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CONTINUOUS FUNCTIONS ON LG-SPACES

A. R. ALIABAD∗ AND H. ZAREPOUR

Abstract. By an l-generalized topological space, briefly an LG-
space, we mean the ordered pair (F, τ) in which F is a frame and τ
is a subframe of F . This notion has been first introduced by A.R.
Aliabad and A. Sheykhmiri in [LG-topology, Bull. Iran. Math.
Soc., 41 (1), (2015), 239-258]. In this article, we define continuous
functions on LG-spaces and determine conditions under which the
continuous image of a compact element of an LG-space is compact.
Moreover, we introduce the concept of connectedness for LG-spaces
and determine conditions under which the continuous image of a
connected element of an LG-space is connected. In fact, we show
that LG-spaces are models for topological spaces as well as frames
are models for topologies.

1. Introduction

A complete lattice L is a lattice in which every subset has a supre-
mum. Clearly, a complete lattice is a bounded lattice, i.e., it has the
largest element 1 and the smallest element 0. A frame F is a com-
plete lattice in which the distributive law a ∧ (

∨
S) =

∨
s∈S(a ∧ s)

holds for every a ∈ F and S ⊆ F . A pseudocomplement of an element
a of a bounded lattice L is defined by max{x ∈ L : x ∧ a = 0},
if it exists, and denoted by a∗. Obviously, if F is a frame, then
a∗ =

∨
{x ∈ L : x ∧ a = 0}. Let F be a frame. Then a subset G

of F which is closed under finite meets and arbitrary joins is called
a subframe of F . Let (X, τ) be any topological space. Then it is
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clear that τ is a frame, and if U ⊆ τ , then
∨

U∈U U =
∪

U∈U U and∧
U∈U U = intX(

∩
U∈U U). In fact, this example is a basic model that

inspires topologists to study a frame as a pointfree topology.
In [8] and later in [9], Guo-Jun Wang constructed a model for topo-

logical spaces on a completely distributive lattice. In [1], this view was
followed and generalized to topological spaces known as LG-spaces.
This article, in fact, is a continuation of the paper [1]. There are two
viewpoints for introducing continuous functions on this structure. In
[3], continuous functions are introduced from viewpoint of the locale.
In the present paper, in frame viewpoint, we define continuous func-
tions in the context of LG-spaces with a little difference from what is
defined in [9]. So, in the following, we will recall some of the material
from [1] that are needed to understand the issue better. The reader
is referred to [6] and [5] for more details concerning frames. Also, see
[4], [7] and [2] for more information about general lattice theory and
general topology, respectively

Note that a topological space (X, τ) can be considered as (P (X), τ).
Clearly, τ is a subframe of P (X) and via this viewpoint, the following
definition is natural.

Throughout this paper, all lattices considered to be frames, unless
otherwise stated explicitly.

The following definition has been proposed for the first time in [1]
and for bounded pseudocomplemented distributive lattices, but in this
article we will present it according to our purpose for the frames.

Definition 1.1. Let F be a frame and τ be a subframe of F . Then
τ is called an l-generalized topology on F and (F, τ) (briefly, F ) is
called an l-generalized topological space. Every element of τ is said to
be open and any element of τ ∗ = {t∗ : t ∈ τ} is said to be a closed
element. Clearly, the set of closed elements is a ∧-structure, since
(
∨

λ∈Λ tλ)
∗ =

∧
λ∈Λ t

∗
λ. Furthermore, if τ ∗ is a sublattice of F , then we

say τ is an l-topology on F and (F, τ) (briefly, F ) is an l-topological
space; for convenience, we denote an l-generalized topological space
(resp., l-topological space) by LG-space (resp., L-space). Assuming
that τ is an l-generalized topology on a frame F and a ∈ F , we define
a◦ =

∨
{t ∈ τ : t ≤ a} and a =

∧
{x ∈ τ ∗ : a ≤ x}. Sometimes, we

use intτa and clτa instead of a◦ and a, respectively.

Obviously, in Definition 1.1, if each element of τ has a complement
in F , then τ ∗ = τ c = {tc : t ∈ τ}, and we have a structure named
topoframe which is introduced and studied in [3].
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Note that an LG-space need not be an L-space, see [1].

Remark 1.2. Let L be a pseudocomplemented lattice. Then the follow-
ing statements hold concerning the mapping ∗ : L → L.

(i) The mapping “∗” is decreasing and a ≤ a∗∗ for every a ∈ L.
(ii) The mapping “∗∗” is the identity mapping on L∗, i.e., a∗∗∗ = a∗

for all a ∈ L (so the mapping“∗∗” on L is a closure operator).
(iii) For every a, b ∈ L, we have
a ∧ b = 0 ⇔ a ≤ b∗ ⇔ b ≤ a∗ ⇔ a∗∗ ≤ b∗ ⇔ a∗∗ ∧ b = 0.

(iv) If L is a frame and S ⊆ L, then (
∨

s∈S s)
∗ =

∧
s∈S s

∗.

Definition 1.3. Suppose that F is a frame and S ⊆ F . We denote the
set of finite meets of elements of S by Fm(S). Set < S >= {

∨
D : D ⊆

Fm(S)}. Clearly, < S > is the smallest subframe of F containing S.
If (F, τ) is an LG-space and τ =< S > for some S ⊆ F , then S is
said to be a subbase for the topology τ . A set B ⊆ τ is called a base
for an LG-topology τ if for every t ∈ τ there exists D ⊆ B such that
t =

∨
D. Moreover, assuming that F is a frame and B ⊆ F , we say B

is a base for a topology on F if 1 =
∨

B, and for every b1, b2 ∈ B there
exists D ⊆ B such that b1 ∧ b2 =

∨
D.

Proposition 1.4. Let (F, τ) be an LG-space. The following statements
hold:

(a) 0◦ = 0 and 1◦ = 1.
(b) a◦ ≤ a for every a ∈ F .
(c) If a, b ∈ F and a ≤ b, then a◦ ≤ b◦.
(d) For each a ∈ F , a◦ =

∨
{t ∈ B : t ≤ a} where B is a base for τ .

(e) For each a ∈ F , a◦ ∈ τ .
(f) a = a◦ if and only if a ∈ τ .
(g) For each a ∈ F , (a◦)◦ = a◦.
(h) a◦ is the greatest element of τ that is less than or equal to a.
(i) If a1, ..., an ∈ F , then (

∧n
i=1 ai)

◦ =
∧n

i=1 a
◦
i .

Let φ : F → F be a mapping that satisfying (a), (b), (c), (g) and (i).
If we define τ = {a ∈ F : φ(a) = a}, then τ is an LG-topology on F ,
and the interior operator induced by τ coincides with φ.

