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HOOPS WITH QUASI-VALUATION MAPS
M. AALY KOLOGANI, G. R. REZAEI R. A. BORZOOEI* AND Y. B. JUN

ABSTRACT. Based on subalgebras and filters in hoops, the notions
of S-quasi-valuation maps and F-quasi-valuation maps are intro-
duced, and related properties are investigated. Relations between
S-quasi-valuation maps and F-quasi-valuation maps are discussed.
Using F-quasi-valuation map, a (pseudo) metric space is intro-
duced, and we show that the operations “®”, “—” and “A” in a
hoop are uniformly continuous.

1. INTRODUCTION

Non-classical logic has become a considerable formal tool for com-
puter science and artificial intelligence to deal with fuzzy information
and uncertainty information. Many-valued logic, a great extension and
development of classical logic, has always been a crucial direction in
non-classical logic. In order to research the many-valued logical sys-
tem whose propositional value is given in a lattice, Bosbach in [3, 9],
proposed the concept of hoops, and discussed their some properties.
Hoops are naturally ordered commutative residuated integral monoids.
In the last years, hoops theory was enriched with deep structure theo-
rems (See [2, 8, 9]). Many of these results have a strong impact with
fuzzy logic. Particularly, from the structure theorem of finite basic
hoops (See [2, Corollary 2.10]) one obtains an elegant short proof of
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the completeness theorem for propositional basic logic (See [2, Theo-
rem 3.8]), introduced by Héjek in [12]. The algebraic structures cor-
responding to Hajek’s propositional (fuzzy) basic logic, BL-algebras,
are particular cases of hoops. The main example of BL-algebras is in-
terval [0, 1] endowed with the structure introduced by a t-norm. MV-
algebras, product algebras and Godel algebras are the most known
classes of BL-algebras. Recent investigations are concerned with non-
commutative generalizations for these structures. During these years,
many researchers study on hoops in different way, and got some results
on hoops [1, 3, 12, 14, 17, 11]. Song, Roh and Jun, in [1&] introduced the
notion of quasi-valuation maps based on a subalgebra and an ideal in
BCK/BCl-algebras, and then we investigated several properties. They
provided relations between a quasi-valuation map based on a subalge-
bra and a quasi-valuation map based on an ideal. In a BCl-algebra,
they gave a condition for a quasi-valuation map based on an ideal to be
a quasi-valuation map based on a subalgebra, and found conditions for
a real-valued function on a BCK/BCl-algebra to be a quasi-valuation
map based on an ideal. Using the notion of a quasi-valuation map
based on an ideal, they constructed (pseudo) metric spaces, and shew
that the binary operation x in BCK-algebras is uniformly continuous.

In this paper, we introduce the notion of quasi-valuation maps such
as (Sg, S_,) S-quasi-valuation maps and F-quasi-valuation map based
on subhoops and filters and related properties of them are investigated.
Also, we study the relation between them and we prove that every
F-quasi-valuation map is an S-quasi-valuation map. Finally, by us-
ing the notion of F-quasi-valuation map, we induce a (pseudo) metric
space and prove that the operations “®©”, “—” and “A” in a hoop are
uniformly continuous.

2. PRELIMINARIES

In this section, we introduced some definitions and results which will
be used in this paper.

By a hoop we mean an algebra (H,®,—,1) in which (H,®,1) is a
commutative monoid and, for all z,y,z € H, the following assertions
are valid.

(H1) z —» 2z =1.
(H2) 2O (r = y) =y © (y = @),
H3) 2 = (y = 2) = (zOy) — 2.

We define a relation “<” on a hoop H by
Vz,ye H)(x <y & z—y=1). (2.1)
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It is easy to see that (H, <) is a poset. A hoop H is bounded if there
is an element 0 € H such that 0 < z for all x € H. Let 2° = 1 and
2" = 2" ' © x for any n € N. If H is a bounded hoop, then we define
a negation”’” on H by 2’ = x — 0 for all x € H. A nonempty subset
S of H is called a subhoop of H if it satisfies:

(Vz,ye S)zoyesS, v—=yel). (2.2)
Note that every subhoop contains the element 1.

