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CONTINUOUS FUNCTIONS ON LG-SPACES
A. R. ALIABAD* AND H. ZAREPOUR

ABSTRACT. By an [-generalized topological space, briefly an LG-
space, we mean the ordered pair (F, 7) in which F is a frame and 7
is a subframe of F'. This notion has been first introduced by A.R.
Aliabad and A. Sheykhmiri in [LG-topology, Bull. Iran. Math.
Soc., 41 (1), (2015), 239-258]. In this article, we define continuous
functions on LG-spaces and determine conditions under which the
continuous image of a compact element of an LG-space is compact.
Moreover, we introduce the concept of connectedness for LG-spaces
and determine conditions under which the continuous image of a
connected element of an LG-space is connected. In fact, we show
that LG-spaces are models for topological spaces as well as frames
are models for topologies.

1. INTRODUCTION

A complete lattice L is a lattice in which every subset has a supre-
mum. Clearly, a complete lattice is a bounded lattice, i.e., it has the
largest element 1 and the smallest element 0. A frame F is a com-
plete lattice in which the distributive law a A (\/.S) = V,c4(a A s)
holds for every a € F and S C F. A pseudocomplement of an element
a of a bounded lattice L is defined by max{z € L : z Aa = 0},
if it exists, and denoted by a*. Obviously, if F' is a frame, then
a* =\{zr € L: xANa=0} Let F bea frame. Then a subset G
of F' which is closed under finite meets and arbitrary joins is called
a subframe of F. Let (X,7) be any topological space. Then it is
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clear that 7 is a frame, and if &4 C 7, then \/;, ., U = Uy, U and
Nveu U = intx((Nyey U)- In fact, this example is a basic model that
inspires topologists to study a frame as a pointfree topology.

In [8] and later in [9], Guo-Jun Wang constructed a model for topo-
logical spaces on a completely distributive lattice. In [1], this view was
followed and generalized to topological spaces known as LG-spaces.
This article, in fact, is a continuation of the paper [1]. There are two
viewpoints for introducing continuous functions on this structure. In
[3], continuous functions are introduced from viewpoint of the locale.
In the present paper, in frame viewpoint, we define continuous func-
tions in the context of LG-spaces with a little difference from what is
defined in [9]. So, in the following, we will recall some of the material
from [1] that are needed to understand the issue better. The reader
is referred to [6] and [5] for more details concerning frames. Also, see
[1], [7] and [2] for more information about general lattice theory and
general topology, respectively

Note that a topological space (X, 7) can be considered as (P(X), 7).
Clearly, 7 is a subframe of P(X) and via this viewpoint, the following
definition is natural.

Throughout this paper, all lattices considered to be frames, unless
otherwise stated explicitly.

The following definition has been proposed for the first time in [1]
and for bounded pseudocomplemented distributive lattices, but in this
article we will present it according to our purpose for the frames.

Definition 1.1. Let F' be a frame and 7 be a subframe of F'. Then
7 is called an [-generalized topology on F and (F,7) (briefly, F) is
called an [-generalized topological space. Every element of 7 is said to
be open and any element of 7* = {t* : ¢ € 7} is said to be a closed
element. Clearly, the set of closed elements is a A-structure, since
(Vaea 2) = Aea tr- Furthermore, if 7* is a sublattice of F', then we
say 7 is an [-topology on F' and (F,7) (briefly, F') is an I[-topological
space; for convenience, we denote an [-generalized topological space
(resp., [-topological space) by LG-space (resp., L-space). Assuming
that 7 is an [-generalized topology on a frame F' and a € F', we define
a=V{ter: t<a}anda= A{z € 7" : a < z}. Sometimes, we
use tnt,a and cl.a instead of a° and @, respectively.

Obviously, in Definition 1.1, if each element of 7 has a complement
in F, then 7* = 7¢ = {t : ¢ € 7}, and we have a structure named
topoframe which is introduced and studied in [3].
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Note that an LG-space need not be an L-space, see [1].

Remark 1.2. Let L be a pseudocomplemented lattice. Then the follow-
ing statements hold concerning the mapping * : L — L.

(i) The mapping “x” is decreasing and a < a** for every a € L.

(ii) The mapping “x*” is the identity mapping on L*, i.e., a** = a*
for all a € L (so the mapping“**” on L is a closure operator).

(iii) For every a,b € L, we have

aNb=0 < a<b" & b<a" & a" <V & a"ANb=0.
(iv) If L is a frame and S C L, then (\/,.g5)" = Nyeq 5™

Definition 1.3. Suppose that F'is a frame and S C F. We denote the
set of finite meets of elements of S by F'm(S). Set < S >={\/D: D C
Fm(S)}. Clearly, < S > is the smallest subframe of F' containing S.
If (F,7) is an LG-space and 7 =< S > for some S C F, then S is
said to be a subbase for the topology 7. A set B C 7 is called a base
for an LG-topology 7 if for every ¢t € 7 there exists D C B such that
t =\ D. Moreover, assuming that F' is a frame and B C F', we say B
is a base for a topology on F'if 1 =/ B, and for every by, by € B there
exists D C B such that by A by =\/ D.

Proposition 1.4. Let (F, ) be an LG-space. The following statements
hold:

(a) 0° =0 and 1° = 1.

(b) a° < a for every a € F.

(c) If a,b € F and a < b, then a® < 1°.

(d) For eacha € F, a®° = \/{t € B: t < a} where B is a base for .

(e) For each a € F, a° € T.

(f) a =a° if and only if a € T.

(g9) For each a € F, (a°)° = a°.

(h) a® is the greatest element of T that is less than or equal to a.