Proposition 1.5. Let (F, τ) be an LG-space. The following statements
hold:

(a) 0 = 0 and 1 = 1.
(b) For each a ∈ F , a ≤ a.
(c) If a, b ∈ F and a ≤ b, then a ≤ b.
(d) a ∈ τ ∗ for every a ∈ F .
(e) a = a if and only if a ∈ τ ∗.
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(f) a = a for all a ∈ F .
(g) a is the smallest closed element that is greater than or equal to

a.
(h) If (F, τ) is an L-space and a1, ..., an ∈ F , then we have (

∨n
i=1 ai) =∨n

i=1 ai.
Definition 1.6. Suppose that (F, τ) is an LG-space and a ∈ F . If
we take Fa = ↓a and τa = {t ∧ a : t ∈ τ}, then clearly (Fa, τa) is an
LG-space. We call (Fa, τa) as a subspace of (F, τ) (briefly, we say that
Fa is a subspace of F ).

In the following, the basic properties of subspaces in LG-spaces are
given.
Proposition 1.7. Suppose that (F, τ) is an LG-space and a ∈ F . The
following statements hold.

(a) If S is a subbase for τ , then Sa = {s ∧ a : s ∈ S} is a subbase
for τa.

(b) If B is a base for τ , then Ba = {t ∧ a : t ∈ B} is a base for τa.
Proposition 1.8. Suppose that (F, τ) is an LG-space and a ∈ F .
Then, the following statements hold.

(a) {(t ∧ a)∗ ∧ a : t ∈ τ} is the set of closed elements of Fa. In
particular, if a ∈ F ∗ = {x∗ : x ∈ F}, then {t∗ ∧ a : t ∈ τ} is the set
of closed elements of Fa.

(b) If x ≤ a, then clτax = (intτx
∗ ∧ a)∗ ∧ a.

(c) If a ∈ F ∗ and x ≤ a, then clτax = clτx ∧ a. In particular, if a is
a closed element in F , then clτax = clτx.

(d) If x ≤ a, then intτx ≤ intτax. The converse of this fact is not
necessarily true.

(e) If a is an open element in F and x ≤ a, then intτx = intτax.
Definition 1.9. Suppose that (F, τ) is an LG-space. We say a ∈ F
is τ -compact (briefly, compact) if whenever S ⊆ τ and a ≤

∨
S, then

there exists a finite subset D of S such that a ≤
∨
D. We can similarly

define Lindelöf, countably compact, etc. Whenever 1 (i.e., the top
element of F ) is a compact element in (F, τ), we say (F, τ) (briefly, F )
is a compact space.
Definition 1.10. Suppose that (Fi, τi) is an LG-space, for every i ∈ I.
Clearly, F =

∏
i∈I Fi with ordinary order is a frame. Two topologies

can be defined on F as follows:
(i) τ = {t = (ti)i∈I : ti ∈ τi, and ti = 1 for all except finitely many i ∈

I} ∪ {0}. This topology is called product topology on F . When we
deal with

∏
i∈I Fi as an LG-space, we have in view this topology.
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(ii) τb = {t = (ti)i∈I : ∀i ∈ I, ti ∈ τ}. This topology is called the
box topology on F .

Clearly, if F =
∏

i∈I Fi and πj is the projection mapping from F to
Fj, then for every S ⊆ F , we have

∨
S = (

∨
s∈S πi(s))i∈I .

Proposition 1.11. Suppose that (Fi, τi) is an LG-space, for every
i ∈ I, F =

∏
i∈I Fi, and τ and τb are the product topology and box

topology on F , respectively. Then the following statements hold.
(a) τ ∗ = {x = (xi)i∈I ∈ F : xi ∈ τ ∗i , and xi = 0, for all except

finitely many i ∈ I} ∪ {1}.
(b) τ ∗b = {x = (xi)i∈I ∈ F : xi ∈ τ ∗i , ∀i ∈ I}.
(c) For every x ∈ F , if I is infinite, then we have intτx ̸= 0 if and

only if xi = 1 for all except finitely many i ∈ I. Also, if I is finite, then
we have intτx ̸= 0 if and only if there exists i ∈ I such that x◦

i ̸= 0.
(d) For every x ∈ F , if I is finite or intτx ̸= 0, then intτx = (x◦

i )i∈I .
(e) For every x ∈ F , if I is infinite, then we have clτx ̸= 1 if and

only if xi = 0 for all except finitely many i ∈ I, and if I is finite, then
we have clτx ̸= 1 if and only if there exists i ∈ I such that clτxi ̸= 1.

(f) For every x ∈ F , if I is finite or clτx ̸= 1, then clτx = (xi)i∈I .
(g) If x ∈ F , then intτbx = (x◦

i )i∈I .
(h) If x ∈ F , then clτbx = (xi)i∈I .

2. Continuous functions on LG-spaces

We introduce the notion of continuity for LG-spaces by means of
adjoint mappings as follows.
Definition 2.1. Suppose that X and Y are posets and f : X → Y
and g : Y → X are order-preserving mappings. We say that f is the
left adjoint of g (or g is the right adjoint of f) whenever

∀x ∈ X, ∀y ∈ Y x ≤ g(y) ⇔ f(x) ≤ y.

We denote by f∗ the right adjoint of f, if exists.
Some basic properties of adjoint mappings are given in the next

remark.
Remark 2.2. Suppose that X and Y are posets. It is easy to see that
if f : X → Y and g : Y → X are two order-preserving mappings, then
the following statements hold.

(a) The right adjoint of f (left adjoint of g), if it exists, is unique.
(b) If f is left adjoint and X and Y are bounded, then f(x) = 0 if

and only if x ≤ f∗(0). Consequently, f(0) = 0.
(c) If f is left adjoint and X and Y are bounded, then f∗(y) = 1 if

and only if f(1) ≤ y. Consequently, f∗(1) = 1.
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(d) f is the left adjoint of g if and only if fg ≤ IY and gf ≥ IX .
(e) If f and g are adjoint, then fgf = f and gfg = g.
(f) If f is left adjoint, then ff∗ (f∗f) is an interior (closure) operator.
(g) If f is left adjoint, then f is one to one if and only if f∗f(x) = x

for every x ∈ X.
(h) If f is left adjoint, then ff∗(y) = y if and only if y ∈ f(X). So,

f is onto if and only if ff∗(y) = y for every y ∈ Y .
(i) If X and Y are complete lattices, then f is left adjoint (g is

right adjoint) if and only if f preserves arbitrary suprema (g preserves
arbitrary infima).