Proposition 2.1 ([8, 9]). Let (H,®,—, 1) be a hoop. For any x,y, z €
H, the following conditions hold:

1) (H,<) is a meet-semilattice with t Ny =x © (x — y).

(a

(a2) Oy <z ifand anly if t <y — z.

(a3) Oy < x,y and 2™ < x for any n € N.

(ad) z <y — x.

(a5) 1l »z=x andx — 1=1.

(@) O (r—y)<yandzOy<zAy<z—y.

(a?) z—y<(y—2) — (z—2).

(a8)x<yzmplzesx®z<y®z z—orx<z—oyandy = z<x — 2.
(@) z—(y—=2)=@oy) 2=y (z—2).

A nonempty subset F' of a hoop H is called a filter of H (see [3, 9])
if the following assertions are valid.

Vez,y e H)(z,y e F =z0yelF), (2.3)

Ve,ye H)(x € F, x <y = ye€F). (2.4)

Note that the conditions (2.3) and (2.4) means that F'is closed under

the operation ® and F' is upward closed, respectively.

Note. In what follows, let H denote a hoop unless otherwise speci-
fied.

3. QUASI—VALUATION MAPS BASED ON SUBHOOPS AND FILTERS

In this section, we introduce the notion of quasi-valuation maps such
as (Se, S-) S-quasi-valuation maps and F-quasi-valuation map and
related properties of them are investigated. Also, we study the relation
between them and we prove that every F-quasi-valuation map is an
S-quasi-valuation map.

Definition 3.1. A real valued function \ of H is called

e an Sy -quasi-valuation map of H if

(Ve,y € H)(A(x ©y) = Az) + Ay)), (3.1)
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e an S_.-quasi-valuation map of H if
(Vz,y € H)(AM(z — y) > AMx) + My)). (3.2)

e an S-quasi-valuation map of H if it is an Sy-quasi-valuation
map and an S_,-quasi-valuation map of H.

Example 3.2. Let H = {0,a,b, 1} be a set with Cayley tables (Tables
1 and 2). Then (H, ®, —,1) is a hoop (see [7]).

TABLE 1. Cayley table for the binary operation “®”

H@‘QO@
oo o oo
Q2 O
TR O
_ o Ol

TABLE 2. Cayley table for the binary operation “—”

— 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1
(1) Define a map A on H as follows:
-2 ifx=0,
N HSR, 2o ilr=q (3.3)
’ —6 if x =0,
-7 iftx=1.

Then A is an Si-quasi-valuation map of H. But it is not an S_,-quasi-
valuation map of H since

A0 —=0) = A1) =—=7 < —4=X0)+ A0).
(2) Define a map A on H as follows:

—45 if z =0,
—20 if x = a,

AN H—=R, z— 90 ifx=b (3.4)
=25 ifx=1.

Then A is an S-quasi-valuation map of H.
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Example 3.3. Let H = {0,a,b, 1} be a set with Cayley tables (Tables
3 and 4). Then (H, ®, —,1) is a hoop (see [5]). Define a map A on

TABLE 3. Cayley table for the binary operation “®”

=S e OR
(s N e R en] Han)
QOO
>R Ol
_— R Ol

TABLE 4. Cayley table for the binary operation “—”

— 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1
H as follows:
-5 if x =0,
N HSR, pe{ 2 Hr=a (3.5)
’ -2 if x =0,
-1 ifx=1.

Then A is an S_,-quasi-valuation map of H. But it is not an S-quasi-
valuation map of H since

AMa©®a)=X0)=—-5<—4=X\a)+ Aa).

We know that any Sg-quasi-valuation map (resp., S_,-quasi-valuation
map and S-quasi-valuation map) is not order preserving in Example
3.2.