(i) If ay, ...,an, € F, then (\_; ai)° = N, a;.
Let ¢ : F — F be a mapping that satisfying (a) (b), (c), (9) and (i).
If we define T ={a € F: (a) = a}, then 7 is an LG-topology on F,
and the interior operator induced by T coincides with .

Proposition 1.5. Let (F, ) be an LG-space. The following statements
hold:

(a)0=0 and 1 =1.

(b) For each a € F, a <.

(c) If a,b € F and a < b, thena < b.

(d) @ € 1 for every a € F.

(e) a =a if and only if a € T*.
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(f)a=a foralla € F.

(g) @ is the smallest closed element that is greater than or equal to
a.

(h) If (F, T) is an L-space and ay, ..., a,, € F, then we have (\/\_, a;) =

Vi, @

Definition 1.6. Suppose that (F,7) is an LG-space and a € F. If
we take F, = Ja and 7, = {t Aa:t € 7}, then clearly (F,,7,) is an
LG-space. We call (F,, 7,) as a subspace of (F,7) (briefly, we say that
F, is a subspace of F)).

In the following, the basic properties of subspaces in LG-spaces are
given.

Proposition 1.7. Suppose that (F,T) is an LG-space and a € F. The
following statements hold.

(a) If S is a subbase for T, then S, = {sANa: s € S} is a subbase
for 7,.

(b) If B is a base for T, then B, = {t Na: t € B} is a base for 7,.

Proposition 1.8. Suppose that (F,7) is an LG-space and a € F.
Then, the following statements hold.

(a) {(t Na)* Na: t € T} is the set of closed elements of F,. In
particular, if a € F* = {a*: v € F}, then {t* Na: t € T} is the set
of closed elements of F,.

(b) If x < a, then cl,,x = (int;x* A a)* A a.

(c) If a € F* and x < a, then cl,,x = cl,x AN a. In particular, if a is
a closed element in F, then cl,,x = cl,;z.

(d) If © < a, then int,x < int,,x. The converse of this fact is not
necessarily true.

(e) If a is an open element in F' and x < a, then int,x = int, x.

Definition 1.9. Suppose that (F,7) is an LG-space. We say a € F
is 7-compact (briefly, compact) if whenever S C 7 and a < \/ S, then
there exists a finite subset D of S such that a <\/ D. We can similarly
define Lindelof, countably compact, etc. Whenever 1 (i.e., the top
element of F') is a compact element in (F, 7), we say (F, 1) (briefly, F')
is a compact space.

Definition 1.10. Suppose that (F}, 7;) is an LG-space, for every i € 1.
Clearly, F' = [],c; Fi with ordinary order is a frame. Two topologies
can be defined on F' as follows:

(i) 7 ={t = (t;)ics : t; € 7, and t; = 1 for all except finitely many i €
I} U{0}. This topology is called product topology on F. When we
deal with [],., Fi as an LG-space, we have in view this topology.
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(ii) 7 = {t = (ti)ier = Vi € I, t; € 7}. This topology is called the
box topology on F'.

Clearly, if F' = [[,.; £ and 7; is the projection mapping from F' to
Fj, then for every S C F, we have \/ S = (\/,cq mi(5) )ier-

Proposition 1.11. Suppose that (F;,7;) is an LG-space, for every
i€l, F =]l F, and 7 and 7, are the product topology and box
topology on F', respectively. Then the following statements hold.

(a) " = {x = (;)ier € F: x; € 7, and x; = 0, for all except
finitely many i € 1} U {1}.

(b) 8 ={x = (zi)iecr € F: z; €71, Viel}.

(c) For every x € F, if I is infinite, then we have int,x # 0 if and
only if x; = 1 for all except finitely many i € I. Also, if I is finite, then
we have int,x # 0 if and only if there exists © € I such that x # 0.

(d) For every x € F, if I is finite or int.x # 0, then int,x = (x3)e;.

(e) For every x € F, if I is infinite, then we have cl,x # 1 if and
only if x; = 0 for all except finitely many i € I, and if I is finite, then
we have cl,x # 1 if and only if there exists i € I such that cl,x; # 1.

(f) For every x € F, if I is finite or cl,x # 1, then cl,x = (T;)icy-

(9) If v € F, then int, x = (x3)ier.

(h) If x € F, then cl,x = (Z;)ier-

2. CONTINUOUS FUNCTIONS ON L(G-SPACES

We introduce the notion of continuity for LG-spaces by means of
adjoint mappings as follows.

Definition 2.1. Suppose that X and Y are posets and f : X — Y
and g : Y — X are order-preserving mappings. We say that f is the
left adjoint of g (or g is the right adjoint of f) whenever

Vee X,VyeY x<g(y) & f(x)<y.
We denote by f, the right adjoint of f, if exists.

Some basic properties of adjoint mappings are given in the next
remark.

Remark 2.2. Suppose that X and Y are posets. It is easy to see that
if f: X =Y andg:Y — X are two order-preserving mappings, then
the following statements hold.

(a) The right adjoint of f (left adjoint of g), if it exists, is unique.

(b) If f is left adjoint and X and Y are bounded, then f(x) = 0 if
and only if z < f,(0). Consequently, f(0) = 0.

(c) If f is left adjoint and X and Y are bounded, then f,(y) = 1 if
and only if f(1) <y. Consequently, f, (1) = 1.
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(d) f is the left adjoint of g if and only if fg < Iy and gf > Ix.

(e) If f and g are adjoint, then fgf = f and gfg = g.

(f) If f is left adjoint, then ff, (f, f) is an interior (closure) operator.

(g) If f is left adjoint, then f is one to one if and only if f, f(x) =
for every x € X.