(j) If F1 and F2 are frames and f : F1 → F2 preserves arbitrary
suprema, then f is left adjoint, f∗(y) =

∨
{x ∈ F1 : f(x) ≤ y}, the

mapping f∗ preserves arbitrary infima and f(x) =
∧
{y ∈ F2 : x ≤

f∗(y)} for every x ∈ F1.
Suppose that h : X → Y is a function. Then the set function

f : P (X) → P (Y ) defined by f(A) = {h(a) : a ∈ A} is a left adjoint
mapping and f∗(B) = h−1(B) = {x ∈ X : h(x) ∈ B} for every
B ∈ P (Y ). It seems that this example is the basic model on which one
could extend the concept of adjoint mapping. We will find out later in
Proposition 2.11 that a set function f : P (X) → P (Y ) is induced by a
function h : X → Y if and only if f has a right adjoint mapping which
is also left adjoint.
As we mentioned in part (b) of the above remark, for every left adjoint
mapping f we have f(0) = 0. However, this is not true for the right
adjoint mappings. For example, let f : F1 → F2 be such that f(x) = 0
for every x ∈ F1. Then f is a left adjoint mapping and f∗(y) = 1 for
every y ∈ F2. On the other hand, if f is a set function f : P (X) →
P (Y ) induced by h : X → Y , then f∗(B

∗) = h−1(Bc) = (h−1(B))c =
(f∗(B))∗ for every B ∈ P (Y ). The following proposition shows that
even the inequality f∗(y

∗) ≤ (f∗(y))
∗ does not hold, in general.

Proposition 2.3. Let F1 and F2 be two frames. Suppose that f :
F1 → F2 is a left adjoint mapping. Then the following statements are
equivalent.

(a) For every x ∈ F1, if f(x) = 0, then x = 0.
(b) For every y ∈ F2, if y ∧ f(1) = 0, then f∗(y) = 0.
(c) f∗(0) = 0.
(d) For all y ∈ F2, we have f∗(y

∗) ≤ (f∗(y))
∗.

(e) There exists y ∈ F2 such that f∗(y
∗) ≤ (f∗(y))

∗.
Proof. (a) ⇒ (b). Let y ∈ F2 and y ∧ f(1) = 0. Thus, ff∗(y) ≤
y ∧ f(1) = 0 and so f∗(y) = 0.

(b) ⇒ (c). If we take y = 0, then we are done.
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(c) ⇒ (d). Let y ∈ F2, then y ∧ y∗ = 0 and so 0 = f∗(y ∧ y∗) =
f∗(y

∗) ∧ f∗(y). Therefore, f∗(y
∗) ≤ (f∗(y))

∗.
(d) ⇒ (e). It is clear.
(e) ⇒ (a). Suppose that f(x) = 0 and y ∈ F2 such that f∗(y

∗) ≤
(f∗(y))

∗. Hence, we can write
0 = f∗(y

∗) ∧ f∗(y) = f∗(y
∗ ∧ y) = f∗(0)

⇒ x ≤ f∗f(x) = f∗(0) = 0 ∴ x = 0.

□
Definition 2.4. Let (F1, τ1) and (F2, τ2) be LG-spaces and f : F1 → F2

be a left adjoint mapping. Then
(i) f is said to be weakly continuous at a ∈ F1, if whenever f(a) ≤ t,

then a ≤ int(f∗(t)) where t ∈ τ2.
(ii) f is said to be weakly continuous if it is weakly continuous at

each element a ∈ F1.

One can easily see that if f : F1 → F2 is left adjoint, then f is weakly
continuous at a ∈ F1 if and only if for every open element t ≥ f(a),
there is s ∈ τ1 such that a ≤ s ≤ f∗(t) or equivalently, a ≤ s and
f(s) ≤ t.

Proposition 2.5. A left adjoint mapping f : F1 → F2 is weakly con-
tinuous if and only if for any t ∈ τ2 we have f∗(t) ∈ τ1.
Proof. (⇒). Let t ∈ τ2. We show that f∗(t) ∈ τ1. Assuming that
A = {x ∈ F1 : f(x) ≤ t}, we have f∗(t) =

∨
A. Let x ∈ A. Then

f(x) ≤ t and by the hypothesis, there exists vx ∈ τ1 such that x ≤
vx ≤ f∗(t). Therefore, f∗(t) =

∨
x∈A x ≤

∨
x∈A vx ≤ f∗(t) and so

f∗(t) =
∨

x∈A vx ∈ τ1.
(⇐). It is clear. □
As an immediate consequence of Proposition 2.5 is the fact that,

if X and Y are topological spaces, then a function f : X → Y is
continuous if and only if, for every A ⊆ X and every open subset W
of Y containing f(A), we have A ⊆ int(f−1(W )).
Assume that f : X → Y is a function, A ⊆ X and f(A) ⊆ B ⊆ Y . We
denote the restriction of f from A to B by fB

A . If A = X (B = Y ),
then, for convenience, we use fB (fA) instead of fB

X (fY
A ). Also, if X

and Y are posets, then we use “a” instead of “↓a”.

Proposition 2.6. Suppose that a left adjoint mapping f : (F1, τ1) →
(F2, τ2) is weakly continuous and ↓a is an LG-subspace of F1 and ↓b
is an LG-subspace of F2 that contains the range of f . Then g = f b

a is
weakly continuous.
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Proof. Clearly, g is a left adjoint mapping. Assume that t ∧ b ∈ τb
where t ∈ τ2 and τb is the LG-topology of ↓b as a subspace of (F2, τ2).
We show that g∗(t∧b) ∈ τa. First, note that {x∧a : x ∈ F1, f(x∧a) ≤
t} = {x∧a : x ∈ F1, f(x) ≤ t} and g∗(b) =

∨
{x∧a : g(x∧a) ≤ b} = a.

Therefore, we can write

g∗(t ∧ b) = g∗(t) ∧ g∗(b) = (
∨

{x ∧ a : x ∈ F1, g(x ∧ a) ≤ t}) ∧ a

= (
∨

{x ∧ a : x ∈ F1, f(x ∧ a) ≤ t}) ∧ a

= (
∨

{x ∧ a : x ∈ F1, f(x) ≤ t}) ∧ a

= (
∨

{x ∈ F1 : f(x) ≤ t} ∧ a) ∧ a = f∗(t) ∧ a ∈ τa.

□

Let (F1, τ1) and (F2, τ2) be LG-spaces, f : F1 → F2 be a function
and ↓a be an arbitrary LG-subspace of F1. Then, as mentioned before,
we denote by fa the restriction of f on ↓a.

Proposition 2.7. Let (F1, τ1) and (F2, τ2) be LG-spaces, f : F1 → F2

be a left adjoint mapping and
∨

i∈I xi = 1 where xi ∈ τ1 for every i ∈ I.
Then f is weakly continuous if and only if fxi

is weakly continuous for
every i ∈ I.