Proposition 3.4. Every Sg-quasi-valuation map (resp., S_,-quasi-
valuation map) X of H safisfies:

(V€ H)(A(z) < 0). (3.6)

Proof. Let X\ be an S_,-quasi-valuation map of H. For any x € H, we
have A(1) = Az — 1) > A(z) + A(1), and so A(x) < 0. If X is an
Se-quasi-valuation map of H, then A(0) = A(z ®0) > A(z) 4+ A(0) and
so A(z) <0 forall z € H. O
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Theorem 3.5. Let S be a subhoop of H. For any negative real numbers
k1 and ke with ki > ko, let Ag be a real valued function on H defined

by

. kl if x € S,
As i H =R,z { ko otherwise. (3.7)
Then \s is an S-quasi-valuation map of H.
Proof. Straightforward. O

Theorem 3.6. If A : H — R is an S-quasi-valuation map of H, then
the set

Sy:={zx € H|\z)=0} (3.8)
s a subhoop of H.
Proof. Let x,y € Sy. Then A(z) = 0 and A(y) = 0. Thus Az ©y) >
AMz)+A(y) =0and A(z — y) > A(z)+A(y) = 0. Since A(z@y) < 0 and

Az — y) < 0 by Proposition 3.4, we have x ©®y € S\ and x — y € S,.
Therefore S is a subhoop of H. OJ

The converse of Theorem 3.6 is not true in general as seen in the
following example.

Example 3.7. Let H = {0, a,b,1} be the hoop as in Example 3.3. If
we define a map A on H by

33 itz =0,
A HSR, 20 13 ifr=a, (3.9)
0 if z € {b,1},

then S\ = {b,1} is a subhoop of H. But \ is not an S-quasi-valuation
map of H since

AMa®a) = A0) =-33 < —26 = Aa) + A a).

Definition 3.8. A real valued function A\ of H is called an F-quasi-
valuation map of H if

A(1) =0, (3.10)
Yo,y € H)(A(y) > Mz) + Ma = v)). (3.11)

Example 3.9. Let H = {0, a,b, 1} be the hoop as in Example 3.3. If
we define a map A on H by

—-30 if x =0,
=25 if x =a,
AN H—-R z— 90 ifx—b (3.12)

0 ifx=1,
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It is routine to verify that A\ is an F-quasi-valuation map of H.

Theorem 3.10. Fvery F-quasi-valuation map of H is an S-quasi-
valuation map of H.

Proof. Let X be an F-quasi-valuation map of H. Then
O=A1)=Xz—=(z—=1)=ANz—=(x—= (y—>v)))

=Xz = (y— (=) <My — (z—=y) = Mz
< Mz = y) — My) — A=),

and so A(z — y) > Az) + A(y) for all x,y € H. Hence X is an
S_,-quasi-valuation map of H. Also, we have

AMa®b) > Ab)+Ab— (a®D))
> ANb)+ Aa) + Ma— (b— (a®D)))
= A(0) + A(a) + AM(a © b) = (a © b))
= Ab) + A(a) + A1) = A(D) + A(a)

for all a,b € H. Hence X is an Sg-quasi-valuation map of H, and
therefore \ is an S-quasi-valuation map of H. OJ

In general, any S-quasi-valuation map of H is not an F-quasi-valuation
map as seen in Example 3.2(2). We provide conditions for an S-quasi-
valuation map to be an F-quasi-valuation map.

Theorem 3.11. Let \ be an Sg-quasi-valuation map which satisfies
the condition (3.10). If X is order preserving, then it is an F-quasi-
valuation map.

Proof. Let X\ be an order preserving Si-quasi-valuation map of H which
satisfies the condition (3.10). Since x ® (zr — y) < y for all z,y € H,
we have

Ay) 2 Mz o (z = y) =2 AMxz) + Az — y)
for all x,y € H. Hence A is an F-quasi-valuation map of H. O

Corollary 3.12. Every order preserving S-quasi-valuation map satis-
fying the condition (3.10) is an F-quasi-valuation map.

