Journal of Algebraic Systems

Vol. 8, No. 2, (2021), pp 251-268

HOOPS WITH QUASI-VALUATION MAPS

M. AALY KOLOGANI, G. R. REZAEI, R. A. BORZOOEI* AND Y. B. JUN

Abstract

Based on subalgebras and filters in hoops, the notions of S-quasi-valuation maps and F-quasi-valuation maps are introduced, and related properties are investigated. Relations between S-quasi-valuation maps and F-quasi-valuation maps are discussed. Using F-quasi-valuation map, a (pseudo) metric space is introduced, and we show that the operations " \odot ", " \rightarrow " and " \wedge " in a hoop are uniformly continuous.

1. Introduction

Non-classical logic has become a considerable formal tool for computer science and artificial intelligence to deal with fuzzy information and uncertainty information. Many-valued logic, a great extension and development of classical logic, has always been a crucial direction in non-classical logic. In order to research the many-valued logical system whose propositional value is given in a lattice, Bosbach in $[8,9]$, proposed the concept of hoops, and discussed their some properties. Hoops are naturally ordered commutative residuated integral monoids. In the last years, hoops theory was enriched with deep structure theorems (See $[2,8,9]$). Many of these results have a strong impact with fuzzy logic. Particularly, from the structure theorem of finite basic hoops (See [2, Corollary 2.10]) one obtains an elegant short proof of

[^0]the completeness theorem for propositional basic logic (See [2, Theorem 3.8]), introduced by Hájek in [12]. The algebraic structures corresponding to Hájek's propositional (fuzzy) basic logic, BL-algebras, are particular cases of hoops. The main example of BL-algebras is interval $[0,1]$ endowed with the structure introduced by a t-norm. MValgebras, product algebras and Gödel algebras are the most known classes of BL-algebras. Recent investigations are concerned with noncommutative generalizations for these structures. During these years, many researchers study on hoops in different way, and got some results on hoops $[1,3,12,14,17,11]$. Song, Roh and Jun, in [18] introduced the notion of quasi-valuation maps based on a subalgebra and an ideal in BCK/BCI-algebras, and then we investigated several properties. They provided relations between a quasi-valuation map based on a subalgebra and a quasi-valuation map based on an ideal. In a BCI-algebra, they gave a condition for a quasi-valuation map based on an ideal to be a quasi-valuation map based on a subalgebra, and found conditions for a real-valued function on a BCK/BCI-algebra to be a quasi-valuation map based on an ideal. Using the notion of a quasi-valuation map based on an ideal, they constructed (pseudo) metric spaces, and shew that the binary operation \star in BCK-algebras is uniformly continuous.

In this paper, we introduce the notion of quasi-valuation maps such as $\left(S_{\odot}, S_{\rightarrow}\right)$ S-quasi-valuation maps and F-quasi-valuation map based on subhoops and filters and related properties of them are investigated. Also, we study the relation between them and we prove that every F-quasi-valuation map is an S-quasi-valuation map. Finally, by using the notion of F-quasi-valuation map, we induce a (pseudo) metric space and prove that the operations " \odot ", " \rightarrow " and " \wedge " in a hoop are uniformly continuous.

2. Preliminaries

In this section, we introduced some definitions and results which will be used in this paper.

By a hoop we mean an algebra $(H, \odot, \rightarrow, 1)$ in which $(H, \odot, 1)$ is a commutative monoid and, for all $x, y, z \in H$, the following assertions are valid.
(H1) $x \rightarrow x=1$.
(H2) $x \odot(x \rightarrow y)=y \odot(y \rightarrow x)$.
(H3) $x \rightarrow(y \rightarrow z)=(x \odot y) \rightarrow z$.
We define a relation " \leq " on a hoop H by

$$
\begin{equation*}
(\forall x, y \in H)(x \leq y \Leftrightarrow x \rightarrow y=1) \tag{2.1}
\end{equation*}
$$

