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HOOPS WITH QUASI-VALUATION MAPS

M. AALY KOLOGANI, G. R. REZAEI, R. A. BORZOOEI∗ AND Y. B. JUN

Abstract. Based on subalgebras and filters in hoops, the notions
of S-quasi-valuation maps and F -quasi-valuation maps are intro-
duced, and related properties are investigated. Relations between
S-quasi-valuation maps and F -quasi-valuation maps are discussed.
Using F -quasi-valuation map, a (pseudo) metric space is intro-
duced, and we show that the operations “⊙”, “→” and “∧” in a
hoop are uniformly continuous.

1. Introduction

Non-classical logic has become a considerable formal tool for com-
puter science and artificial intelligence to deal with fuzzy information
and uncertainty information. Many-valued logic, a great extension and
development of classical logic, has always been a crucial direction in
non-classical logic. In order to research the many-valued logical sys-
tem whose propositional value is given in a lattice, Bosbach in [8, 9],
proposed the concept of hoops, and discussed their some properties.
Hoops are naturally ordered commutative residuated integral monoids.
In the last years, hoops theory was enriched with deep structure theo-
rems (See [2, 8, 9]). Many of these results have a strong impact with
fuzzy logic. Particularly, from the structure theorem of finite basic
hoops (See [2, Corollary 2.10]) one obtains an elegant short proof of
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the completeness theorem for propositional basic logic (See [2, Theo-
rem 3.8]), introduced by Hájek in [12]. The algebraic structures cor-
responding to Hájek’s propositional (fuzzy) basic logic, BL-algebras,
are particular cases of hoops. The main example of BL-algebras is in-
terval [0, 1] endowed with the structure introduced by a t-norm. MV-
algebras, product algebras and Gödel algebras are the most known
classes of BL-algebras. Recent investigations are concerned with non-
commutative generalizations for these structures. During these years,
many researchers study on hoops in different way, and got some results
on hoops [1, 3, 12, 14, 17, 11]. Song, Roh and Jun, in [18] introduced the
notion of quasi-valuation maps based on a subalgebra and an ideal in
BCK/BCI-algebras, and then we investigated several properties. They
provided relations between a quasi-valuation map based on a subalge-
bra and a quasi-valuation map based on an ideal. In a BCI-algebra,
they gave a condition for a quasi-valuation map based on an ideal to be
a quasi-valuation map based on a subalgebra, and found conditions for
a real-valued function on a BCK/BCI-algebra to be a quasi-valuation
map based on an ideal. Using the notion of a quasi-valuation map
based on an ideal, they constructed (pseudo) metric spaces, and shew
that the binary operation ⋆ in BCK-algebras is uniformly continuous.

In this paper, we introduce the notion of quasi-valuation maps such
as (S⊙, S→) S-quasi-valuation maps and F -quasi-valuation map based
on subhoops and filters and related properties of them are investigated.
Also, we study the relation between them and we prove that every
F -quasi-valuation map is an S-quasi-valuation map. Finally, by us-
ing the notion of F -quasi-valuation map, we induce a (pseudo) metric
space and prove that the operations “⊙”, “→” and “∧” in a hoop are
uniformly continuous.

2. Preliminaries

In this section, we introduced some definitions and results which will
be used in this paper.

By a hoop we mean an algebra (H,⊙,→, 1) in which (H,⊙, 1) is a
commutative monoid and, for all x, y, z ∈ H, the following assertions
are valid.

(H1) x → x = 1.
(H2) x⊙ (x → y) = y ⊙ (y → x).
(H3) x → (y → z) = (x⊙ y) → z.
We define a relation “≤” on a hoop H by

(∀x, y ∈ H)(x ≤ y ⇔ x → y = 1). (2.1)
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It is easy to see that (H,≤) is a poset. A hoop H is bounded if there
is an element 0 ∈ H such that 0 ≤ x for all x ∈ H. Let x0 = 1 and
xn = xn−1 ⊙ x for any n ∈ N. If H is a bounded hoop, then we define
a negation ” ′ ” on H by x′ = x → 0 for all x ∈ H. A nonempty subset
S of H is called a subhoop of H if it satisfies:

(∀x, y ∈ S)(x⊙ y ∈ S, x → y ∈ S). (2.2)

Note that every subhoop contains the element 1.

Proposition 2.1 ([8, 9]). Let (H,⊙,→, 1) be a hoop. For any x, y, z ∈
H, the following conditions hold:
(a1) (H,≤) is a meet-semilattice with x ∧ y = x⊙ (x → y).
(a2) x⊙ y ≤ z if and anly if x ≤ y → z.
(a3) x⊙ y ≤ x, y and xn ≤ x for any n ∈ N.
(a4) x ≤ y → x.
(a5) 1 → x = x and x → 1 = 1.
(a6) x⊙ (x → y) ≤ y and x⊙ y ≤ x ∧ y ≤ x → y.
(a7) x → y ≤ (y → z) → (x → z).
(a8) x ≤ y implies x⊙z ≤ y⊙z, z → x ≤ z → y and y → z ≤ x → z.
(a9) x → (y → z) = (x⊙ y) → z = y → (x → z).