The following example shows that any order preserving S_,-quasi-
valuation map satisfying the condition (3.10) is not an F-quasi-valuation
map.
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Example 3.13. Consider the hoop H as in Example 3.3 and a map

—40 if z =0,

—15 if z =a,

A H—=R, z+— 10 ifr=b,
0 ifx=1,

It is routine to verify that A is an order preserving S_,-quasi-valuation
map satisfying the condition (3.10). But it is not an F-quasi-valuation
map of H since

A0) = —40 < =30 = A(a — 0) + A(a).
Proposition 3.14. For any F'-quasi-valuation map A of H, we have

the following assertions.
(1) X is order preserving.
(2) (Vo € H)(A(x) <0).
(3) (Vx,y,z€ H) (AMz = 2) > Mz —y) + ANy — 2)).
(4) Vo, g,z € H) (Mz = (y = 2)) =2 M(z = y) = 2)).
Proof. (1) Let z,y € H such that x < y. Then z — y = 1, which
implies from (3.11) that
AY) = Mz) + Az = y) = A(z) + A1) = Az) + 0 = A(2).
(2) It is by Theorem 3.10 and Proposition 3.4.
(3) For any z,y,z € H, we have
Mz =y)<My—=2)=(r—=2)<ANz—2)— ANy — 2)

by (a7), (1) and (3.11). Hence AM(z — 2) > Az — y) + Ay — z) for
all z,y,z € H.
(4) Since x ©y < x — y for all z,y € H, it follows from (a8) and
(a9) that
(x—y)—=z<(z0y) 2 z=2— (y = 2)
for all z,y,z € H. Therefore A(z — (y — 2)) > AM(z — y) — z) for
all z,y, z € H since X is order preserving. O

Theorem 3.15. If A : H — R is an F'-quasi-valuation map of H, then
the set

Fy:={ze€ H| \x) =0} (3.13)
is a filter of H.

Proof. Obviously 1 € F) by (3.10). Let 2,y € H such that z € F and
r —y € F\. Then A(z) = 0 and Az — y) = 0. It follows from (3.11)
that AM(y) > A(z) + Az — y) = 0. By Theorem 3.10 and Proposition
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3.4, we get that A(y) < 0, and so A(y) = 0. Hence, y € F). Therefore
F is a filter of H. O

The following example shows that the converse of Theorem 3.15 is
not true in general.

Example 3.16. Let H = {0, a,b,c, 1} be a set with the Hasse diagram
(Figure 1) and Cayley tables (Tables 5 and 6).

Figure 1: Hasse diagram of (H, <)

TABLE 5. Cayley table for the binary operation “®”

HQ@‘QO@
O OO oo
QO O
> oo O O o
O O " ONn
_— 0 o Ol

TABLE 6. Cayley table for the binary operation “—”

=0 e o |
SO Q o O
Q Q Q = HQ
o RO | o
QO = == =0
T G gy [y

Then (H, ®, —,1) is a hoop (see [17]). Define a map A on H as
follows:

-5 if x =0,
N HSR, o S HT=0 (3.14)
’ —1 if x =0,
0 if v € {c1}.

Then F)\ = {¢, 1} is afilter of H. Since A\(0) = =5 < —4 = A(a)+A(a —
0), A is not an F-quasi-valuation map of H.
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Theorem 3.17. Let F' be a filter of H. For any negative real number
k, let Ap be a real valued function on H defined by

0 if x € F,

k  otherwise. (3.15)

)\F:H—>R,x»—>{

Then \p is an F-quasi-valuation map of H and Fy, = F.

Proof. 1t is clear that F\,, = F and A\p(1) =0. Let 2,y € H. If y € F,
then

Ar(y) =02 Ap(z) + Ap(z = y).

Assume that y ¢ . Thena ¢ Forx —y ¢ F. lfr € Fande —y ¢
F(orxz ¢ Fand x — y € F), then Ap(x) =0 and Ap(z — y) = k (or
Ar(x) =k and Ap(z — y) = 0). Hence

Arp(y) =k = Ap(x) + Ap(z — y).
Ifx¢ Fand x — y ¢ F, then
Ar(y) =k > 2k = Ap(x) + Ap(x — ).
Therefore A\r is an F-quasi-valuation map of H. O

Corollary 3.18. Let F be a filter of H. For any negative real number
k, let A\p be a real valued function on H in (3.15). Then Ap is an
S-quasi-valuation map of H.

Proposition 3.19. Fvery F-quasi-valuation map A of H satisfies the
following assertion.