It is easy to see that (H, \leq) is a poset. A hoop H is bounded if there is an element $0 \in H$ such that $0 \leq x$ for all $x \in H$. Let $x^{0}=1$ and $x^{n}=x^{n-1} \odot x$ for any $n \in \mathbb{N}$. If H is a bounded hoop, then we define a negation "'" on H by $x^{\prime}=x \rightarrow 0$ for all $x \in H$. A nonempty subset S of H is called a subhoop of H if it satisfies:

$$
\begin{equation*}
(\forall x, y \in S)(x \odot y \in S, x \rightarrow y \in S) \tag{2.2}
\end{equation*}
$$

Note that every subhoop contains the element 1.
Proposition $2.1([8,9])$. Let $(H, \odot, \rightarrow, 1)$ be a hoop. For any $x, y, z \in$ H, the following conditions hold:
(a1) (H, \leq) is a meet-semilattice with $x \wedge y=x \odot(x \rightarrow y)$.
(a2) $x \odot y \leq z$ if and anly if $x \leq y \rightarrow z$.
(a3) $x \odot y \leq x, y$ and $x^{n} \leq x$ for any $n \in \mathbb{N}$.
(a4) $x \leq y \rightarrow x$.
(a5) $1 \rightarrow x=x$ and $x \rightarrow 1=1$.
(a6) $x \odot(x \rightarrow y) \leq y$ and $x \odot y \leq x \wedge y \leq x \rightarrow y$.
(a7) $x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z)$.
(a8) $x \leq y$ implies $x \odot z \leq y \odot z, z \rightarrow x \leq z \rightarrow y$ and $y \rightarrow z \leq x \rightarrow z$.
(a9) $x \rightarrow(y \rightarrow z)=(x \odot y) \rightarrow z=y \rightarrow(x \rightarrow z)$.
A nonempty subset F of a hoop H is called a filter of H (see $[8,9]$) if the following assertions are valid.

$$
\begin{align*}
& (\forall x, y \in H)(x, y \in F \Rightarrow x \odot y \in F) \tag{2.3}\\
& (\forall x, y \in H)(x \in F, x \leq y \Rightarrow y \in F) \tag{2.4}
\end{align*}
$$

Note that the conditions (2.3) and (2.4) means that F is closed under the operation \odot and F is upward closed, respectively.

Note. In what follows, let H denote a hoop unless otherwise specified.

3. Quasi-valuation maps based on subhoops and filters

In this section, we introduce the notion of quasi-valuation maps such as $\left(S_{\odot}, S_{\rightarrow}\right)$ S-quasi-valuation maps and F-quasi-valuation map and related properties of them are investigated. Also, we study the relation between them and we prove that every F-quasi-valuation map is an S-quasi-valuation map.

Definition 3.1. A real valued function λ of H is called

- an S_{\odot}-quasi-valuation map of H if

$$
\begin{equation*}
(\forall x, y \in H)(\lambda(x \odot y) \geq \lambda(x)+\lambda(y)) \tag{3.1}
\end{equation*}
$$

- an $S_{\rightarrow-q u a s i-v a l u a t i o n ~ m a p ~ o f ~} H$ if

$$
\begin{equation*}
(\forall x, y \in H)(\lambda(x \rightarrow y) \geq \lambda(x)+\lambda(y)) \tag{3.2}
\end{equation*}
$$

- an S-quasi-valuation map of H if it is an S_{\odot}-quasi-valuation

Example 3.2. Let $H=\{0, a, b, 1\}$ be a set with Cayley tables (Tables 1 and 2). Then $(H, \odot, \rightarrow, 1)$ is a hoop (see [5]).