Proof. (⇒). It is clear by Proposition 2.6.
(⇐). Assume that t ∈ τ2. As we see in the proof of Proposition 2.6,

(fxi
)∗(t) = f∗(t) ∧ xi is open in F1 for every i ∈ I. So, we can write

f∗(t) = f∗(t) ∧ (∨i∈Ixi) =
∨
i∈I

(f∗(t) ∧ xi) =
∨
i∈I

(fxi
)∗(t) ∈ τ1.

□

It is well-known that two continuous functions f, g : X → Y , where
X and Y are topological spaces with Y to be Hausdorff, are identical if
and only if fD = gD for some dense subset D of X. Now, we generalize
this fact for LG-spaces.

Proposition 2.8. Let (F1, τ1) and (F2, τ2) be two LG-spaces, f, g :
(F1, τ1) → (F2, τ2) be two weakly continuous and f∗(0) = 0 = g∗(0)
such that fd = gd for some τ1-dense element d of F1 (i.e., we have
t∧ d ̸= 0 for each t ∈ τ1 \ {0}). Also, suppose that for every x ∈ F1 we
have f(x) = g(x) whenever f−1(↓(f(x)∧ t1))∩ g−1(↓(g(x)∧ t2)) ⊆ {0}
for every disjoint elements t1, t2 ∈ τ2. Then, we have f = g.
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Proof. Assume on the contrary that f(x) ̸= g(x) for some x ∈ F1. By
our hypothesis, there exist 0 ̸= a ∈ F1 and t1, t2 ∈ τ2 such that f(a) ≤
f(x) ∧ t1, g(a) ≤ g(x) ∧ t2 and t1 ∧ t2 = 0. Clearly, a ≤ f∗(t1) ∧ g∗(t2)
which implies that x0 = f∗(t1) ∧ g∗(t2) ∧ d ̸= 0. Therefore, f(x0) ≤ t1,
g(x0) ≤ t2 and since t1 ∧ t2 = 0, it follows that f(x0) ∧ g(x0) = 0.
Since x0 ≤ d, it follows that f(x0) = g(x0) and consequently, f(x0) =
g(x0) = 0. On the other, since f∗(0) = 0 = g∗(0) and x0 ̸= 0, we
deduce, by Proposition 2.3, that f(x0) ̸= 0 ̸= g(x0), and this is a
contradiction. □

Proposition 2.9. Suppose that f : F1 → F2 and g : F2 → F3 are left
adjoint mappings. Then the following statements hold.

(a) gf is a left adjoint mapping and (gf)∗ = f∗g∗.
(b) If f is weakly continuous at a ∈ F1 and g is weakly continuous

at f(a), then gf is weakly continuous at a.
(c) If f and g are weakly continuous, then gf is also weakly contin-

uous.

Proof. (a). It is clear.
(b). Assume that t is an open element in F3 such that (gf)(a) ≤ t.

Then, by the hypothesis, there exists an open element s in F2 such
that f(a) ≤ s ≤ g∗(t). Also, since f is weakly continuous at a, there
exists an open element r in F1 such that a ≤ r ≤ f∗(s). Therefore,
a ≤ r ≤ f∗(s) ≤ f∗g∗(t) = (gf)∗(t). Thus, gf is weakly continuous at
a.

(c). By (b), it is clear. □

Definition 2.10. Let F1 and F2 be two frames and f : F1 → F2 be a
left adjoint mapping. We say that f is perfect provided that for every
y ∈ F2, we have f∗(y) = 0 if and only if y ∧ f(1) = 0. Also, f is said
to be semi-perfect if f∗(0) = 0. In addition, a left adjoint mapping f is
called an RL-adjoint mapping, if f∗ preserves arbitrary suprema; i.e.,
the right adjoint of f is a left adjoint mapping. Note that the notion
of RL-adoint mappings has been first introduced in [9] as GOH.

Example. (a) Let f : P (X) → P (Y ) be a set function induced by
h : X → Y . It is easy to see that f is a perfect RL-adjoint mapping.
In addition, f is weakly continuous if and only if h is continuous.

(b) Suppose that 2 = {0, 1}, F is a frame and 1 ̸= a ∈ F . Define
f : F → 2 with f(x) = 0 whenever x ≤ a and f(x) = 1 whenever
x ≰ a. It is easy to see that

(i) f is left adjoint;
(ii) f is an RL-adjoint mapping if and only if a = 0;
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(iii) if F is an LG-space, then f as a function from (F, τ) to (2,2),
is weakly continuous if and only if a is an open element in F .

Clearly, if f : F1 → F2 is an RL-adjoint mapping, then since f∗

preserves arbitrary suprema, it follows that f∗(0) = 0 and hence f is
semi-perfect.
Proposition 2.11. A set function f : P (X) → P (Y ) is induced by a
function h : X → Y if and only if f is an RL-adjoint mapping.
Proof. Assume that f : P (X) → P (Y ) is an RL-adjoint mapping. It
suffices to show that, for every x ∈ X there exists a point y ∈ Y such
that f({x}) = {y}. To see this, suppose that x ∈ X and f({x}) = B
for some B ∈ P (Y ). By the hypothesis, we can write

{x} ⊆ f∗f({x}) = f∗(B) = f∗(∪y∈B{y}) = ∪y∈Bf∗({y})
⇒ ∃y ∈ B x ∈ f∗({y}) ⇒ {x} ⊆ f∗({y}) ⇒ f({x}) ⊆ {y}.

On the other hand, since f is an RL-adjoint mapping, it is semi-perfect.
Therefore, by Proposition 2.3, f({x}) ̸= ∅ and so f({x}) = {y}. □
Definition 2.12. Let (F1, τ1) and (F2, τ2) be LG-spaces and f : F1 →
F2 be a left adjoint mapping. Then f is said to be continuous if it is
weakly continuous and RL-adjoint.

Clearly, propositions 2.5, 2.6, 2.7 and 2.8 are also true for continuous
functions.
Let f : F1 → F2 be a continuous function. It is a natural question
whether f∗(y) is closed in F1 for every closed element y ∈ F2. We
need the following lemma, which is probably well-known, to answer
this question and some others.
Lemma 2.13. Assume that F1 and F2 are frames, h : F1 → F2 and
f : F1 × F1 → F2 × F2 with f(a, b) = (h(a), h(b)). Then the following
statements hold.

(i) f is a frame homomorphism if and only if h is so.
(ii) f is a left adjoint function if and only if h is so, and in this case

f∗(c, d) = (h∗(c), h∗(d)) for every (c, d) ∈ F2 × F2.
(iii) If F1 is a finite chain, then f is a frame homomorphism if and

only if h is a {0, 1}-order homomorphism (i.e., h is an order-preserving
mapping such that h(0) = 0 and h(1) = 1).