(Vz,y,z€ H)(z <y —x = Ax) > ANy) + A(2)). (3.16)

Proof. Let z,y,z € H besuch that z <y — z. Then z = (y — z) = 1.
Using (3.10) and (3.11), we have

My = 2) 2 Az = (y = 2)) + AMz) = A1) + A(z) = A(2)
and so A(z) > My — x) + AMy) > Ay) + A(2). O

Corollary 3.20. FEvery F-quasi-valuation map A of H satisfies the
following assertion.

Vr,y,z€e H)(z0y <z = Az)>Ay) + A(2)). (3.17)
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Proposition 3.21. Fvery F-quasi-valuation map A of H satisfies the
following assertion.

(Va,y € H)(AMz) + A(y) < Az ©y) < min{A(z) — A(y), AMy) (3(15)5)
(Va,y € H)(A(z) + Ay) < Az Ay) <min{A(z) — A(y), A(y) —( (12)};),
((x Aa) = (yAD)), (3.20)
((y = a) — (x = b)).

(3.21)

1,

3
(Va,b,z,y € H)(AMz = y) + AM(a — b) 3
(Va,b,z,y € H)(Mz — y) + AMa — b)

Proof. Let A be an F-quasi-valuation map of H. Then A is an S-quasi-
valuation map of H (see Theorem 3.10), and so A(z) +A(y) < Mz Oy)
for all z,y € H. Since x ® (z ® y) < y for all z,y € H, it follows from
Proposition 3.14(1) that A(z) + Mz @ y) < ( ). Thus Az ©y) <
Ay) — Mx). By the similar way, Az ® ) A(z) — A(y). Hence
Mz O©y) <min{A(y) — A(z), A(z) — A(y)}, that is, (3.18) is valid. Since
rOy <xAyforall z,y € H, we have

AMz) + My) S Mz oy) < Az Ay).

Also, since z@ (zAy) < 2Oy < y, it follows that A(x)+A(xAy) < A(y).
Thus A(zAy) < A(y) — A(z). By the similar way, A(y) +A(xAy) < A(z)
and so A(z Ay) < A(z) — A(y). Hence

Az Ay) < min{A(y) — Ax), AMz) = Ay)}-

Therefore (3.19) is true. Note that x — y < (z Aa) = (y A a) and
a—b<(yNa)— (yAb) for all z,y,a,b € H. Using (1) and (3) in
Proposition 3.14, we get
Mz —=y)+Aa—=b) < A(zAa) = (yAa))+AM(yAa) = (yADb))
< A(zAa)— (yAb)).
Using (1) and (3) in Proposition 3.14 and (a7), we have
My —a)—=(x—=0b)>AM(y—a) = (x—a)+M(x—a) = (y— b))
>Nz —=y)+ Aa—0b)
for all x,y,a,b € H. O

We provide conditions for a real valued function on H to be an F-
quasi-valuation map of H.

Theorem 3.22. Let A\ be a real valued function on H satisfying the
condition (3.10). If X satisfies the condition (3.16), then it is an F-
quasi-valuation map of H.



262 KOLOGANI, REZAEI, BORZOOEI AND JUN

Proof. Since x < (x — y) — y for all x,y € H, it follows from (3.16)
that A(y) > Mz — y) + M) for all x,y € H. Hence A is an F-quasi-
valuation map of H. O

Corollary 3.23. Let A be a real valued function on H satisfying the
condition (3.10). If X\ satisfies the condition (3.16), then it is an S-
quasi-valuation map of H.

Corollary 3.24. Let A be a real valued function on H satisfying the
condition (3.10). If X\ satisfies the condition (3.17), then it is an F'-
quasi-valuation map of H.

Proof. Since x ©® (x — y) < y for all z,y € H, it follows from (3.17)
that AM(y) > Mx — y) + A(x) for all z,y € H. Hence X is an F-quasi-
valuation map of H. O

Corollary 3.25. Let A be a real valued function on H satisfying the
condition (3.10). If X satisfies the condition (3.17), then it is an S-
quasi-valuation map of H.