A nonempty subset F of a hoop H is called a filter of H (see [8, 9])
if the following assertions are valid.

(∀x, y ∈ H)(x, y ∈ F ⇒ x⊙ y ∈ F ), (2.3)
(∀x, y ∈ H)(x ∈ F, x ≤ y ⇒ y ∈ F ). (2.4)

Note that the conditions (2.3) and (2.4) means that F is closed under
the operation ⊙ and F is upward closed, respectively.

Note. In what follows, let H denote a hoop unless otherwise speci-
fied.

3. Quasi-valuation maps based on subhoops and filters

In this section, we introduce the notion of quasi-valuation maps such
as (S⊙, S→) S-quasi-valuation maps and F -quasi-valuation map and
related properties of them are investigated. Also, we study the relation
between them and we prove that every F -quasi-valuation map is an
S-quasi-valuation map.

Definition 3.1. A real valued function λ of H is called
• an S⊙-quasi-valuation map of H if

(∀x, y ∈ H)(λ(x⊙ y) ≥ λ(x) + λ(y)), (3.1)
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• an S→-quasi-valuation map of H if
(∀x, y ∈ H)(λ(x → y) ≥ λ(x) + λ(y)). (3.2)

• an S-quasi-valuation map of H if it is an S⊙-quasi-valuation
map and an S→-quasi-valuation map of H.

Example 3.2. Let H = {0, a, b, 1} be a set with Cayley tables (Tables
1 and 2). Then (H, ⊙, →, 1) is a hoop (see [5]).

Table 1. Cayley table for the binary operation “⊙”

⊙ 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

Table 2. Cayley table for the binary operation “→”

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1

(1) Define a map λ on H as follows:

λ : H → R, x 7→


−2 if x = 0,
−4 if x = a,
−6 if x = b,
−7 if x = 1.

(3.3)

Then λ is an S⊙-quasi-valuation map of H. But it is not an S→-quasi-
valuation map of H since

λ(0 → 0) = λ(1) = −7 < −4 = λ(0) + λ(0).

(2) Define a map λ on H as follows:

λ : H → R, x 7→


−45 if x = 0,
−20 if x = a,
−20 if x = b,
−25 if x = 1.

(3.4)

Then λ is an S-quasi-valuation map of H.
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Example 3.3. Let H = {0, a, b, 1} be a set with Cayley tables (Tables
3 and 4). Then (H, ⊙, →, 1) is a hoop (see [5]). Define a map λ on

Table 3. Cayley table for the binary operation “⊙”

⊙ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

Table 4. Cayley table for the binary operation “→”

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

H as follows:

λ : H → R, x 7→


−5 if x = 0,
−2 if x = a,
−2 if x = b,
−1 if x = 1.

(3.5)

Then λ is an S→-quasi-valuation map of H. But it is not an S⊙-quasi-
valuation map of H since

λ(a⊙ a) = λ(0) = −5 < −4 = λ(a) + λ(a).

We know that any S⊙-quasi-valuation map (resp., S→-quasi-valuation
map and S-quasi-valuation map) is not order preserving in Example
3.2.

Proposition 3.4. Every S⊙-quasi-valuation map (resp., S→-quasi-
valuation map) λ of H safisfies:

(∀x ∈ H)(λ(x) ≤ 0). (3.6)

Proof. Let λ be an S→-quasi-valuation map of H. For any x ∈ H, we
have λ(1) = λ(x → 1) ≥ λ(x) + λ(1), and so λ(x) ≤ 0. If λ is an
S⊙-quasi-valuation map of H, then λ(0) = λ(x⊙ 0) ≥ λ(x) + λ(0) and
so λ(x) ≤ 0 for all x ∈ H. □
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Theorem 3.5. Let S be a subhoop of H. For any negative real numbers
k1 and k2 with k1 > k2, let λS be a real valued function on H defined
by

λS : H → R, x 7→
{

k1 if x ∈ S,
k2 otherwise.

