an ideal c of R such that Fn
a (M) ∼=

Hn
c (M). As Hn

c (M) satisfies the property (∗), we have Hn
c (M) ∼=

FAnnR Hn
c (M)(M) by Corollary 3.4, and so Fn

a (M) ∼= FAnnR Fn
a (M)(M),

as required. □
Theorem 3.7. Let a be an ideal of a Noetherian local ring (R,m) and
M be a finitely generated R-module of dimension n such that Hn

a (M)

satisfies the property (∗). Then Hn
a (M) ∼=

Hn
m(M)

(AnnR Hn
a (M))Hn

m(M)
.

Proof. By Corollary 3.4, we have Hn
a (M) ∼= Fn

AnnR Hn
a (M)(M) and by [5,

Proposition 2.1], there exists an integer t0 such that

Fn
AnnR Hn

a (M)(M) =
Hn

m(M)

(AnnR Hn
a (M))t Hn

m(M)
for all t ≥ t0.

Hence Hn
a (M) ∼=

Hn
m(M)

(AnnR Hn
a (M))tHn

m(M)
for all t ≥ t0 and so

AnnR Hn
a (M) = AnnR(

Hn
m(M)

(AnnR Hn
a (M))t Hn

m(M)
) for all t ≥ t0.

It follows that
(AnnR Hn

a (M))Hn
m(M) ⊆ (AnnR Hn

a (M))t Hn
m(M) for all t ≥ t0.

Hence (AnnR Hn
a (M))t Hn

m(M) = AnnR Hn
a (M)Hn

m(M) for all t ≥ t0
and therefore

Hn
a (M) ∼=

Hn
m(M)

(AnnR Hn
a (M))Hn

m(M)
.

□
Theorem 3.8. Let a be an ideal of a Noetherian local ring (R,m) and
M be a finitely generated R-module of dimension n. Then

Fn
a (M) ∼=

Hn
m(M)

(AnnR Fn
a (M))Hn

m(M)
.
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Proof. By Corollary 3.6, Fn
a (M) ∼= FAnnR Fn

a (M)(M). So an argument
similar to the proof of Theorem 3.7 completes the proof. □
Corollary 3.9. Let a and b be two ideals of a Noetherian local ring
(R,m) and M be a finitely generated R-module of dimension n.

(i) If AnnR Fn
a (M) = AnnR Fn

b (M), then Fn
a (M) ∼= Fn

b (M);
(ii) If Hn

a (M) satisfies the property (∗) and
AnnR Hn

a (M) = AnnR Fn
b (M),

then Hn
a (M) ∼= Fn

b (M);
(iii) If both Hn

a (M) and Hn
b (M) satisfy the property (∗) and

AnnR Hn
a (M) = AnnR Hn

b (M),

then Hn
a (M) ∼= Hn

b (M).

Proof. All items are clear by Theorem 3.7 and Theorem 3.8. □
Theorem 3.10. Let a be an ideal of a Noetherian local ring (R,m)
and M be a finitely generated R-module of dimension n. Then

(i) We have the equalities
AttR Fn

a (M) = V(AnnR Fn
a (M)) ∩ AsshR M

= MinV(AnnR Fn
a (M)).

(ii) If Hn
a (M) satisfies the property (∗), then

AttR Hn
a (M) = V(AnnR Hn

a (M)) ∩ AsshR M = MinV(AnnR Hn
a (M)).

Proof. (i) Since for each Artinian R-module A,
AttR(A/aA) = AttR A ∩ V(a),

by Theorem 3.8, we have
AttR Fn

a (M) = AttR Hn
m(M) ∩ V(AnnR Fn

a (M))

= AsshR M ∩ V(AnnR Fn
a (M))

⊆ MinV(AnnR Fn
a (M)).

On the other hand
MinV(AnnR Fn

a (M)) = MinAttR Fn
a (M)

⊆ AsshR M ∩ V(AnnR Fn
a (M)).

Therefore
AttR Fn

a (M) = AsshR M ∩ V(AnnR Fn
a (M)) = MinV(AnnR Fn

a (M)).

(ii) The proof is similar to the proof (i). □
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Corollary 3.11. Let a be an ideal of a Noetherian local ring (R,m)
and M be a finitely generated R-module of dimension n. Then

(i) AttR Fn
a (M) = AssR(

R

AnnR Fn
a (M)

).

(ii) If Hn
a (M) satisfies the property (∗), then

AttR Hn
a (M) = AssR(

R

AnnR Hn
a (M)

).

Proof. (i) Since Fn
a (M) is Artinian, it follows from [10, Theorem 3.1 and

Theorem 3.3 (b)] that AssR(R/AnnR Fn
a (M)) ⊆ AttR(F

n
a (M)). But

the sets V(AnnR Fn
a (M)) and AssR(R/AnnR Fn

a (M)) have the same
minimal elements, by [10, Theorem 3.3 (c)]. Thus, by Theorem 3.10,
AttR(F

n
a (M)) ⊆ AssR(R/AnnR Fn

a (M)). Therefore

AttR(F
n
a (M)) = AssR(R/AnnR Fn

a (M)).

(ii) The proof is similar to the proof (i). □
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TOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY
MODULES WITH SPECIFIED ATTACHED PRIMES

A. NAZARI AND F. RASTGOO

مشخص چسبیدهی اول ایدهآلهای با صوری موضعی کوهمولوژی و موضعی کوهمولوژی مدولهای بالاترین

راستگو٢ فهیمه و نظری١ علیرضا

ایران آباد، خرم لرستان، دانشگاه پایه، علوم دانشکده کامپیوتر، علوم و ریاضی گروه ١,٢

a و n بعد از متناهی مولد مدول −R یک M نوتری، موضعی حلقهی یک (R,m) کنید فرض
ایدهآل ،AsshRM از T مجموعهی زیر هر ازای به که میدهیم نشان مقاله این در باشد. R از ایدهآلی
بین ارتباطات برخی مطلب این از استفاده با .AttRHn

a (M) = T که به طوری است موجود R از a
شده، بیان مطالب میشود. بیان صوری موضعی کوهمولوژی و موضعی کوهمولوژی مدولهای بالاترین
میدهد. تعمیم را [٨] مرجع در رضایی و [٣] مرجع در جعفری و دیبایی توسط آمده به دست اصلی نتایج

موضعی کوهمولوژی مدولهای موضعی، کوهمولوژی مدولهای چسبیده، اول ایدهآلهای کلیدی: کلمات
موضعی. نوتری حلقههای صوری،
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