Theorem 3.26. Let A\ be a real valued function on H satisfying the
condition (3.10). If X satisfies the condition

(Vo,y,z€ HY(AMz = y) > XMz — (= (z = y)) + M2)), (3.22)
then X is an F'-quasi-valuation map of H.
Proof. 1f we take x = 1 and z = x in (3.22) and use (a5), then
Ay)=A1=y)>Me—> (1= (1—=9))+ Mx) =Ma — y) + A(x).
Therefore A is an F-quasi-valuation map of H. OJ

Corollary 3.27. Let A be a real valued function on H satisfying the
condition (3.10). If X\ satisfies the condition (3.22), then A is an S-
quasi-valuation map of H.

Proposition 3.28. Every F'-quasi-valuation map \ of H satisfies the
condition

(Vo,y,z € HY(AMz = (x = 2)) > XMz = y) + Mz — (y = 2))).
(3.23)

Proof. Let A\ be an F-quasi-valuation map of H that satisfies (3.23).
Then A is an S-quasi-valuation map of H (see Theorem 3.10). Since

(=Yoo= (y—2)=@—=2y)0o0y—(r—2)<z—(r—=2)
for all x,y, z € H, it follows that
ANz — (= 2)) > Mz —y) o (z— (y— 2)))
> Mz —=y)+ Mz — (y = 2))
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for all z,y,2 € H. O

Theorem 3.29. If a real valued function X\ on H satisfies the conditions
(3.10) and (3.23), then X is an F-quasi-valuation map of H.

Proof. 1f we take x = 1 in (3.23) and use (ab), then
AMz2)=A1=>1=2)>2A1—=y)+ A1 = (y—=2)=Ay) + Ay — 2)
for all y, z € H. Hence ) is an F-quasi-valuation map of H. 0

Corollary 3.30. If a real valued function A on H satisfies the condi-
tions (3.10) and (3.23), then X is an S-quasi-valuation map of H.

Theorem 3.31. If a real valued function X\ on H satisfies the conditions
(3.10) and

(Vo,y,z € HY(Az) > XMz — ((z = y) = ) + A\(2)), (3.24)
then X\ is an F-quasi-valuation map of H.
Proof. 1f we take y = 1 in (3.24) and use (ab), then
Mz) > Mz = ((x = 1) = 2) + A2) = Az = x) + A(2)
for all =,z € H. Therefore A is an F-quasi-valuation map of H. O

Corollary 3.32. If a real valued function A on H satisfies the condi-
tions (3.10) and (3.24), then X is an S-quasi-valuation map of H.

The following example shows that there is an F-quasi-valuation map
A of H which does not satisfy the condition (3.24).

Example 3.33. Let A be the F-quasi-valuation map of H as in Ex-
ample 3.9. Then we have

0=X1)+X1 = ((b—=a) = b)) =A(b—a) = b)) =Xa—b) £ Ab) =-20
Given a real valued function A on H, consider the following mapping
dy:Hx H—=R, (z,y) » —(Mz = y) + My — x)). (3.25)

Lemma 3.34. If a real-valued function X\ on H is an F'-quasi-valuation
map of H, then dy is a pseudo-metric ' on H, and so (H,dy) is a
pseudo-metric space.

We say that d) is the pseudo-metric introduced by an F-quasi-
valuation map A of H.

1By a pseudo-metric on H, we mean a real-valued function d : H x H — R
satisfying the following properties: d(z,y) > 0, d(z,z) = 0, d(z,y) = d(y,z) and
d(z, z) < d(z,y) + d(y, z) for every z,y,z € H.
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Proof. If X\ is an F-quasi-valuation map of H, then X is an S-quasi-
valuation map of H and so A(z) < 0 for all x € H by Proposition 3.4.
Thus dy(xz,y) > 0 for all z,y € H. It is clear that dy(z,x) = 0 and
dx(z,y) = d\(y,z) for all z,y € H. Using (3) in Proposition 3.14, we
get
dx(z,y) +da(y, 2) = =Mz = y) + Ay = 2)) = (AMy = 2) + Az = v))
=-(Az—=y)+ Ay —=2)) =Mz = y) + Ay = )
> —(AMz — 2) + Mz = ) =di(z, 2).