The next example shows that an RL-adjoint mappings need not be
perfect, in general. Also, it shows that the continuous preimage of a
closed element is not necessarily closed.
Example 2.14. (a) Let F1 = {0, a, 1} be a chain, h : F1 → F1 with
h(0) = 0 and h(a) = h(1) = 1. Define F = F1×F1 and f : F → F with
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f(a, b) = (h(a), h(b)). By Lemma 2.13, f is an RL-adjoint mapping.
Again from Lemma 2.13, it follows that f∗(a, a) = (h∗(a), h∗(a)) =
(0, 0) = 0F . Therefore, f is not perfect.

(b) Using the example of part (a) and Lemma 2.13, if we put τ = F ,
then it follows that g = f∗ is a continuous function (since f∗(a, b) =
(h∗(a), h∗(b))). Also, clearly, g∗(0F ) = (h∗∗(0), h∗∗(0)) = (a, a) and
(a, a) is not a closed element in F .

Let Fi be a frame for every i ∈ I and F =
∏

i∈I Fi. Suppose that
j ∈ I and x ∈ F are such that xi = 1 (resp., xi = 0) for every i ̸= j,
then for convenience, some times, we denote x by x̃j (resp., x̂j). Clearly,
if πj : F → Fj is the projection mapping, then we have (πj)∗(xj) = x̃j

for every xj ∈ Fj.
Proposition 2.15. Suppose that (Fi, τi) is an LG-space for every i ∈ I
and

∏
i∈I Fi equipped with the product topology (resp., the box topology).

For every j ∈ I, consider the projection mapping πj :
∏

i∈I Fi → Fj.
Then the following statements hold.

(a) πj is an open mapping (i.e., πj(t) ∈ τj for every open element t
in

∏
i∈I Fi).

(b) πj is a closed mapping (i.e., πj(t
∗) ∈ τ ∗j for every closed element

t∗ in
∏

i∈I Fi).
(c) πj is weakly continuous.

Proof. The proof is routine. □
Note that, in Proposition 2.15, πj distributes over any arbitrary join

of nonempty family. To see this, suppose that xα ∈ Fj for every α ∈ A.
Then we can write

(πj)∗(∨α∈Axα) = ∨̃α∈Axα = ∨α∈Ax̃α = ∨α∈A(πj)∗(xα).

However, if |I| ≥ 2, then (πj)∗(0) = 0̃ ̸= 0 and so it does not preserve
arbitrary suprema. Therefore, if |I| ≥ 2, then πj is not an RL-adjoint
mapping.
Proposition 2.16. Suppose that (F1, τ1) and (F2, τ2) are LG-spaces
and f : F1 → F2 is a left adjoint mapping. Also, suppose that B and S
are base and subbase for LG-space F2, respectively. Then the following
statements hold.

(a) If Fm(S) = τ2, then f is weakly continuous if and only if f∗(s) ∈
τ1 for every s ∈ S.

(b) If f is an RL-adjoint mapping, then the following statements are
equivalent.

(i) f is continuous.
(ii) f∗(b) is open in F1 for every b ∈ B.
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(iii) f∗(s) is open in F1 for every s ∈ S.
Proof. (a). Since f∗ preserves finite meets, it is clear.

(b). Since f∗ preserves arbitrary suprema and infima, it is clear. □
Proposition 2.17. Suppose that (Fi, τi) for every i ∈ I, and (F, τ)
are LG-spaces,

∏
i∈I Fi equipped by product topology and f : (F, τ) →∏

i∈I Fi. Then f is weakly continuous if and only if πjf is so for every
j ∈ I.
Proof. (⇒) By Propositions 2.9 and 2.15, it is clear.

(⇐) First, we show that f is a left adjoint mapping. To see this,
we prove that f preserves arbitrary suprema. Since πj and πjf are left
adjoint mappings, we can write

f(∨λ∈Λxλ) = (πjf(∨λ∈Λxλ))j∈I = (∨λ∈Λπjf(xλ))j∈I

= (πj(∨λ∈Λf(xλ))j∈I = ∨λ∈Λf(xλ).

Now, by Proposition 2.16, it is enough to show that f∗((πj)∗(tj)) is
open in F , where j ∈ I and tj ∈ τj. This is easy, since πjf is weakly
continuous and f∗((πj)∗(tj)) = (πjf)∗(tj). □

Note that, by the proof of Proposition 2.17, f is a left adjoint map-
ping if and only if πjf is so for every j ∈ I.
Corollary 2.18. Let L and Fi (i ∈ I) be LG-spaces, F =

∏
i∈I Fi and

fi be a mapping from L to Fi for each i ∈ I. Define f : L → F with
f(x) = (fi(x))i∈I . Then the following statements hold.

(a) f is a left adjoint mapping if and only if fi is such for every
i ∈ I. Also, f is weakly continuous if and only if fi is such for every
i ∈ I.

(b) If f∗ exists, then for every y = (yi)i∈I ∈ F we have f∗(y) =∧
i∈I fi∗ (yi).
(c) If there exists j ∈ I such that fj is semi-perfect, then f is also

semi-perfect.
Proof. (a). Since πif = fi for every i ∈ I, it is clear, by Proposition
2.17.

(b). Define g : F → L with g(y) =
∧

i∈I fi∗(yi). For every x ∈ L and
every y = (yi)i∈I ∈ F , we can write

gf(x) =
∧
i∈I

fi∗(fi(x)) ≥
∧
i∈I

x = x,

fg(y) = f(∧i∈Ifi∗(yi)) =
(
fj(∧i∈Ifi∗(yi))

)
j∈I

≤
(
fjfj∗(yj)

)
j∈I

≤ (yj)j∈I = y.
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Therefore, g = f∗ .
(c). By part (b), it is clear. □
Applying Corollary 2.18, we can find some useful examples as follows.

(i) Suppose that L = M2 = {0, α, β, 1} and F1 = F2 = {0, 1}. Define
f1 : L → F1 with f1(0) = f1(α) = 0, f1(β) = f1(1) = 1 and f2 : L → F2

with f2(0) = f2(β) = 0, f2(α) = f2(1) = 1. If we put f = (f1, f2), then,
Clearly, f1 and f2 are not even semi-perfect whereas f is perfect. To see
this, note that f1∗ (0) = α, f2∗ (0) = β, f1∗ (1) = f2∗ (1) = 1. Thus, by
Corollary 2.18, 0 = f∗((c, d)) = f1∗ (c)∧ f2∗ (d) if and only if f1∗ (c) = α
and f2∗ (d) = β, if and only if (c, d) = (0, 0) = 0F×F .