(h) If f is left adjoint, then ff, (y) =y if and only if y € f(X). So,
f is onto if and only if ff, (y) =y for every y € Y.

(i) If X and Y are complete lattices, then f is left adjoint (g is
right adjoint) if and only if f preserves arbitrary suprema (g preserves
arbitrary infima).

(j) If Fy and F, are frames and f : F; — F, preserves arbitrary
suprema, then f is left adjoint, f,(y) = V{z € F1: f(z) <y}, the
mapping f, preserves arbitrary infima and f(z) = N{y € F» : z <
f.(y)} for every z € Fj.

Suppose that h : X — Y is a function. Then the set function
f: P(X) — P(Y) defined by f(A) = {h(a): a € A} is a left adjoint
mapping and f,(B) = h"'(B) = {x € X : h(z) € B} for every
B € P(Y). It seems that this example is the basic model on which one
could extend the concept of adjoint mapping. We will find out later in
Proposition 2.11 that a set function f : P(X) — P(Y) is induced by a
function h : X — Y if and only if f has a right adjoint mapping which
is also left adjoint.

As we mentioned in part (b) of the above remark, for every left adjoint
mapping f we have f(0) = 0. However, this is not true for the right
adjoint mappings. For example, let f : F; — F, be such that f(z) =
for every # € Fy. Then f is a left adjoint mapping and f,(y) = 1 for
every y € F,. On the other hand, if f is a set function f : P(X) —
P(Y) induced by h : X — Y, then f.(B*) = h"}(B°) = (h"1(B))° =
(f.(B))* for every B € P(Y). The following proposition shows that
even the inequality f,(y*) < (f.(y))* does not hold, in general.

Proposition 2.3. Let F| and Fy be two frames. Suppose that f :
Fy — Fy is a left adjoint mapping. Then the following statements are
equivalent.

(a) For every x € Fy, if f(x) =0, then x = 0.

(b) For everyy € Fy, if y A f(1) =0, then f (y) =

(c) £.(0) = 0.

(d) For all y € Fy, we have f (y*) < (f.(y))*.

(e) There exists y € Fy such that f, (y* ) < (f.(y))*.

Proof. (a) = (b). Let y € Fy and y A f(1) = 0. Thus, ff.(y) <

y A f(1) =0andso f,(y) = 0.
(b) = (c). If we take y = 0, then we are done.
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(¢c) = (d). Let y € Fy, then y Ay* =0 and so 0 = f (y Ay*) =
f.(*) A f.(y). Therefore, f,(y*) < (f.(y))*.

(d) = (e). It is clear.

(e) = (a). Suppose that f(z) = 0 and y € Fy such that f,(y*) <

(f.(y))*. Hence, we can write
0=Ff(y )N TL.(y)=Ff.(y" Ay)=[.(0)

= v < ff(x)=f(0)=0 .. z=0.
O

Definition 2.4. Let (F1, ) and (Fy, 72) be LG-spaces and f : F} — Fy
be a left adjoint mapping. Then

(i) f is said to be weakly continuous at a € Fy, if whenever f(a) < t,
then a < int(f, (t)) where t € 75.

(ii) f is said to be weakly continuous if it is weakly continuous at
each element a € Fj.

One can easily see that if f : Fy — Fj is left adjoint, then f is weakly
continuous at a € F} if and only if for every open element ¢ > f(a),
there is s € 7 such that a < s < f () or equivalently, a < s and

fls) <t.

Proposition 2.5. A left adjoint mapping f : Iy — F5 is weakly con-
tinuous if and only if for any t € 7o we have f,(t) € 7.

Proof. (=). Let t € 175. We show that f,(¢) € 7. Assuming that
A={z € F: f(z) <t}, we have f, (t) = \JA. Let © € A. Then
(x) < t and by the hypothesis, there exists v, € 71 such that z <
[.(t). Therefore, f (t) = V,oca?® < Vyenvs < f.(t) and so

\/ €A Uy € T1.
It is clear. 0

)
e S
(t) =
(<)
As an immediate consequence of Proposition 2.5 is the fact that,
if X and Y are topological spaces, then a function f : X — Y is
continuous if and only if, for every A C X and every open subset W
of Y containing f(A), we have A C int(f~1(W)).
Assume that f: X — Y is a function, A C X and f(A) C BCY. We
denote the restriction of f from A to B by f%. If A= X (B =Y),
then, for convenience, we use f? (f4) instead of fZ (fY). Also, if X
and Y are posets, then we use “a” instead of “Ja”.

f
f.

Proposition 2.6. Suppose that a left adjoint mapping f : (Fy,71) —
(Fy, 1) is weakly continuous and la is an LG-subspace of Fy and |b
is an LG-subspace of Fy that contains the range of f. Then g = f is
weakly continuous.
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Proof. Clearly, g is a left adjoint mapping. Assume that t Ab € 7,
where t € 7, and 7, is the LG-topology of b as a subspace of (Fy, 7).
We show that g, (tAb) € 7,. First, note that {zAa: z € Fy, f(zAha) <
t} ={zNa: z € F, f(x) <t}andg, (b) = \/{zAa: g(xha) < b} = a.
Therefore, we can write

g.(tAb) =g, (t) A g.(b) = (\[{z Na: z € Fi, gz ha) <t})Aa
:(\/{x/\a: rxeFy, flxhna)<t}) Aa
=(\{zra: ze R, flx)<th)Aa

=(\{zeF: flo)<thha)Aa=f.() haem.
O

Let (Fy,m) and (Fy, ) be LG-spaces, f : Fy — F» be a function
and Ja be an arbitrary LG-subspace of F;. Then, as mentioned before,
we denote by f, the restriction of f on la.