Hence (H,d,) is a pseudo-metric space. O

Theorem 3.35. If an F'-quasi-valuation map X of H satisfies the fol-
lowing condition

Vexe H)(Mz)=0 = z=1), (3.26)
then (H,dy) is a metric space.

Proof. Let A be an F-quasi-valuation map of H satisfying (3.26). Then
(H,dy) is a pseudo-metric space (see Lemma 3.34). Suppose that
dx(z,y) =0forall z,y € H. Then 0 = dy(x,y) = —(AMx = y)+ Ay —
z)), and so Mz — y) = 0 = My — z). It follows from (3.26) that
r —y=1=y — z. Hence x =y, and therefore (H,d,) is a metric
space. [l

Proposition 3.36. If )\ is an F-quasi-valuation map of H, then, for
all a,b,x,y € H, the pseudo-metric d, introduced by A satisfies the
following assertions.

(1) dr(z,y) > dr(a = 7.0 - y).

2) di(z,y) > dr(z — a,y — a).

3) da(z = y,a = b) <dy(xr = y,a = y)+dy(a = y,a—b).
4) dx(z,y) > dr(a© x,a O y).

5) dy(z ©@y,a®b) <d\(x ®y,a®y) +dy(a®y,a®Db).

Proof. Let A be an F-quasi-valuation map of H and a,b,x,y € H.
Since

(x—=y)<(a—2z)—> (a—vy)and (y = z) < (a > y) = (a — z),
it follows from Proposition 3.14(1) that
Mz —=y) <A(a—=2z) = (a—y)) and ANy — z) < A((a = y) = (a — x)).
Hence

dr(z,y) = —(Mz = y) + My — 2))
> —(A(a—=2z) = (a—=y))+Mla—y) = (a = 2)))
=dy(a = z,a = y),
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which proves (1). Similarly, we can prove the second condition. Using
Proposition 3.14(3), we have

Mz —=y) = (@—=0b) 2 Me—=y) = (a—=y)+AMa—y) = (a—0D)),
A(a—=b) = (z = y) 2 AM(a—=b) = (@a—=y)+AMa—=y) = (r—=y))
for all a,b,x,y € H. Hence
dy(z = y,a—=b)=—A(z—=y) = (a—=Db)+A(a—b) = (z = v)))
< —((Mz—=y) = (a—=y)+Ala—=y) = (a—=10)))
+A(@—=b) = (a—=y)+Ma—=y) = (z—=y))
=dy(z = y,a > y)+dy(a = y,a—b)
for all a,b,z,y € H, which proves (3). Since z - y < (a®z) — (a®y) and
y—=2r<(a®y)— (a@z) for all a,z,y € H, it follows that
Aw = 9) S (@ 0) = (a0y) and Ay = 2) < M(@©y) = (@0 )
Thus

dx(z,y) = —(AMz = y) + My — ))
AM(eoz) = (a0y)) + M@0 y) = (a©x)))

dy(a®z,a®y)

v

for all a,x,y € H. This proves (4). Note that
(zoy) = (oY) ©(a0y) = (a0b) < (z0y) = (aOb),
for all a,b,x,y € H. Thus
Mzoy) = (@ob) 2A((zoy) = (@0y) o (a0y) = (a0 b))
> Mz oy) = (a0y) + (a0 y) = (a©Db)).

Similarly, A((a®b) = (z®%)) > AM(a®b) = (a®y)) +A(a®y) — (zOY)).
It follows that

d)\(ny’CL@b)

I+ IA
Q>

which proves (5). O

Let (Hy, ®1, —1,11) and (Hs, ®a, —2, 13) be hoops. Define binary
operations ® and — on H; x Hy by
(x,y) ® (a,b) = (x ®1 a, y @2 b)

(V(z,9), (a,b) € H1 x Ha) ( (z,y) — (a,b) = (x =1 a, y —2 D)

> . (3.27)