(3.7)

Then λS is an S-quasi-valuation map of H.
Proof. Straightforward. □
Theorem 3.6. If λ : H → R is an S-quasi-valuation map of H, then
the set

Sλ := {x ∈ H | λ(x) = 0} (3.8)
is a subhoop of H.
Proof. Let x, y ∈ Sλ. Then λ(x) = 0 and λ(y) = 0. Thus λ(x ⊙ y) ≥
λ(x)+λ(y) = 0 and λ(x → y) ≥ λ(x)+λ(y) = 0. Since λ(x⊙y) ≤ 0 and
λ(x → y) ≤ 0 by Proposition 3.4, we have x⊙ y ∈ Sλ and x → y ∈ Sλ.
Therefore Sλ is a subhoop of H. □

The converse of Theorem 3.6 is not true in general as seen in the
following example.
Example 3.7. Let H = {0, a, b, 1} be the hoop as in Example 3.3. If
we define a map λ on H by

λ : H → R, x 7→

 −33 if x = 0,
−13 if x = a,

0 if x ∈ {b, 1},
(3.9)

then Sλ = {b, 1} is a subhoop of H. But λ is not an S-quasi-valuation
map of H since

λ(a⊙ a) = λ(0) = −33 < −26 = λ(a) + λ(a).

Definition 3.8. A real valued function λ of H is called an F -quasi-
valuation map of H if

λ(1) = 0, (3.10)
(∀x, y ∈ H)(λ(y) ≥ λ(x) + λ(x → y)). (3.11)

Example 3.9. Let H = {0, a, b, 1} be the hoop as in Example 3.3. If
we define a map λ on H by

λ : H → R, x 7→


−30 if x = 0,
−25 if x = a,
−20 if x = b,

0 if x = 1,

(3.12)
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It is routine to verify that λ is an F -quasi-valuation map of H.

Theorem 3.10. Every F -quasi-valuation map of H is an S-quasi-
valuation map of H.

Proof. Let λ be an F -quasi-valuation map of H. Then

0 = λ(1) = λ(x → (x → 1)) = λ(x → (x → (y → y)))

= λ(x → (y → (x → y))) ≤ λ(y → (x → y))− λ(x)

≤ λ(x → y)− λ(y)− λ(x),

and so λ(x → y) ≥ λ(x) + λ(y) for all x, y ∈ H. Hence λ is an
S→-quasi-valuation map of H. Also, we have

λ(a⊙ b) ≥ λ(b) + λ(b → (a⊙ b))

≥ λ(b) + λ(a) + λ(a → (b → (a⊙ b)))

= λ(b) + λ(a) + λ((a⊙ b) → (a⊙ b))

= λ(b) + λ(a) + λ(1) = λ(b) + λ(a)

for all a, b ∈ H. Hence λ is an S⊙-quasi-valuation map of H, and
therefore λ is an S-quasi-valuation map of H. □

In general, any S-quasi-valuation map of H is not an F -quasi-valuation
map as seen in Example 3.2(2). We provide conditions for an S-quasi-
valuation map to be an F -quasi-valuation map.

Theorem 3.11. Let λ be an S⊙-quasi-valuation map which satisfies
the condition (3.10). If λ is order preserving, then it is an F -quasi-
valuation map.

Proof. Let λ be an order preserving S⊙-quasi-valuation map of H which
satisfies the condition (3.10). Since x ⊙ (x → y) ≤ y for all x, y ∈ H,
we have

λ(y) ≥ λ(x⊙ (x → y)) ≥ λ(x) + λ(x → y)

for all x, y ∈ H. Hence λ is an F -quasi-valuation map of H. □

Corollary 3.12. Every order preserving S-quasi-valuation map satis-
fying the condition (3.10) is an F -quasi-valuation map.

The following example shows that any order preserving S→-quasi-
valuation map satisfying the condition (3.10) is not an F -quasi-valuation
map.
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Example 3.13. Consider the hoop H as in Example 3.3 and a map

λ : H → R, x 7→


−40 if x = 0,
−15 if x = a,
−10 if x = b,

0 if x = 1,

It is routine to verify that λ is an order preserving S→-quasi-valuation
map satisfying the condition (3.10). But it is not an F -quasi-valuation
map of H since

λ(0) = −40 < −30 = λ(a → 0) + λ(a).

Proposition 3.14. For any F -quasi-valuation map λ of H, we have
the following assertions.

(1) λ is order preserving.
(2) (∀x ∈ H)(λ(x) ≤ 0).
(3) (∀x, y, z ∈ H) (λ(x → z) ≥ λ(x → y) + λ(y → z)).
(4) (∀x, y, x ∈ H) (λ(x → (y → z)) ≥ λ((x → y) → z)).

Proof. (1) Let x, y ∈ H such that x ≤ y. Then x → y = 1, which
implies from (3.11) that

λ(y) ≥ λ(x) + λ(x → y) = λ(x) + λ(1) = λ(x) + 0 = λ(x).

(2) It is by Theorem 3.10 and Proposition 3.4.
(3) For any x, y, z ∈ H, we have

λ(x → y) ≤ λ((y → z) → (x → z)) ≤ λ(x → z)− λ(y → z)

by (a7), (1) and (3.11). Hence λ(x → z) ≥ λ(x → y) + λ(y → z) for
all x, y, z ∈ H.