Proposition 2.7. Let (Fy, 1) and (Fy, 1) be LG-spaces, f: F| — Fy
be a left adjoint mapping and \/,.; x; = 1 where x; € 7 for everyi € I.
Then f is weakly continuous if and only if f.. is weakly continuous for
every 1 € 1.

Proof. (=). It is clear by Proposition 2.6.
(«<). Assume that t € 75. As we see in the proof of Proposition 2.6,
(fe,)«(t) = f.(t) AN z; is open in F} for every i € I. So, we can write

[.@) = f.(6) A (Vierzi) = \/ (f.(t) Nai) = \/(f;m)*(t) €.

i€l iel
U

It is well-known that two continuous functions f,g : X — Y, where
X and Y are topological spaces with Y to be Hausdorff, are identical if
and only if fp = gp for some dense subset D of X. Now, we generalize
this fact for LG-spaces.

Proposition 2.8. Let (Fy, ) and (Fy,m2) be two LG-spaces, f,g :
(F1,71) — (Fy,79) be two weakly continuous and f.(0) = 0 = g.(0)
such that fq = gq for some T -dense element d of Fy (i.e., we have
tAd#0 for eacht € 7\ {0}). Also, suppose that for every x € Fy we
have 1(z) = g(x) whenever 1 (L(f(x) A1) N g~ (Lg(x) A ) C {0}

for every disjoint elements t1,ty € 5. Then, we have f = g.
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Proof. Assume on the contrary that f(x) # g(z) for some = € F;. By
our hypothesis, there exist 0 # a € F} and t;,t € 7 such that f(a) <
f(x) Aty, gla) < g(x) Aty and ¢ Aty = 0. Clearly, a < f,(t1) A g, (t2)
which implies that xo = f,(t1) A g, (t2) A d # 0. Therefore, f(xy) < t,
g(xg) < ty and since t; Aty = 0, it follows that f(zo) A g(zo) = 0.
Since zp < d, it follows that f(zo) = g(zo) and consequently, f(xy) =
g(xg) = 0. On the other, since f,(0) = 0 = ¢.(0) and zo # 0, we
deduce, by Proposition 2.3, that f(zo) # 0 # g(zo), and this is a
contradiction. O

Proposition 2.9. Suppose that f : Fy — Fy and g : F» — F3 are left
adjoint mappings. Then the following statements hold.

(a) gf is a left adjoint mapping and (gf), = f.9..

(b) If [ is weakly continuous at a € Fy and g is weakly continuous
at f(a), then gf is weakly continuous at a.

(c) If f and g are weakly continuous, then gf is also weakly contin-
uous.

Proof. (a). It is clear.

(b). Assume that ¢ is an open element in Fj3 such that (¢f)(a) < t.
Then, by the hypothesis, there exists an open element s in F5 such
that f(a) < s < g,(t). Also, since f is weakly continuous at a, there
exists an open element r in Fj such that a < r < f (s). Therefore,
a<r<f(s)<fg. ()= (gf).(t). Thus, gf is weakly continuous at
a.

(c). By (b), it is clear. O

Definition 2.10. Let F} and F, be two frames and f : F} — F, be a
left adjoint mapping. We say that f is perfect provided that for every
y € Iy, we have f, (y) = 0 if and only if y A f(1) = 0. Also, f is said
to be semi-perfect if f (0) = 0. In addition, a left adjoint mapping f is
called an RL-adjoint mapping, if f, preserves arbitrary suprema; i.e.,
the right adjoint of f is a left adjoint mapping. Note that the notion
of RL-adoint mappings has been first introduced in [9] as GOH.

Example. (a) Let f: P(X) — P(Y) be a set function induced by
h: X — Y. It is easy to see that f is a perfect RL-adjoint mapping.
In addition, f is weakly continuous if and only if h is continuous.

(b) Suppose that 2 = {0,1}, F' is a frame and 1 # a € F. Define
f: F — 2 with f(z) = 0 whenever z < a and f(z) = 1 whenever
z £ a. It is easy to see that

(i) f is left adjoint;

(ii) f is an RL-adjoint mapping if and only if a = 0;
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(iii) if F' is an LG-space, then f as a function from (F,7) to (2,2),
is weakly continuous if and only if @ is an open element in F.

Clearly, if f : Fy — F, is an RL-adjoint mapping, then since f,
preserves arbitrary suprema, it follows that f,(0) = 0 and hence f is
semi-perfect.

Proposition 2.11. A set function f: P(X) — P(Y) is induced by a
function h : X =Y if and only if f is an RL-adjoint mapping.

Proof. Assume that f : P(X) — P(Y) is an RL-adjoint mapping. It
suffices to show that, for every x € X there exists a point y € Y such
that f({x}) = {y}. To see this, suppose that z € X and f({z}) = B
for some B € P(Y). By the hypothesis, we can write

{z} € f.f{x}) = [.(B) = f.(Uyen{y}) = Uyenf.({v})
= eBref{y}) = {2} L.{y}) = f{z}) S {y}-

On the other hand, since f is an RL-adjoint mapping, it is semi-perfect.
Therefore, by Proposition 2.3, f({z}) # @ and so f({z}) ={y}. O

Definition 2.12. Let (F},7) and (Fy, 72) be LG-spaces and f : F} —
F5 be a left adjoint mapping. Then f is said to be continuous if it is
weakly continuous and RL-adjoint.

Clearly, propositions 2.5, 2.6, 2.7 and 2.8 are also true for continuous
functions.
Let f : F; — F5 be a continuous function. It is a natural question
whether f,(y) is closed in Fj for every closed element y € F,. We
need the following lemma, which is probably well-known, to answer
this question and some others.