(ii) Define g : [0, 1] → [0, 1] with g(x) = x1/n. Clearly, g is an order-
isomorphism and so g is a perfect RL-adjoint mapping. Now, we show
that f = (g, g) is not RL-adjoint. Take t ∈ [0, 1), then by Corollary
2.18, we have f∗((1, t)) ∨ f∗((t, 1)) = (g∗(1) ∧ g∗(t)) ∨ (g∗(t) ∧ g∗(1)) =
tn ∨ tn ̸= 1 = f∗((1, 1)) = f∗((1, t) ∨ (t, 1)). Therefore, f is not an
LR-adjoint mapping.

Definition 2.19. Let (F1, τ1) and (F2, τ2) be LG-spaces and f : F1 →
F2 be a left adjoint mapping. Then f is said to be a homeomorphism
if it is one-to-one, onto, continuous and, in addition, f∗ is continuous.

The next proposition gives some equivalent conditions for a mapping
between LG-spaces to be a homeomorphism which has a straightfor-
ward proof.

Proposition 2.20. Suppose that (F1, τ1) and (F2, τ2) are LG-spaces,
f : F1 → F2 is a one-to-one and onto left adjoint mapping. Then the
following statements are equivalent.

(a) f is homeomorphism.
(b) t ∈ τ2 if and only if f∗(t) ∈ τ1.
(c) f is continuous and open (i.e., f(t) ∈ τ2 for every t ∈ τ1).
(d) f and f∗ are weakly continuous.

Proposition 2.21. Let f : (F1, τ1) → (F2, τ2) be a left adjoint mapping.
Then f∗(k) is closed in F1 for each closed element k in F2 if and only
if f(clF1a) ≤ clF2f(a) for each a ∈ F1.

Proof. ⇒) For a ∈ F1, we can write
f(a) ≤ clF2f(a) ⇒ a ≤ f∗(f(a)) ≤ f∗(clF2f(a)) ∈ τ ∗1

⇒ clF1a ≤ f∗(clF2f(a)) ⇒ f(clF1a) ≤ clF2f(a).

⇐) Suppose that k ∈ τ ∗2 and a = f∗(k), then we can write
f(clF1a) ≤ clF2f(a) ≤ k ⇒ clF1a ≤ f∗(k) = a
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⇒ clF1a = a ⇒ f∗(k) = clF1a ∈ τ ∗1 .

□
We need the following lemma to show that a continuous image of a

compact element is compact.
Lemma 2.22. Let F1 and F2 be frames and f : F1 → F2 be a left
adjoint mapping. Then f is an RL-adjoint mapping if and only if for
every a ∈ F1 and every R ⊆ F2, we have

f(a) ≤
∨
r∈R

r ⇔ a ≤
∨
r∈R

f∗(r).

Proof. ⇒) Assume that f(a) ≤
∨

r∈R
r where R ⊆ F2. By the hypoth-

esis, f∗ preserves arbitrary suprema and so we can write
a ≤ f∗f(a) ≤ f∗(∨r∈R

r) = ∨
r∈R

f∗(r).

For the reverse inequality, suppose that a ≤ ∨
r∈R

f∗(r). Since f is left
adjoint, by previous facts, f preserves arbitrary suprema, and so we
can write

a ≤ ∨
r∈R

f∗(r) ⇒ f(a) ≤ f(∨
r∈R

f∗(r)) = ∨
r∈R

ff∗(r) ≤ ∨
r∈R

r.

⇐) Assume that yi ∈ F2 for every i ∈ I. Clearly,
∨

i∈I
f∗(yi) ≤

f∗(
∨

i∈I
yi). On the other hand, ff∗(

∨
i∈I

yi) ≤
∨

i∈I
yi, and thus, it

follows from (b) that f∗(
∨

i∈I
yi) ≤

∨
i∈I

f∗(yi). □

Proposition 2.23. Let (F1, τ1) and (F2, τ2) be LG-spaces, f : F1 → F2

be continuous and a be a compact element in F1. Then f(a) is a compact
element in F2.
Proof. Assume that f(a) ≤

∨
S where S ⊆ τ2. By Lemma 2.22, we

have a ≤
∨

s∈S f∗(s). Since a is compact, it follows that there exists
a finite subset F ⊆ S such that a ≤

∨
s∈F f∗(s), and again it follows

from Lemma 2.22 that f(a) ≤
∨

s∈F s □
Clearly, Proposition 2.23 also holds whenever a is countably compact,

Lindelöf or other kinds of compactness.

3. Continuity and connectedness

In this section, we are going to find the relations between continuity
and connectedness. To this aim, we need some definitions and facts.
Definition 3.1. Let (F, τ) be an LG-space. We denote by τ c the set
{x ∈ F : ∃t ∈ τ, x = tc}, where tc is the complement of t in F
(if it exists). An element a ∈ F is called nonconnected if there exist
0 ̸= ra, sa ∈ τa such that ra ∧ sa = 0 and ra ∨ sa = a, otherwise, we say
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that a is connected. If 1 is a nonconnected (resp., connected) element,
then, some times, we say that F is nonconnected (resp., connected).

It follows from Definition 3.1 that if F is a frame and a ≤ b ∈ F ,
then a is connected as a point of F if and only if it is connected as a
point of ↓b.
Remark 3.2. Let (F, τ) be an LG-space. Inspired by Definition 3.1, we
can give the following two definitions.

(a) a ∈ F is said to be relatively connected in F if whenever t1, t2 ∈ τ ,
t1 ∧ t2 = 0 and a ≤ t1 ∨ t2, then a ≤ t1 or a ≤ t2.

(b) a ∈ F is said to be weakly relatively connected in F if whenever
t is complemented in τ , then a ≤ t or a ≤ tc.
It is easy to see that if a ∈ F is connected, then a is relatively con-
nected in F , and also if a ∈ F is relatively connected in F , then a is
weakly relatively connected in F . The converses of these two facts are
not necessarily true. For example:
(i) Suppose that X is an infinite set with cofinite topology and a, b ∈ X
are two distinct points. Then A = {a, b} is not connected whereas it is
relatively connected in P (X).
(ii) Suppose that (X, τ) is a connected space and U, V ∈ τ are two
nonempty disjoint open sets. Then A = U ∪ V is not relatively con-
nected in P (X) whereas A is weakly relatively connected in P (X).

In the sequel, consider the lattice M2 = {0, α, β, 1}. As we will see
in the following proposition, the lattice M2 has an important role in
the connectedness of LG-spaces, as well as the role of discrete space
{0, 1} in the realm of the connectedness of topological spaces.
Proposition 3.3. Let (F, τ) be an LG-space. The following statements
are equivalent.

(a) F is connected.
(b) For every continuous f : (F, τ) → (M2,M2) we have {α, β} ⊈

f(F ).
(c) τ ∩ τ c = {0, 1}.