(4) Since x ⊙ y ≤ x → y for all x, y ∈ H, it follows from (a8) and
(a9) that

(x → y) → z ≤ (x⊙ y) → z = x → (y → z)

for all x, y, z ∈ H. Therefore λ(x → (y → z)) ≥ λ((x → y) → z) for
all x, y, z ∈ H since λ is order preserving. □
Theorem 3.15. If λ : H → R is an F -quasi-valuation map of H, then
the set

Fλ := {x ∈ H | λ(x) = 0} (3.13)
is a filter of H.

Proof. Obviously 1 ∈ Fλ by (3.10). Let x, y ∈ H such that x ∈ Fλ and
x → y ∈ Fλ. Then λ(x) = 0 and λ(x → y) = 0. It follows from (3.11)
that λ(y) ≥ λ(x) + λ(x → y) = 0. By Theorem 3.10 and Proposition
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3.4, we get that λ(y) ≤ 0, and so λ(y) = 0. Hence, y ∈ Fλ. Therefore
Fλ is a filter of H. □

The following example shows that the converse of Theorem 3.15 is
not true in general.

Example 3.16. Let H = {0, a, b, c, 1} be a set with the Hasse diagram
(Figure 1) and Cayley tables (Tables 5 and 6).

Figure 1: Hasse diagram of (H,≤)

r
0
JJ 


ra rb

 JJ
rcr1

Table 5. Cayley table for the binary operation “⊙”

⊙ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

Table 6. Cayley table for the binary operation “→”

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Then (H, ⊙, →, 1) is a hoop (see [17]). Define a map λ on H as
follows:

λ : H → R, x 7→


−5 if x = 0,
−3 if x = a,
−1 if x = b,
0 if x ∈ {c, 1}.

(3.14)

Then Fλ = {c, 1} is a filter of H. Since λ(0) = −5 < −4 = λ(a)+λ(a →
0), λ is not an F -quasi-valuation map of H.
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Theorem 3.17. Let F be a filter of H. For any negative real number
k, let λF be a real valued function on H defined by

λF : H → R, x 7→
{

0 if x ∈ F,
k otherwise.

(3.15)

Then λF is an F -quasi-valuation map of H and FλF
= F .

Proof. It is clear that FλF
= F and λF (1) = 0. Let x, y ∈ H. If y ∈ F ,

then

λF (y) = 0 ≥ λF (x) + λF (x → y).

Assume that y /∈ F . Then x /∈ F or x → y /∈ F . If x ∈ F and x → y /∈
F (or x /∈ F and x → y ∈ F ), then λF (x) = 0 and λF (x → y) = k (or
λF (x) = k and λF (x → y) = 0). Hence

λF (y) = k = λF (x) + λF (x → y).

If x /∈ F and x → y /∈ F , then

λF (y) = k ≥ 2k = λF (x) + λF (x → y).

Therefore λF is an F -quasi-valuation map of H. □

Corollary 3.18. Let F be a filter of H. For any negative real number
k, let λF be a real valued function on H in (3.15). Then λF is an
S-quasi-valuation map of H.

Proposition 3.19. Every F -quasi-valuation map λ of H satisfies the
following assertion.

(∀x, y, z ∈ H)(z ≤ y → x ⇒ λ(x) ≥ λ(y) + λ(z)). (3.16)

Proof. Let x, y, z ∈ H be such that z ≤ y → x. Then z → (y → x) = 1.
Using (3.10) and (3.11), we have

λ(y → x) ≥ λ(z → (y → x)) + λ(z) = λ(1) + λ(z) = λ(z)

and so λ(x) ≥ λ(y → x) + λ(y) ≥ λ(y) + λ(z). □

Corollary 3.20. Every F -quasi-valuation map λ of H satisfies the
following assertion.

(∀x, y, z ∈ H)(z ⊙ y ≤ x ⇒ λ(x) ≥ λ(y) + λ(z)). (3.17)
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Proposition 3.21. Every F -quasi-valuation map λ of H satisfies the
following assertion.
(∀x, y ∈ H)(λ(x) + λ(y) ≤ λ(x⊙ y) ≤ min{λ(x)− λ(y), λ(y)− λ(x)}),

(3.18)
(∀x, y ∈ H)(λ(x) + λ(y) ≤ λ(x ∧ y) ≤ min{λ(x)− λ(y), λ(y)− λ(x)}),

(3.19)
(∀a, b, x, y ∈ H)(λ(x → y) + λ(a → b) ≤ λ((x ∧ a) → (y ∧ b)), (3.20)
(∀a, b, x, y ∈ H)(λ(x → y) + λ(a → b) ≤ λ((y → a) → (x → b)).