Lemma 2.13. Assume that Fy and Fy are frames, h : Fy — Iy and
f:Fi x Fy — Fy x Fy with f(a,b) = (h(a),h(b)). Then the following
statements hold.

(i) f is a frame homomorphism if and only if h is so.

(ii) f is a left adjoint function if and only if h is so, and in this case
f.(e,d) = (h (c),h,(d)) for every (c,d) € Fy x Fs.

(iii) If Fy is a finite chain, then f is a frame homomorphism if and
only if h is a {0, 1}-order homomorphism (i.e., h is an order-preserving
mapping such that h(0) =0 and h(1) = 1).

The next example shows that an RL-adjoint mappings need not be
perfect, in general. Also, it shows that the continuous preimage of a
closed element is not necessarily closed.

Example 2.14. (a) Let F; = {0,a,1} be a chain, h : F; — F; with
h(0) =0 and h(a) = h(1) = 1. Define ' = Fy x F} and f : ' — F with
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f(a,b) = (h(a),h(b)). By Lemma 2.13, f is an RL-adjoint mapping.
Again from Lemma 2.13, it follows that f,(a,a) = (h,(a),h,(a)) =
(0,0) = 0p. Therefore, f is not perfect.

(b) Using the example of part (a) and Lemma 2.13, if we put 7 = F,
then it follows that ¢ = f, is a continuous function (since f,(a,b) =
(h. (@), h.(5))). Also, clearly, g.(0) = (h..(0).h..(0)) = (a,a) and

(a,a) is not a closed element in F.

Let F; be a frame for every ¢ € I and F' = [[,., Fi. Suppose that
j € I and = € F are such that x; = 1 (resp., z; = 0) for every i # j,
then for convenience, some times, we denote x by z; (resp., z;). Clearly,
if m; : F' — F} is the projection mapping, then we have (7). (z;) = z;
for every x; € Fj.

Proposition 2.15. Suppose that (F;, ;) is an LG-space for everyi € I
and [ [.c; Fi equipped with the product topology (resp., the box topology).
For every j € I, consider the projection mapping 7 : [[.c; Fi — Fj.
Then the following statements hold.

(a) m; is an open mapping (i.e., m;(t) € 1; for every open element t
in 1 Lic; Fi)-

(b) ; is a closed mapping (i.e., w;(t*) € T} for every closed element
t* in Hie[ Fz)

(¢c) m; is weakly continuous.
Proof. The proof is routine. 0

Note that, in Proposition 2.15, 7; distributes over any arbitrary join
of nonempty family. To see this, suppose that z, € F} for every a € A.
Then we can write

(7). (VaeaTa) = VaeaTa = VacaTa = Vaca(m;). (o).

However, if [I| > 2, then (r;),(0) = 0 # 0 and so it does not preserve
arbitrary suprema. Therefore, if [I| > 2, then 7, is not an RL-adjoint
mapping.

Proposition 2.16. Suppose that (Fy,71) and (Fy,73) are LG-spaces
and f: Fy — Fy is a left adjoint mapping. Also, suppose that B and S
are base and subbase for LG-space Fy, respectively. Then the following
statements hold.

(a) If Fm(S) = 1o, then f is weakly continuous if and only if f.(s) €
71 for every s € S.

(b) If f is an RL-adjoint mapping, then the following statements are
equivalent.

(i) f is continuous.

(ii) f.(b) is open in Fy for every b € B.
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(iii) f.(s) is open in Fy for every s € S.

Proof. (a). Since f, preserves finite meets, it is clear.
(b). Since f, preserves arbitrary suprema and infima, it is clear. [J

Proposition 2.17. Suppose that (F;, ;) for every i € I, and (F,T)
are LG-spaces, [[,c; Fi equipped by product topology and f : (F,7) —
[Lic; F5- Then f is weakly continuous if and only if ; f is so for every
jel.
Proof. (=) By Propositions 2.9 and 2.15, it is clear.

(<) First, we show that f is a left adjoint mapping. To see this,

we prove that f preserves arbitrary suprema. Since 7; and 7, f are left
adjoint mappings, we can write

f(Vaearn) = (mf (Vaeara))jer = (Vaeam;f(z2))jer

= (mj(Vaeaf(zx))jer = Vaeaf(xr).
Now, by Proposition 2.16, it is enough to show that f, ((m;),(¢;)) is
open in F', where j € I and t; € 7;. This is easy, since 7, f is weakly
continuous and f, ((7;).(t;)) = (m;f).(¢;). O

Note that, by the proof of Proposition 2.17, f is a left adjoint map-
ping if and only if 7; f is so for every j € I.

Corollary 2.18. Let L and F; (i € 1) be LG-spaces, F' = [],.; F; and
fi be a mapping from L to F; for each i € I. Define f : L — F with
f(z) = (fi(z))icr- Then the following statements hold.

(a) f is a left adjoint mapping if and only if f; is such for every
i € 1. Also, [ is weakly continuous if and only if f; is such for every
1e 1.

(b) If f. exists, then for every y = (yi)ier € F we have f, (y) =
Nicr Ji. (i)

(c) If there exists j € I such that f; is semi-perfect, then f is also
semi-perfect.

Proof. (a). Since m;f = f; for every i € I, it is clear, by Proposition
2.17.