Table 1. Cayley table for the binary operation " \odot "

\odot	0	a	b	1
0	0	0	0	0
a	0	a	a	a
b	0	a	b	b
1	0	a	b	1

Table 2. Cayley table for the binary operation " \rightarrow "

\rightarrow	0	a	b	1
0	1	1	1	1
a	0	1	1	1
b	0	a	1	1
1	0	a	b	1

(1) Define a map λ on H as follows:

$$
\lambda: H \rightarrow \mathbb{R}, x \mapsto \begin{cases}-2 & \text { if } x=0 \tag{3.3}\\ -4 & \text { if } x=a \\ -6 & \text { if } x=b \\ -7 & \text { if } x=1\end{cases}
$$

Then λ is an S_{\odot}-quasi-valuation map of H. But it is not an $S_{\rightarrow-\text {-quasi- }}$ valuation map of H since

$$
\lambda(0 \rightarrow 0)=\lambda(1)=-7<-4=\lambda(0)+\lambda(0) .
$$

(2) Define a map λ on H as follows:

$$
\lambda: H \rightarrow \mathbb{R}, x \mapsto \begin{cases}-45 & \text { if } x=0 \tag{3.4}\\ -20 & \text { if } x=a \\ -20 & \text { if } x=b \\ -25 & \text { if } x=1\end{cases}
$$

Then λ is an S-quasi-valuation map of H.

Example 3.3. Let $H=\{0, a, b, 1\}$ be a set with Cayley tables (Tables 3 and 4). Then $(H, \odot, \rightarrow, 1)$ is a hoop (see [5]). Define a map λ on

Table 3. Cayley table for the binary operation " \odot "

\odot	0	a	b	1
0	0	0	0	0
a	0	0	a	a
b	0	a	b	b
1	0	a	b	1

TABLE 4. Cayley table for the binary operation " \rightarrow "

\rightarrow	0	a	b	1
0	1	1	1	1
a	a	1	1	1
b	0	a	1	1
1	0	a	b	1

H as follows:

$$
\lambda: H \rightarrow \mathbb{R}, x \mapsto \begin{cases}-5 & \text { if } x=0 \tag{3.5}\\ -2 & \text { if } x=a \\ -2 & \text { if } x=b \\ -1 & \text { if } x=1\end{cases}
$$

 valuation map of H since

$$
\lambda(a \odot a)=\lambda(0)=-5<-4=\lambda(a)+\lambda(a) .
$$

We know that any S_{\odot}-quasi-valuation map (resp., $S_{\rightarrow-\text {-quasi-valuation }}$ map and S-quasi-valuation map) is not order preserving in Example 3.2.

Proposition 3.4. Every S_{\odot}-quasi-valuation map (resp., $S_{\rightarrow-q u a s i-}$ valuation map) λ of H safisfies:

$$
\begin{equation*}
(\forall x \in H)(\lambda(x) \leq 0) \tag{3.6}
\end{equation*}
$$

Proof. Let λ be an $S_{\rightarrow-\text {-quasi-valuation map of } H \text {. For any } x \in H \text {, we }}$ have $\lambda(1)=\lambda(x \rightarrow 1) \geq \lambda(x)+\lambda(1)$, and so $\lambda(x) \leq 0$. If λ is an S_{\odot}-quasi-valuation map of H, then $\lambda(0)=\lambda(x \odot 0) \geq \lambda(x)+\lambda(0)$ and so $\lambda(x) \leq 0$ for all $x \in H$.

Theorem 3.5. Let S be a subhoop of H. For any negative real numbers k_{1} and k_{2} with $k_{1}>k_{2}$, let λ_{S} be a real valued function on H defined by

$$
\lambda_{S}: H \rightarrow \mathbb{R}, x \mapsto \begin{cases}k_{1} & \text { if } x \in S \tag{3.7}\\ k_{2} & \text { otherwise }\end{cases}
$$

Then λ_{S} is an S-quasi-valuation map of H.
Proof. Straightforward.
Theorem 3.6. If $\lambda: H \rightarrow \mathbb{R}$ is an S-quasi-valuation map of H, then the set

$$
\begin{equation*}
S_{\lambda}:=\{x \in H \mid \lambda(x)=0\} \tag{3.8}
\end{equation*}
$$

is a subhoop of H.
Proof. Let $x, y \in S_{\lambda}$. Then $\lambda(x)=0$ and $\lambda(y)=0$. Thus $\lambda(x \odot y) \geq$ $\lambda(x)+\lambda(y)=0$ and $\lambda(x \rightarrow y) \geq \lambda(x)+\lambda(y)=0$. Since $\lambda(x \odot y) \leq 0$ and $\lambda(x \rightarrow y) \leq 0$ by Proposition 3.4, we have $x \odot y \in S_{\lambda}$ and $x \rightarrow y \in S_{\lambda}$. Therefore S_{λ} is a subhoop of H.