(3.21)

Proof. Let λ be an F -quasi-valuation map of H. Then λ is an S-quasi-
valuation map of H (see Theorem 3.10), and so λ(x)+λ(y) ≤ λ(x⊙ y)
for all x, y ∈ H. Since x⊙ (x⊙ y) ≤ y for all x, y ∈ H, it follows from
Proposition 3.14(1) that λ(x) + λ(x ⊙ y) ≤ λ(y). Thus λ(x ⊙ y) ≤
λ(y) − λ(x). By the similar way, λ(x ⊙ y) ≤ λ(x) − λ(y). Hence
λ(x⊙y) ≤ min{λ(y)−λ(x), λ(x)−λ(y)}, that is, (3.18) is valid. Since
x⊙ y ≤ x ∧ y for all x, y ∈ H, we have

λ(x) + λ(y) ≤ λ(x⊙ y) ≤ λ(x ∧ y).

Also, since x⊙(x∧y) ≤ x⊙y ≤ y, it follows that λ(x)+λ(x∧y) ≤ λ(y).
Thus λ(x∧y) ≤ λ(y)−λ(x). By the similar way, λ(y)+λ(x∧y) ≤ λ(x)
and so λ(x ∧ y) ≤ λ(x)− λ(y). Hence

λ(x ∧ y) ≤ min{λ(y)− λ(x), λ(x)− λ(y)}.
Therefore (3.19) is true. Note that x → y ≤ (x ∧ a) → (y ∧ a) and
a → b ≤ (y ∧ a) → (y ∧ b) for all x, y, a, b ∈ H. Using (1) and (3) in
Proposition 3.14, we get
λ(x → y) + λ(a → b) ≤ λ((x ∧ a) → (y ∧ a)) + λ((y ∧ a) → (y ∧ b))

≤ λ((x ∧ a) → (y ∧ b)).

Using (1) and (3) in Proposition 3.14 and (a7), we have
λ((y → a) → (x → b)) ≥ λ((y → a) → (x → a)) + λ((x → a) → (y → b))

≥ λ(x → y) + λ(a → b)

for all x, y, a, b ∈ H. □

We provide conditions for a real valued function on H to be an F -
quasi-valuation map of H.

Theorem 3.22. Let λ be a real valued function on H satisfying the
condition (3.10). If λ satisfies the condition (3.16), then it is an F -
quasi-valuation map of H.
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Proof. Since x ≤ (x → y) → y for all x, y ∈ H, it follows from (3.16)
that λ(y) ≥ λ(x → y) + λ(x) for all x, y ∈ H. Hence λ is an F -quasi-
valuation map of H. □
Corollary 3.23. Let λ be a real valued function on H satisfying the
condition (3.10). If λ satisfies the condition (3.16), then it is an S-
quasi-valuation map of H.
Corollary 3.24. Let λ be a real valued function on H satisfying the
condition (3.10). If λ satisfies the condition (3.17), then it is an F -
quasi-valuation map of H.
Proof. Since x ⊙ (x → y) ≤ y for all x, y ∈ H, it follows from (3.17)
that λ(y) ≥ λ(x → y) + λ(x) for all x, y ∈ H. Hence λ is an F -quasi-
valuation map of H. □
Corollary 3.25. Let λ be a real valued function on H satisfying the
condition (3.10). If λ satisfies the condition (3.17), then it is an S-
quasi-valuation map of H.
Theorem 3.26. Let λ be a real valued function on H satisfying the
condition (3.10). If λ satisfies the condition

(∀x, y, z ∈ H)(λ(x → y) ≥ λ(z → (x → (x → y))) + λ(z)), (3.22)
then λ is an F -quasi-valuation map of H.
Proof. If we take x = 1 and z = x in (3.22) and use (a5), then
λ(y) = λ(1 → y) ≥ λ(x → (1 → (1 → y))) + λ(x) = λ(x → y) + λ(x).

Therefore λ is an F -quasi-valuation map of H. □
Corollary 3.27. Let λ be a real valued function on H satisfying the
condition (3.10). If λ satisfies the condition (3.22), then λ is an S-
quasi-valuation map of H.
Proposition 3.28. Every F -quasi-valuation map λ of H satisfies the
condition

(∀x, y, z ∈ H)(λ(x → (x → z)) ≥ λ(x → y) + λ(x → (y → z))).
(3.23)

Proof. Let λ be an F -quasi-valuation map of H that satisfies (3.23).
Then λ is an S-quasi-valuation map of H (see Theorem 3.10). Since
(x → y)⊙ (x → (y → z)) = (x → y)⊙ (y → (x → z)) ≤ x → (x → z)

for all x, y, z ∈ H, it follows that
λ(x → (x → z)) ≥ λ((x → y)⊙ (x → (y → z)))

≥ λ(x → y) + λ(x → (y → z))
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for all x, y, z ∈ H. □
Theorem 3.29. If a real valued function λ on H satisfies the conditions
(3.10) and (3.23), then λ is an F -quasi-valuation map of H.