(b). Define g : F' — L with g(y) = \,c; fi.(vi). For every x € L and
every y = (y;)icr € F, we can write

gf (@)= N\ fu(filx) = Nz ==,

F99) = F(Niet fi @) = (filhier fi. )
< (fjfj*(%')) S Wijer =y

Jj€

Jel
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Therefore, g = f,.
(c). By part (b), it is clear. O

Applying Corollary 2.18, we can find some useful examples as follows.
(i) Suppose that L = My = {0,a, 3,1} and F} = F, = {0,1}. Define
f1 L — Fl with fl(()) = f1<Oé> = O, fl(ﬁ) = f1<1) =1and f2 L — F2
with f5(0) = fa(8) =0, fa(a) = fo(1) = 1. If we put f = (fi, f2), then,
Clearly, f; and f5 are not even semi-perfect whereas f is perfect. To see
this, note that f1_(0) = a, fo.(0) = 3, f1,(1) = fo, (1) = 1. Thus, by
Corollary 2.18, 0 = f,.((¢,d)) = f1,(c) A fo,(d) if and only if f1 (c) = «
and f5, (d) = B, if and only if (¢,d) = (0,0) = Opxp.

(ii) Define g : [0,1] — [0, 1] with g(z) = /™. Clearly, g is an order-
isomorphism and so g is a perfect RL-adjoint mapping. Now, we show
that f = (g,9) is not RL-adjoint. Take t € [0,1), then by Corollary
218, we have £.((1,6) V £.((1)) = (9.(1) A g.(£) V (0.(8) A g, (1)) =
vt # 1= f(1,1) = f.((1,t) vV (t,1)). Therefore, f is not an
L R-adjoint mapping.

Definition 2.19. Let (F}, 1) and (F5, 72) be LG-spaces and f : F; —
F5 be a left adjoint mapping. Then f is said to be a homeomorphism
if it is one-to-one, onto, continuous and, in addition, f, is continuous.

The next proposition gives some equivalent conditions for a mapping
between LG-spaces to be a homeomorphism which has a straightfor-
ward proof.

Proposition 2.20. Suppose that (Fy,m1) and (Fz,72) are LG-spaces,
[ F1 — Fy is a one-to-one and onto left adjoint mapping. Then the
following statements are equivalent.

(a) f is homeomorphism.

(b) t € 7o if and only if f.(t) € 7.

(c) [ is continuous and open (i.e., f(t) € o for everyt € 1 ).

(d) f and f, are weakly continuous.

Proposition 2.21. Let f : (Fy, 1) — (Fy, 7o) be a left adjoint mapping.
Then f (k) is closed in Fy for each closed element k in Fy if and only
if flelpa) < clp,f(a) for each a € Fy.

Proof. =) For a € F, we can write
fla) <cpfla) = a< f.(f(a) < [flcpf(a)) €

= ClFla < f* (CZFQf(&)) = f(ClF1@) < Clef(“)'
<) Suppose that k € 75 and a = f,(k), then we can write

f(ch1a> < ClFQf(a) < k = ClFla < f*(k:) =a
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= cdpa=a = f(k)=clpaeT.
0J

We need the following lemma to show that a continuous image of a
compact element is compact.

Lemma 2.22. Let I} and F5 be frames and f : Fy — Fy be a left
adjoint mapping. Then f is an RL-adjoint mapping if and only if for
every a € I and every R C F,, we have

flay<\[r & a<\/f.(r).
rER r€ER
Proof. =) Assume that f(a) <\ _. r where R C Fy. By the hypoth-
esis, f, preserves arbitrary suprema and so we can write

a < f.f(a) < [V, cqr) =V, ().
For the reverse inequality, suppose that a <V, _.f (r). Since f is left

adjoint, by previous facts, f preserves arbitrary suprema, and so we
can write

a S erRf* (r) : f(a) S f<erRf* (T)) = \/TERff* (T) S \/TERT'
<) Assume that y; € F, for every i € I. Clearly, \/iel f.(y) <

f.(V,., vi). On the other hand, ff.(V,_, v:) <V, _, v and thus, it
follows from (b) that f,(\V  y) < \/iEI 1. (). 0

el
Proposition 2.23. Let (Fy, ) and (Fy, 72) be LG-spaces, f: F| — F
be continuous and a be a compact element in Fy. Then f(a) is a compact
element in I5.

Proof. Assume that f(a) < \/S where S C 7. By Lemma 2.22, we
have a < \/ g f.(s). Since a is compact, it follows that there exists
a finite subset /' C S such that a < \/ _ f.(s), and again it follows
from Lemma 2.22 that f(a) < \/ ,cps O]

Clearly, Proposition 2.23 also holds whenever a is countably compact,
Lindel6f or other kinds of compactness.

3. CONTINUITY AND CONNECTEDNESS

In this section, we are going to find the relations between continuity
and connectedness. To this aim, we need some definitions and facts.

Definition 3.1. Let (F,7) be an LG-space. We denote by 7¢ the set
{r € F: 3t €1, =1t} where t° is the complement of ¢ in F
(if it exists). An element a € F is called nonconnected if there exist
0 # ry, 84 € T, such that r, A s, =0 and r, V s, = a, otherwise, we say
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that a is connected. If 1 is a nonconnected (resp., connected) element,
then, some times, we say that I is nonconnected (resp., connected).

It follows from Definition 3.1 that if F' is a frame and a < b € F,
then a is connected as a point of F' if and only if it is connected as a
point of |b.

Remark 3.2. Let (F,7) be an LG-space. Inspired by Definition 3.1, we
can give the following two definitions.

(a) a € Fissaid to be relatively connected in F'if whenever ¢y, ty € T,
ti Ntg =0and a <t Viy, then a <ty ora <ts.