The converse of Theorem 3.6 is not true in general as seen in the following example.
Example 3.7. Let $H=\{0, a, b, 1\}$ be the hoop as in Example 3.3. If we define a map λ on H by

$$
\lambda: H \rightarrow \mathbb{R}, x \mapsto\left\{\begin{align*}
-33 & \text { if } x=0 \tag{3.9}\\
-13 & \text { if } x=a \\
0 & \text { if } x \in\{b, 1\}
\end{align*}\right.
$$

then $S_{\lambda}=\{b, 1\}$ is a subhoop of H. But λ is not an S-quasi-valuation map of H since

$$
\lambda(a \odot a)=\lambda(0)=-33<-26=\lambda(a)+\lambda(a) .
$$

Definition 3.8. A real valued function λ of H is called an F-quasivaluation map of H if

$$
\begin{align*}
& \lambda(1)=0 \tag{3.10}\\
& (\forall x, y \in H)(\lambda(y) \geq \lambda(x)+\lambda(x \rightarrow y)) \tag{3.11}
\end{align*}
$$

Example 3.9. Let $H=\{0, a, b, 1\}$ be the hoop as in Example 3.3. If we define a map λ on H by

$$
\lambda: H \rightarrow \mathbb{R}, x \mapsto\left\{\begin{align*}
-30 & \text { if } x=0 \tag{3.12}\\
-25 & \text { if } x=a \\
-20 & \text { if } x=b \\
0 & \text { if } x=1
\end{align*}\right.
$$

It is routine to verify that λ is an F-quasi-valuation map of H.
Theorem 3.10. Every F-quasi-valuation map of H is an S-quasivaluation map of H.

Proof. Let λ be an F-quasi-valuation map of H. Then

$$
\begin{aligned}
0 & =\lambda(1)=\lambda(x \rightarrow(x \rightarrow 1))=\lambda(x \rightarrow(x \rightarrow(y \rightarrow y))) \\
& =\lambda(x \rightarrow(y \rightarrow(x \rightarrow y))) \leq \lambda(y \rightarrow(x \rightarrow y))-\lambda(x) \\
& \leq \lambda(x \rightarrow y)-\lambda(y)-\lambda(x),
\end{aligned}
$$

and so $\lambda(x \rightarrow y) \geq \lambda(x)+\lambda(y)$ for all $x, y \in H$. Hence λ is an $S_{\rightarrow-\text { quasi-valuation map of } H \text {. Also, we have }}$

$$
\begin{aligned}
\lambda(a \odot b) & \geq \lambda(b)+\lambda(b \rightarrow(a \odot b)) \\
& \geq \lambda(b)+\lambda(a)+\lambda(a \rightarrow(b \rightarrow(a \odot b))) \\
& =\lambda(b)+\lambda(a)+\lambda((a \odot b) \rightarrow(a \odot b)) \\
& =\lambda(b)+\lambda(a)+\lambda(1)=\lambda(b)+\lambda(a)
\end{aligned}
$$

for all $a, b \in H$. Hence λ is an S_{\odot}-quasi-valuation map of H, and therefore λ is an S-quasi-valuation map of H.

In general, any S-quasi-valuation map of H is not an F-quasi-valuation map as seen in Example 3.2(2). We provide conditions for an S-quasivaluation map to be an F-quasi-valuation map.

Theorem 3.11. Let λ be an S_{\odot}-quasi-valuation map which satisfies the condition (3.10). If λ is order preserving, then it is an F-quasivaluation map.