Proof. If we take x = 1 in (3.23) and use (a5), then
λ(z) = λ(1 → (1 → z)) ≥ λ(1 → y) + λ(1 → (y → z)) = λ(y) + λ(y → z)

for all y, z ∈ H. Hence λ is an F -quasi-valuation map of H. □
Corollary 3.30. If a real valued function λ on H satisfies the condi-
tions (3.10) and (3.23), then λ is an S-quasi-valuation map of H.

Theorem 3.31. If a real valued function λ on H satisfies the conditions
(3.10) and

(∀x, y, z ∈ H)(λ(x) ≥ λ(z → ((x → y) → x)) + λ(z)), (3.24)
then λ is an F -quasi-valuation map of H.

Proof. If we take y = 1 in (3.24) and use (a5), then
λ(x) ≥ λ(z → ((x → 1) → x)) + λ(z) = λ(z → x) + λ(z)

for all x, z ∈ H. Therefore λ is an F -quasi-valuation map of H. □
Corollary 3.32. If a real valued function λ on H satisfies the condi-
tions (3.10) and (3.24), then λ is an S-quasi-valuation map of H.

The following example shows that there is an F -quasi-valuation map
λ of H which does not satisfy the condition (3.24).
Example 3.33. Let λ be the F -quasi-valuation map of H as in Ex-
ample 3.9. Then we have
0 = λ(1)+λ(1 → ((b → a) → b)) = λ((b → a) → b)) = λ(a → b) ≰ λ(b) = −20

Given a real valued function λ on H, consider the following mapping
dλ : H ×H → R, (x, y) 7→ −(λ(x → y) + λ(y → x)). (3.25)

Lemma 3.34. If a real-valued function λ on H is an F -quasi-valuation
map of H, then dλ is a pseudo-metric 1 on H, and so (H, dλ) is a
pseudo-metric space.

We say that dλ is the pseudo-metric introduced by an F -quasi-
valuation map λ of H.

1By a pseudo-metric on H, we mean a real-valued function d : H × H → R
satisfying the following properties: d(x, y) ≥ 0, d(x, x) = 0, d(x, y) = d(y, x) and
d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ H.
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Proof. If λ is an F -quasi-valuation map of H, then λ is an S-quasi-
valuation map of H and so λ(x) ≤ 0 for all x ∈ H by Proposition 3.4.
Thus dλ(x, y) ≥ 0 for all x, y ∈ H. It is clear that dλ(x, x) = 0 and
dλ(x, y) = dλ(y, x) for all x, y ∈ H. Using (3) in Proposition 3.14, we
get
dλ(x, y) + dλ(y, z) = −(λ(x → y) + λ(y → x))− (λ(y → z) + λ(z → y))

= −(λ(x → y) + λ(y → z))− (λ(z → y) + λ(y → x))

≥ −(λ(x → z) + λ(z → x)) = dλ(x, z).

Hence (H, dλ) is a pseudo-metric space. □
Theorem 3.35. If an F -quasi-valuation map λ of H satisfies the fol-
lowing condition

(∀x ∈ H)(λ(x) = 0 ⇒ x = 1), (3.26)
then (H, dλ) is a metric space.
Proof. Let λ be an F -quasi-valuation map of H satisfying (3.26). Then
(H, dλ) is a pseudo-metric space (see Lemma 3.34). Suppose that
dλ(x, y) = 0 for all x, y ∈ H. Then 0 = dλ(x, y) = −(λ(x → y)+λ(y →
x)), and so λ(x → y) = 0 = λ(y → x). It follows from (3.26) that
x → y = 1 = y → x. Hence x = y, and therefore (H, dλ) is a metric
space. □
Proposition 3.36. If λ is an F -quasi-valuation map of H, then, for
all a, b, x, y ∈ H, the pseudo-metric dλ introduced by λ satisfies the
following assertions.

(1) dλ(x, y) ≥ dλ(a → x, a → y).
(2) dλ(x, y) ≥ dλ(x → a, y → a).
(3) dλ(x → y, a → b) ≤ dλ(x → y, a → y) + dλ(a → y, a → b).
(4) dλ(x, y) ≥ dλ(a⊙ x, a⊙ y).
(5) dλ(x⊙ y, a⊙ b) ≤ dλ(x⊙ y, a⊙ y) + dλ(a⊙ y, a⊙ b).