(b) a € F is said to be weakly relatively connected in F' if whenever
t is complemented in 7, then a <t or a < t°.
It is easy to see that if a € F' is connected, then a is relatively con-
nected in F', and also if a € F' is relatively connected in F', then a is
weakly relatively connected in F'. The converses of these two facts are
not necessarily true. For example:
(i) Suppose that X is an infinite set with cofinite topology and a,b € X
are two distinct points. Then A = {a, b} is not connected whereas it is
relatively connected in P(X).
(ii) Suppose that (X,7) is a connected space and U,V € 7 are two
nonempty disjoint open sets. Then A = U UV is not relatively con-
nected in P(X) whereas A is weakly relatively connected in P(X).

In the sequel, consider the lattice My = {0, «, 5,1}. As we will see
in the following proposition, the lattice My has an important role in
the connectedness of LG-spaces, as well as the role of discrete space
{0, 1} in the realm of the connectedness of topological spaces.

Proposition 3.3. Let (F, ) be an LG-space. The following statements
are equivalent.

(a) F' is connected.

(b) For every continuous f : (F,7) — (Ms, My) we have {a, 8} ¢
f(F).
(c) Tn7¢={0,1}.

Proof. (a) = (b). Suppose that f : (F,7) — (Ma, Ms) is continuous
and a € f(F). We show that § ¢ f(F). Taking r = f («) and
s = f.(B), it follows that

rser, rAs=[f()A[f(B)=[(aAp)=[.(0)=0,

rVs=f(a)Vvf(B)=/f(aVp)=/f(1)=1
Since a € f(F), it follows that r # 0. By connectedness of F', we con-
clude that 0 = s = f,(8) = V{z € F': f(z) < 8} and consequently,

B & fF).
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(b) = (c). On the contrary, suppose that there exists r € 7N 7\
{0,1}. Now, define f : ' — M, with f(0) = 0, f(z) = « whenever
0#x<r f(x) = B whenever 0 # = < r° and f(z) = 1 whenever
xAr#0and x Ar¢# 0. To see that f is a left adjoint mapping, it is
enough to show that f preserves arbitrary suprema. Suppose x; € F
for every ¢ € I. We will have four cases:

(1) vzel =0;

(i) 02V, < 7

(iii) 0 # V,epzi < 75

(1iv) (Vier i) Ar # O and (\,c; i) Are # 0.

It is easy to see that in any case, we have f(\/,c; i) = V,e; f(2i). It
remains to prove that f is continuous. This is easy, by the fact that

fla) =rand [ (5) =
(c) = (a). It is clear. O

We know that if X and Y are topological spaces, X is connected
and h: X — Y is a weakly continuous function (in point set topology
weakly continuous and continuous are equivalent), then h(X) is also
connected. This fact is not necessarily true in LG-spaces. For example,
suppose that (Fy,7) is an LG-space in which 1 is a connected element
and (Fy, 72) is an LG-space in which 1 is a disconnected element. Define
f: (Fi,n) — (Fy, 1) with f(0) = 0 and f(z) = 1 for every x # 0.
Clearly, f is a weakly continuous function and semi-perfect while 1 is
connected and f(1) is disconnected.

Definition 3.4. Let X be a partially ordered set and D, F C X. We
say D cuts E if for every 0 # e € E there exists 0 # d € D such that
d<e.

Proposition 3.5. Suppose that (Fy, 1) and (Fy, 12) are LG-spaces and
f:(F1, 1) — (Fa,72) is a continuous function. If 1 is connected in Fy

and f(Fy) cuts Lf(1), then f(1) is connected.

Proof. Let g : Lf(1) — Ms be continuous. Clearly, gf : Fi — M,
is continuous. Thus, {a, 8} € (¢9f)(F1). Without loss of generality,

suppose that 8 ¢ (gf)(F1). It is enough to show that 8 ¢ g(Jf(1)).
On the contrary, assume that 8 = ¢(y) for some y € [f(1). By the

hypothesis, there exists © € Fj such that 0 # f(z) < y. Thus, 0 #

g(f(x)) < g(y) = B. Therefore, § = gf(x), consequently, 5 € (gf)(F1)
and this is a contradiction. O

Lemma 3.6. Let Fy and Fy be two frames and f : Fy — Fy be a left
adjoint function. Then f is semi-perfect and f(Fy) cuts {f(1) if and
only if f is perfect.
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Proof. =) By Proposition 2.3, it is enough to show that from y A
f(1) # 0, it follows that f, (y) # 0. To see this, by the hypothesis
there exists 0 # x € Fj such that 0 # f(x) < y A f(1). Therefore,

0Az<f f(x)<fyAf(1))=f(y) Al=[f.(y)andso [ (y) #O0.
<) It suffices to show that f(F7) cuts |f(1). Assume that 0 # y <

f(1). By the hypothesis, 0 # f.(y) and so 0 # ff.(y) < y. Now,
taking = = f,(y), we are done. O

By Proposition 3.5 and Lemma 3.6, we have the following result.

Proposition 3.7. Let (Fy, ) and (Fy, 1) be two LG-spaces, a € F
be a connected element and f : Fy — Fy be a function such that f, is
a perfect continuous function. Then f(a) is also a connected element.

Here is an open question. Assuming that (Fj,7;) and (Fy, 75) are
two LG-spaces, a € Fj is a connected element and f : F; — F, is a
perfect continuous function, can we conclude that f(a) is a connected
element?

Proposition 3.8. Let a be a connected element of Fy and a < b < a.
Then b is also a connected element.

Proof. Suppose that r, = r Ab and s, = s A b are two disjoint elements
of 7, such that b = r,V s,. Clearly, if we take r, = rAa and s, = sAa,
then r, and s, are disjoint elements of 7, and r,V s, = a. Thus, r, =0
or s, =0, say r, = 0. Hence, a < r* and so b < a < r*. Therefore,
r,=1rAb=0. O

Lemma 3.9. Let F' be an LG-space and f : F — My be a continuous
function. Then the following statements are equivalent.