Proof. (a) ⇒ (b). Suppose that f : (F, τ) → (M2,M2) is continuous
and α ∈ f(F ). We show that β /∈ f(F ). Taking r = f∗(α) and
s = f∗(β), it follows that

r, s ∈ τ , r ∧ s = f∗(α) ∧ f∗(β) = f∗(α ∧ β) = f∗(0) = 0,

r ∨ s = f∗(α) ∨ f∗(β) = f∗(α ∨ β) = f∗(1) = 1.

Since α ∈ f(F ), it follows that r ̸= 0. By connectedness of F , we con-
clude that 0 = s = f∗(β) =

∨
{x ∈ F : f(x) ≤ β} and consequently,

β /∈ f(F ).
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(b) ⇒ (c). On the contrary, suppose that there exists r ∈ τ ∩ τ c \
{0, 1}. Now, define f : F → M2 with f(0) = 0, f(x) = α whenever
0 ̸= x ≤ r, f(x) = β whenever 0 ̸= x ≤ rc and f(x) = 1 whenever
x ∧ r ̸= 0 and x ∧ rc ̸= 0. To see that f is a left adjoint mapping, it is
enough to show that f preserves arbitrary suprema. Suppose xi ∈ F
for every i ∈ I. We will have four cases:

(i)
∨

i∈I xi = 0;
(ii) 0 ̸=

∨
i∈I xi ≤ r;

(iii) 0 ̸=
∨

i∈I xi ≤ rc;
(iv) (

∨
i∈I xi) ∧ r ̸= 0 and (

∨
i∈I xi) ∧ rc ̸= 0.

It is easy to see that in any case, we have f(
∨

i∈I xi) =
∨

i∈I f(xi). It
remains to prove that f is continuous. This is easy, by the fact that
f∗(α) = r and f∗(β) = rc.

(c) ⇒ (a). It is clear. □

We know that if X and Y are topological spaces, X is connected
and h : X → Y is a weakly continuous function (in point set topology
weakly continuous and continuous are equivalent), then h(X) is also
connected. This fact is not necessarily true in LG-spaces. For example,
suppose that (F1, τ1) is an LG-space in which 1 is a connected element
and (F2, τ2) is an LG-space in which 1 is a disconnected element. Define
f : (F1, τ1) → (F2, τ2) with f(0) = 0 and f(x) = 1 for every x ̸= 0.
Clearly, f is a weakly continuous function and semi-perfect while 1 is
connected and f(1) is disconnected.

Definition 3.4. Let X be a partially ordered set and D,E ⊆ X. We
say D cuts E if for every 0 ̸= e ∈ E there exists 0 ̸= d ∈ D such that
d ≤ e.

Proposition 3.5. Suppose that (F1, τ1) and (F2, τ2) are LG-spaces and
f : (F1, τ1) → (F2, τ2) is a continuous function. If 1 is connected in F1

and f(F1) cuts ↓f(1), then f(1) is connected.

Proof. Let g : ↓f(1) → M2 be continuous. Clearly, gf : F1 → M2

is continuous. Thus, {α, β} ⊈ (gf)(F1). Without loss of generality,
suppose that β /∈ (gf)(F1). It is enough to show that β /∈ g(↓f(1)).
On the contrary, assume that β = g(y) for some y ∈ ↓f(1). By the
hypothesis, there exists x ∈ F1 such that 0 ̸= f(x) ≤ y. Thus, 0 ̸=
g(f(x)) ≤ g(y) = β. Therefore, β = gf(x), consequently, β ∈ (gf)(F1)
and this is a contradiction. □

Lemma 3.6. Let F1 and F2 be two frames and f : F1 → F2 be a left
adjoint function. Then f is semi-perfect and f(F1) cuts ↓f(1) if and
only if f is perfect.
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Proof. ⇒) By Proposition 2.3, it is enough to show that from y ∧
f(1) ̸= 0, it follows that f∗(y) ̸= 0. To see this, by the hypothesis
there exists 0 ̸= x ∈ F1 such that 0 ̸= f(x) ≤ y ∧ f(1). Therefore,
0 ̸= x ≤ f∗f(x) ≤ f∗(y ∧ f(1)) = f∗(y) ∧ 1 = f∗(y) and so f∗(y) ̸= 0.

⇐) It suffices to show that f(F1) cuts ↓f(1). Assume that 0 ̸= y ≤
f(1). By the hypothesis, 0 ̸= f∗(y) and so 0 ̸= ff∗(y) ≤ y. Now,
taking x = f∗(y), we are done. □

By Proposition 3.5 and Lemma 3.6, we have the following result.

Proposition 3.7. Let (F1, τ1) and (F2, τ2) be two LG-spaces, a ∈ F1

be a connected element and f : F1 → F2 be a function such that fa is
a perfect continuous function. Then f(a) is also a connected element.

Here is an open question. Assuming that (F1, τ1) and (F2, τ2) are
two LG-spaces, a ∈ F1 is a connected element and f : F1 → F2 is a
perfect continuous function, can we conclude that f(a) is a connected
element?

Proposition 3.8. Let a be a connected element of F1 and a ≤ b ≤ ā.
Then b is also a connected element.

Proof. Suppose that rb = r ∧ b and sb = s∧ b are two disjoint elements
of τb such that b = rb∨ sb. Clearly, if we take ra = r∧a and sa = s∧a,
then ra and sa are disjoint elements of τa and ra∨sa = a. Thus, ra = 0
or sa = 0, say ra = 0. Hence, a ≤ r∗ and so b ≤ ā ≤ r∗. Therefore,
rb = r ∧ b = 0. □

Lemma 3.9. Let F be an LG-space and f : F → M2 be a continuous
function. Then the following statements are equivalent.

(a) {α, β} ⊆ f(F ).
(b) f is onto.
(c) 1 ∈ f(F ).

Proof. (a) ⇒ (b). It suffices to show that 1 ∈ f(F ). Assume that
f(a) = α and f(b) = β. Then, clearly, f(a∨ b) = f(a)∨f(b) = α∨β =
1.

(b) ⇒ (c). It is clear.
(c) ⇒ (a). Clearly, ff∗(α) ≤ α and ff∗(β) ≤ β. Therefore, since f

is continuous, it follows that

1 = f(1F ) = ff∗(1) = ff∗(α ∨ β) = ff∗(α) ∨ ff∗(β).

Hence, we conclude that ff∗(α) = α and ff∗(β) = β and so {α, β} ⊆
f(F ). □



198 A. R. ALIABAD AND H. ZAREPOUR

Proposition 3.10. Let F be a frame and xi ∈ F be connected for
every i ∈ I and 0 ̸= a =

∧
i∈I xi. Then x =

∨
i∈I xi is also a connected

element of F .