Proof. Let λ be an F -quasi-valuation map of H and a, b, x, y ∈ H.
Since
(x → y) ≤ (a → x) → (a → y) and (y → x) ≤ (a → y) → (a → x),

it follows from Proposition 3.14(1) that
λ(x → y) ≤ λ((a → x) → (a → y)) and λ(y → x) ≤ λ((a → y) → (a → x)).
Hence

dλ(x, y) = −(λ(x → y) + λ(y → x))

≥ −(λ((a → x) → (a → y)) + λ((a → y) → (a → x)))

= dλ(a → x, a → y),
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which proves (1). Similarly, we can prove the second condition. Using
Proposition 3.14(3), we have

λ((x → y) → (a → b)) ≥ λ((x → y) → (a → y)) + λ((a → y) → (a → b)),

λ((a → b) → (x → y)) ≥ λ((a → b) → (a → y)) + λ((a → y) → (x → y))

for all a, b, x, y ∈ H. Hence

dλ(x → y, a → b) = −(λ((x → y) → (a → b)) + λ((a → b) → (x → y)))

≤ −((λ((x → y) → (a → y)) + λ((a → y) → (a → b)))

+ λ((a → b) → (a → y)) + λ((a → y) → (x → y)))

= dλ(x → y, a → y) + dλ(a → y, a → b)

for all a, b, x, y ∈ H, which proves (3). Since x → y ≤ (a⊙ x) → (a⊙ y) and
y → x ≤ (a⊙ y) → (a⊙ x) for all a, x, y ∈ H, it follows that

λ(x → y) ≤ λ((a⊙ x) → (a⊙ y)) and λ(y → x) ≤ λ((a⊙ y) → (a⊙ x)).

Thus

dλ(x, y) = −(λ(x → y) + λ(y → x))

≥ −(λ((a⊙ x) → (a⊙ y)) + λ((a⊙ y) → (a⊙ x)))

= dλ(a⊙ x, a⊙ y)

for all a, x, y ∈ H. This proves (4). Note that

((x⊙ y) → (a⊙ y))⊙ ((a⊙ y) → (a⊙ b)) ≤ (x⊙ y) → (a⊙ b),

for all a, b, x, y ∈ H. Thus

λ((x⊙ y) → (a⊙ b)) ≥ λ(((x⊙ y) → (a⊙ y))⊙ ((a⊙ y) → (a⊙ b)))

≥ λ((x⊙ y) → (a⊙ y)) + λ((a⊙ y) → (a⊙ b)).

Similarly, λ((a⊙b) → (x⊙y)) ≥ λ((a⊙b) → (a⊙y))+λ((a⊙y) → (x⊙y)).
It follows that

dλ(x⊙ y, a⊙ b) = −(λ((x⊙ y) → (a⊙ b)) + λ((a⊙ b) → (x⊙ y)))

≤ −(λ((x⊙ y) → (a⊙ y)) + λ((a⊙ y) → (a⊙ b))

+ λ((a⊙ b) → (a⊙ y)) + λ((a⊙ y) → (x⊙ y)))

= dλ(x⊙ y, a⊙ y) + dλ(a⊙ y, a⊙ b)

which proves (5). □

Let (H1, ⊙1, →1, 11) and (H2, ⊙2, →2, 12) be hoops. Define binary
operations ⊙ and → on H1 ×H2 by

(∀(x, y), (a, b) ∈ H1 ×H2)

(
(x, y)⊙ (a, b) = (x⊙1 a, y ⊙2 b)

(x, y) → (a, b) = (x →1 a, y →2 b)

)
. (3.27)

Then (H1 ×H2, ⊙, →, (11, 12)) is a hoop (see [10]).
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Lemma 3.37. Let dλ be the pseudo-metric introduced by an F -quasi-valuation
map λ of H. Then (H, d∗λ) is a pseudo-metric space, where H := H × H
and

d∗λ : H×H → R, ((x, y), (a, b)) 7→ max{dλ(x, a), dλ(y, b)}. (3.28)
Proof. Let (x, y), (a, b), (u, v) ∈ H ×H. It is clear that d∗λ((x, y), (a, b)) ≥ 0,
and we get

d∗λ((x, y), (x, y)) = max{dλ(x, x), dλ(y, y)} = 0,

d∗λ((x, y), (a, b)) = max{dλ(x, a), dλ(y, b)}
= max{dλ(a, x), dλ(b, y)}
= d∗λ((a, b), (x, y)).

and
d∗λ((x, y), (u, v)) + d∗λ((u, v), (a, b))

= max{dλ(x, u), dλ(y, v)}+max{dλ(u, a), dλ(v, b)}
≥ max{dλ(x, u) + dλ(u, a), dλ(y, v) + dλ(v, b)}
≥ max{dλ(x, a) + dλ(y, b)} = d∗λ((x, y), (a, b)).