Then (Hy X Ha, ®, —, (11,12)) is a hoop (see [10]).
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Lemma 3.37. Let d)y be the pseudo-metric introduced by an F'-quasi-valuation
map A of H. Then (H,dY) is a pseudo-metric space, where H = H x H
and

di tH X H =R, ((:Cay)v (CL, b)) = max{dA(x, CL), d)\(yv b)} (328)
Proof. Let (z,y), (a,b), (u,v) € H x H. It is clear that d}((x,v), (a,b)) > 0,
and we get

d;((xvy)7 (‘Ta y)) = max{d,\(x,x),d,\(y,y)} =0,

dy((z,y), (a,b)) = max{dx(z,a),dx(y,b)}
= max{dy(a,x),dx(b,y)}
= d;((a,b), (z,y))-
and
dx((z,y), (u,v)) + dx((u, v), (a,b))
= max{dy(z, u), dx(y,v)} + max{dy(u, a),dr(v,b)}
> max{dy(z,u) + dx(u,a), dr(y,v)+ dx(v,b)}
> max{dy(z,a) + da(y, b)} = d3 (2, 9), (a, ).
Therefore (H, d3) is a pseudo-metric space. O

Theorem 3.38. Let )\ be an F-quasi-valuation map of H. If A satisfies the
condition (3.26), then (H,d3) is a metric space.

Proof. Let A be an F-quasi-valuation map of H satisfying the condition
(3.26). Then d is a pseudo-metric on H (see Lemma 3.34), and so (H, d3) is
a pseudo-metric space (see Lemma 3.37). Assume that d3((x,y), (a,b)) =0
for all (z,y), (a,b) € H x H. Then

0 =dx((z,y), (a,b)) = max{dx(z,a),dr(y,b)},
and thus 0 = dy(z,a) = —(AM(z — a) + AMa — z)) and 0 = d)(y,b) =
—(AMy = b) + A(b — y)). Hence A(x — a) = 0 = Aa — z) and Ay —
b) =0 = A0b — y). It follows from (3.26) that + - a =1, a - = = 1,
y—b=1and b -y = 1. Thus (z,y) = (a,b), and therefore (H,d5) is a
metric space. Il

Theorem 3.39. If an F-quasi-valuation map A of H satisfies the condi-
tion (3.26), then the operations “—7, “©” and “A” in H are uniformly

continuous.
Proof. For any a,b,z,y € H and € > 0, let d}((z,y),(a,b)) < 5. Then
dx(z,a) < § and dy(y,b) < §. It follows from Proposition 3.36 that

dy(z = y,a —b) <d)(zr = y,a—y)+dr(a— y,a—b)
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Therefore the operation “—” in H is uniformly continuous. By Proposition
3.36, the proof of other cases is similar. O

Theorem 3.39 is illustrated in the following example.

Example 3.40. The F-quasi-valuation map A of H in Example 3.9 satisfies
the condition (3.26), and so (H, dy) is a metric space by Theorem 3.35 where
dy is obtained by (3.25) and it is given by Table 7.

TABLE 7. Tabular representation of “d,”

HxH | (0,0 (0,a) (0,b) (0,1) (a,a) (a,b) (a,1) (b,b) (b,1) (1

) 1)
dx(z,y) 0 25 30 30 0 25 25 0 20 0

Also, (H,d}) is a metric space by Theorem 3.38 where d is obtained by
(3.28), for example,

dx((a,b),(1,a)) = max{dy(a,1),dx(b,a)} = max{25,25} = 25,
dx((b,1),(0,b)) = max{dy(b,0),dx(1,b)} = max{30,20} = 30,

and so on. It is routine to check that the operations “—”, “©” and “A” in
H are uniformly continuous.

4. CONCLUSIONS

In this paper, we have introduced the notion of quasi-valuation maps such
as Sg-, S-, S- and F-quasi-valuation map based on sub-hoop and filter.
We have investigated several properties, and we have discussed relations be-
tween S-quasi-valuation map and F-quasi-valuation map. Using the notion
of F-quasi-valuation map, we have introduced a (pseudo) metric space and
have shown that the operations “—”, “©” and “A” in a hoop are uniformly
continuous.
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