(a) {a, B} C f(F).
(b) f is onto.

(¢) 1 e f(F).

Proof. (a) = (b). It suffices to show that 1 € f(F). Assume that
f(a) = aand f(b) = 8. Then, clearly, f(aVb) = f(a)V f(b) =aVp =
1.

(b) = (c). It is clear.

(c) = (a). Clearly, ff.(a) < aand ff.(8) < B. Therefore, since f
is continuous, it follows that

L= f(lp) = fL.(0) = ffaVB)=[ff(a)V [L.(B)

Hence, we conclude that ff, (o) =« and ff,(8) = 5 and so {«, 5} C
f(F). O
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Proposition 3.10. Let F' be a frame and x; € F be connected for
everyi € I and 0 # a = N\,c; ;. Then x = \/,.; x; is also a connected
element of F.

Proof. Suppose that f : lx — M, be a continuous mapping. Clearly,
f=, is a continuous function from |z; to M for every ¢ € I. Therefore,
by Proposition 3.3 and Lemma 3.9, for every i € I we have f({x;) =
{0,a} or f({x;) = {0,5}. On the other hand, f is semi-perfect and
so by Proposition 2.3, f(a) # 0. Since a € (., lz;, it follows that
fla) =aor f(a) = B. say f(a) = a. Then, obviously, f({z;) = {0,a}
for every ¢ € I. Now, suppose that ¢ € |x, then we can write

ch:\/xi = c:\/(c/\xi)

i€l i€l
= f(c) = f(Vier(c AN 3;)) = Vier f(c Ax;) € {0, a}.
Therefore, f(lz) C {0,a}. Hence, x is connected. O

By Propositions 3.8 and 3.10, the following corollary is immediate.

Corollary 3.11. Let F' be a frame and x € F. If we take C(z) = {c €
F: cis connected and x < ¢} and ¢, =\ C(z), then ¢, is closed.

Proposition 3.12. Let F' be an LG-space and R be a relation on
F\ {0} such as follows. a R b whenever a =b or ¢, = ¢, # 0. Then
we have the following statements.

(a) R is an equivalence relation on F'\ {0}.

(b) ¢, # 0 if and only if C(x) contains at least one non zero connected
element.

(c¢) If we denote by [x] the equivalence class of x with respect to the
relation R, then C(z) C [z] for every x € F'\ {0}.

(d) ¢, =0 or \/[z] = ¢, € C(x) for every x € F\ {0}.

(e) ca N\ cy # 0 if and only if [a] = [b] and each of classes [a] and [b]
contains at least one non zero connected element.

(f) Let X be the set of all connected elements of F'\ {0}. Then the
mapping x — ¢, 1s a closure operator on X.

Proof. (a). It is clear.

(b). It is obvious, by the definition of ¢,.

(c¢). Assume that z € F\ {0} and a € C(z). Without loss of
generality, suppose that C(z) # @. We show ¢, = ¢,. Clearly, C(a) C
C(x), so it is enough to prove that C'(a) is cofinal with respect to C(x).
To see this, let y € C(x), then by Proposition 3.10, z <y < aVy €
C(a) and we are done.
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(d). Assume that x € F'\ {0} and ¢, # 0. Clearly, by part (c),
C(z) C [z], so it is enough to prove that C'(z) is cofinal with respect to
[z]. To see this, let y € [z], then y < ¢, = ¢, € C(z) and we are done.

(e =). By the hypothesis, ¢, # 0 and ¢, # 0. Therefore, @ # C(a) C
[a] and @ # C(b) C [b]. Now, it suffices to prove that ¢, = ¢,. Since
¢, and ¢, are connected, by Proposition 3.10, ¢, V ¢, is a connected
element greater than or equal to a and b and so ¢, = ¢, V ¢, = 0.
Thus, [a] = [b].

(e <=). Since [a] and [b] contain at least one non zero connected
element, clearly, ¢, # 0 # ¢, and so by part (d), ¢, = \[a] = V[b] = .
Hence, ¢, A ¢y = ¢, # 0.

(f). Since x € X is connected, clearly the mapping = — ¢, is well
defined on X. By the previous parts, the remainder of proof is clear
(in fact, if a,b € X and a < b, then [a] = [b]). O

We conclude the paper by generalizing Proposition 3.10.

Proposition 3.13. Let F' be an LG-space, I' be an ordinal and {ay}<r
be a family of connected elements of F' such that for every 0 < Ay <T'
there exists \g < A\ with ay,Nay, #0. Thenx = \/A<F ay is connected.

Proof. Suppose that f : Jx — M, is a continuous function. Clearly, for
every A < I, f,, is a continuous function and so, by Proposition 3.3, is
not onto. Without loss of generality, assume that f,({ag) C {0,a}. We
show, by transfinite induction, that f,, (lay) C {0, a} for every A < T
Clearly, this is true for A = 0. Now, suppose that v < I" and this claim
is true for every A < v, then we show that this is true for A = v. By
the hypothesis, there exists Ay < v such that 2’ = ay, A ay # 0. Since
Fro(ay,) € {0,a} and f is semi-perfect, it follows that f(z’) # 0 and
so f(2') = a. Now, because of 2’ € |z, and the fact that f, is not
onto, it turns out that f,(la,) C {0,a}. Now, suppose that ¢ € |z,

then f(c) < f(z) = f(V,_.an) = V,_. flan) € {0,a}. Therefore,
f(lz) € {0, a}. 0
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