Therefore (H, d∗λ) is a pseudo-metric space. □
Theorem 3.38. Let λ be an F -quasi-valuation map of H. If λ satisfies the
condition (3.26), then (H, d∗λ) is a metric space.
Proof. Let λ be an F -quasi-valuation map of H satisfying the condition
(3.26). Then dλ is a pseudo-metric on H (see Lemma 3.34), and so (H, d∗λ) is
a pseudo-metric space (see Lemma 3.37). Assume that d∗λ((x, y), (a, b)) = 0
for all (x, y), (a, b) ∈ H ×H. Then

0 = d∗λ((x, y), (a, b)) = max{dλ(x, a), dλ(y, b)},
and thus 0 = dλ(x, a) = −(λ(x → a) + λ(a → x)) and 0 = dλ(y, b) =
−(λ(y → b) + λ(b → y)). Hence λ(x → a) = 0 = λ(a → x) and λ(y →
b) = 0 = λ(b → y). It follows from (3.26) that x → a = 1, a → x = 1,
y → b = 1 and b → y = 1. Thus (x, y) = (a, b), and therefore (H, d∗λ) is a
metric space. □
Theorem 3.39. If an F -quasi-valuation map λ of H satisfies the condi-
tion (3.26), then the operations “→”, “⊙” and “∧” in H are uniformly
continuous.
Proof. For any a, b, x, y ∈ H and ε > 0, let d∗λ((x, y), (a, b)) < ε

2 . Then
dλ(x, a) <

ε
2 and dλ(y, b) <

ε
2 . It follows from Proposition 3.36 that

dλ(x → y, a → b) ≤ dλ(x → y, a → y) + dλ(a → y, a → b)

≤ dλ(x, a) + dλ(y, b)

< ε
2 + ε

2

= ε.
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Therefore the operation “→” in H is uniformly continuous. By Proposition
3.36, the proof of other cases is similar. □

Theorem 3.39 is illustrated in the following example.

Example 3.40. The F -quasi-valuation map λ of H in Example 3.9 satisfies
the condition (3.26), and so (H, dλ) is a metric space by Theorem 3.35 where
dλ is obtained by (3.25) and it is given by Table 7.

Table 7. Tabular representation of “dλ”

H ×H (0, 0) (0, a) (0, b) (0, 1) (a, a) (a, b) (a, 1) (b, b) (b, 1) (1, 1)

dλ(x, y) 0 25 30 30 0 25 25 0 20 0

Also, (H, d∗λ) is a metric space by Theorem 3.38 where d∗λ is obtained by
(3.28), for example,

d∗λ((a, b), (1, a)) = max{dλ(a, 1), dλ(b, a)} = max{25, 25} = 25,

d∗λ((b, 1), (0, b)) = max{dλ(b, 0), dλ(1, b)} = max{30, 20} = 30,

and so on. It is routine to check that the operations “→”, “⊙” and “∧” in
H are uniformly continuous.

4. Conclusions

In this paper, we have introduced the notion of quasi-valuation maps such
as S⊙-, S→-, S- and F -quasi-valuation map based on sub-hoop and filter.
We have investigated several properties, and we have discussed relations be-
tween S-quasi-valuation map and F -quasi-valuation map. Using the notion
of F -quasi-valuation map, we have introduced a (pseudo) metric space and
have shown that the operations “→”, “⊙” and “∧” in a hoop are uniformly
continuous.
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شبه-ارزشی نگاشت های با هوپ ها

جون۴ بای یانگ و برزویی٣ رجبعلی رضایی٢، غلام رضا کلوگانی١، عالی مونا
ایران زاهدان، هاتف، عالی آموزش ١موسسه

ایران زاهدان، بلوچستان، و سیستان دانشگاه ریاضی، ٢دانشکده

ایران تهران، بهشتی، شهید دانشگاه ریاضی، ٣,۴دانشکده

جنوبی کره گیونگسانگ، ملی دانشگاه ریاضیات، آموزش ۴گروه

F و ارزشی -شبه S نگاشت های مفهوم هوپ ها، روی فیلترها و زیرجبرها مفهوم از استفاده با
رابطه ی همچنین، گرفته اند. قرار بررسی مورد آن ها به مربوط ویژگی های و شده معرفی ارزشی -شبه
مفهوم از استفاده با گرفته است. قرار بررسی مورد ارزشی -شبه F و ارزشی -شبه S نگاشت های بین
عمل های که دادیم نشان ما و شده معرفی هوپ ها روی متریک فضای یک ارزشی -شبه F نگاشت های

هستند. پیوسته یکنواخت صورت به ∧ و → ،⊙

متریک. فضای فیلتر، شبه-ارزشی، نگاشت هوپ، کلیدی: کلمات
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