Proof. Suppose that f : ↓x → M2 be a continuous mapping. Clearly,
fxi

is a continuous function from ↓xi to M2 for every i ∈ I. Therefore,
by Proposition 3.3 and Lemma 3.9, for every i ∈ I we have f(↓xi) =
{0, α} or f(↓xi) = {0, β}. On the other hand, f is semi-perfect and
so by Proposition 2.3, f(a) ̸= 0. Since a ∈

∩
i∈I ↓xi, it follows that

f(a) = α or f(a) = β. say f(a) = α. Then, obviously, f(↓xi) = {0, α}
for every i ∈ I. Now, suppose that c ∈ ↓x, then we can write

c ≤ x =
∨
i∈I

xi ⇒ c =
∨
i∈I

(c ∧ xi)

⇒ f(c) = f(∨i∈I(c ∧ xi)) = ∨i∈If(c ∧ xi) ∈ {0, α}.
Therefore, f(↓x) ⊆ {0, α}. Hence, x is connected. □

By Propositions 3.8 and 3.10, the following corollary is immediate.

Corollary 3.11. Let F be a frame and x ∈ F . If we take C(x) = {c ∈
F : c is connected and x ≤ c} and cx =

∨
C(x), then cx is closed.

Proposition 3.12. Let F be an LG-space and R be a relation on
F \ {0} such as follows. aR b whenever a = b or ca = cb ̸= 0. Then
we have the following statements.

(a) R is an equivalence relation on F \ {0}.
(b) cx ̸= 0 if and only if C(x) contains at least one non zero connected

element.
(c) If we denote by [x] the equivalence class of x with respect to the

relation R, then C(x) ⊆ [x] for every x ∈ F \ {0}.
(d) cx = 0 or

∨
[x] = cx ∈ C(x) for every x ∈ F \ {0}.

(e) ca ∧ cb ̸= 0 if and only if [a] = [b] and each of classes [a] and [b]
contains at least one non zero connected element.

(f) Let X be the set of all connected elements of F \ {0}. Then the
mapping x → cx is a closure operator on X.

Proof. (a). It is clear.
(b). It is obvious, by the definition of ca.
(c). Assume that x ∈ F \ {0} and a ∈ C(x). Without loss of

generality, suppose that C(x) ̸= ∅. We show cx = ca. Clearly, C(a) ⊆
C(x), so it is enough to prove that C(a) is cofinal with respect to C(x).
To see this, let y ∈ C(x), then by Proposition 3.10, x ≤ y ≤ a ∨ y ∈
C(a) and we are done.
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(d). Assume that x ∈ F \ {0} and cx ̸= 0. Clearly, by part (c),
C(x) ⊆ [x], so it is enough to prove that C(x) is cofinal with respect to
[x]. To see this, let y ∈ [x], then y ≤ cy = cx ∈ C(x) and we are done.

(e ⇒). By the hypothesis, ca ̸= 0 and cb ̸= 0. Therefore, ∅ ̸= C(a) ⊆
[a] and ∅ ̸= C(b) ⊆ [b]. Now, it suffices to prove that ca = cb. Since
ca and cb are connected, by Proposition 3.10, ca ∨ cb is a connected
element greater than or equal to a and b and so ca = ca ∨ cb = cb.
Thus, [a] = [b].

(e ⇐). Since [a] and [b] contain at least one non zero connected
element, clearly, ca ̸= 0 ̸= cb and so by part (d), ca =

∨
[a] =

∨
[b] = cb.

Hence, ca ∧ cb = ca ̸= 0.
(f). Since x ∈ X is connected, clearly the mapping x → cx is well

defined on X. By the previous parts, the remainder of proof is clear
(in fact, if a, b ∈ X and a ≤ b, then [a] = [b]). □

We conclude the paper by generalizing Proposition 3.10.

Proposition 3.13. Let F be an LG-space, Γ be an ordinal and {aλ}λ<Γ

be a family of connected elements of F such that for every 0 < λ1 < Γ
there exists λ0 < λ1 with aλ0 ∧aλ1 ̸= 0. Then x =

∨
λ<Γ

aλ is connected.

Proof. Suppose that f : ↓x → M2 is a continuous function. Clearly, for
every λ < Γ, faλ is a continuous function and so, by Proposition 3.3, is
not onto. Without loss of generality, assume that f0(↓a0) ⊆ {0, α}. We
show, by transfinite induction, that faλ(↓aλ) ⊆ {0, α} for every λ < Γ.
Clearly, this is true for λ = 0. Now, suppose that γ < Γ and this claim
is true for every λ < γ, then we show that this is true for λ = γ. By
the hypothesis, there exists λ0 < γ such that x′ = aλ0 ∧ aγ ̸= 0. Since
fλ0(↓aλ0) ⊆ {0, α} and f is semi-perfect, it follows that f(x′) ̸= 0 and
so f(x′) = α. Now, because of x′ ∈ ↓xγ and the fact that fγ is not
onto, it turns out that fγ(↓aγ) ⊆ {0, α}. Now, suppose that c ∈ ↓x,
then f(c) ≤ f(x) = f(

∨
λ<Γ

aλ) =
∨

λ<Γ
f(aλ) ⊆ {0, α}. Therefore,

f(↓x) ⊆ {0, α}. □
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CONTINUOUS FUNCTIONS ON LG-SPACES

A. R. ALIABAD AND H. ZAREPOUR

فضاها -LG روی پیوسته توابع

زارع پور٢ حسین و رضایی علی آباد١ علی

ایران اهواز، اهواز، چمران شهید دانشگاه کامپیوتر، و ریاضی علوم دانشکده ریاضی، گروه ١,٢

l-فضای یک را (F, τ) صورت این در باشد. آن زیرچارچوب یک τ و چارچوب یک F که کنیم فرض
و شد تعریف [١] مرجع در بار اول مفهوم این می نامیم. فضا) -LG (مختصراً تعمیم یافته توپولوژی
یک روی پیوسته توابع مقاله این در موضوع، این ادامه در گرفت. قرار مطالعه مورد آن کلی خواص
یک تصویر که شد خواهد مطرح دست یافتنی شرایطی می گیرند. قرار بررسی مورد و معرفی LG-فضا
LG-فضاها در همبندی به علاوه، است. فشرده پیوسته، تابع یک تحت LG-فضا یک در فشرده عضو
LG-فضا یک در همبند عضو یک تصویر که می شود معرفی دست یافتنی شرایطی مجدداً و شده تعریف
که می شود داده نشان به خوبی آمده، به دست نتایج با واقع در است. همبند پیوسته، تابع یک تحت
فضاهای برای مناسبی تعمیم نیز LG-فضاها توپولوژی اند، برای مناسبی تعمیم چارچوب ها که همان گونه

توپولوژی اند.

پیوسته. نگاشت همبند، عنصر فشرده، عنصر LG-فضا، چارچوب، کلیدی: کلمات
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