Proof. Let λ be an order preserving S_{\odot}-quasi-valuation map of H which satisfies the condition (3.10). Since $x \odot(x \rightarrow y) \leq y$ for all $x, y \in H$, we have

$$
\lambda(y) \geq \lambda(x \odot(x \rightarrow y)) \geq \lambda(x)+\lambda(x \rightarrow y)
$$

for all $x, y \in H$. Hence λ is an F-quasi-valuation map of H.
Corollary 3.12. Every order preserving S-quasi-valuation map satisfying the condition (3.10) is an F-quasi-valuation map.

The following example shows that any order preserving $S_{\rightarrow \text {-quasi- }}$ valuation map satisfying the condition (3.10) is not an F-quasi-valuation map.

Example 3.13. Consider the hoop H as in Example 3.3 and a map

$$
\lambda: H \rightarrow \mathbb{R}, x \mapsto\left\{\begin{aligned}
-40 & \text { if } x=0 \\
-15 & \text { if } x=a \\
-10 & \text { if } x=b, \\
0 & \text { if } x=1,
\end{aligned}\right.
$$

It is routine to verify that λ is an order preserving $S_{\rightarrow-\text { quasi-valuation }}$ map satisfying the condition (3.10). But it is not an F-quasi-valuation map of H since

$$
\lambda(0)=-40<-30=\lambda(a \rightarrow 0)+\lambda(a) .
$$

Proposition 3.14. For any F-quasi-valuation map λ of H, we have the following assertions.
(1) λ is order preserving.
(2) $(\forall x \in H)(\lambda(x) \leq 0)$.
(3) $(\forall x, y, z \in H)(\lambda(x \rightarrow z) \geq \lambda(x \rightarrow y)+\lambda(y \rightarrow z))$.
(4) $(\forall x, y, x \in H)(\lambda(x \rightarrow(y \rightarrow z)) \geq \lambda((x \rightarrow y) \rightarrow z))$.

Proof. (1) Let $x, y \in H$ such that $x \leq y$. Then $x \rightarrow y=1$, which implies from (3.11) that

$$
\lambda(y) \geq \lambda(x)+\lambda(x \rightarrow y)=\lambda(x)+\lambda(1)=\lambda(x)+0=\lambda(x) .
$$

(2) It is by Theorem 3.10 and Proposition 3.4.
(3) For any $x, y, z \in H$, we have

$$
\lambda(x \rightarrow y) \leq \lambda((y \rightarrow z) \rightarrow(x \rightarrow z)) \leq \lambda(x \rightarrow z)-\lambda(y \rightarrow z)
$$

by (a7), (1) and (3.11). Hence $\lambda(x \rightarrow z) \geq \lambda(x \rightarrow y)+\lambda(y \rightarrow z)$ for all $x, y, z \in H$.
(4) Since $x \odot y \leq x \rightarrow y$ for all $x, y \in H$, it follows from (a8) and (a9) that

$$
(x \rightarrow y) \rightarrow z \leq(x \odot y) \rightarrow z=x \rightarrow(y \rightarrow z)
$$

for all $x, y, z \in H$. Therefore $\lambda(x \rightarrow(y \rightarrow z)) \geq \lambda((x \rightarrow y) \rightarrow z)$ for all $x, y, z \in H$ since λ is order preserving.

Theorem 3.15. If $\lambda: H \rightarrow \mathbb{R}$ is an F-quasi-valuation map of H, then the set

$$
\begin{equation*}
F_{\lambda}:=\{x \in H \mid \lambda(x)=0\} \tag{3.13}
\end{equation*}
$$

is a filter of H.
Proof. Obviously $1 \in F_{\lambda}$ by (3.10). Let $x, y \in H$ such that $x \in F_{\lambda}$ and $x \rightarrow y \in F_{\lambda}$. Then $\lambda(x)=0$ and $\lambda(x \rightarrow y)=0$. It follows from (3.11) that $\lambda(y) \geq \lambda(x)+\lambda(x \rightarrow y)=0$. By Theorem 3.10 and Proposition
3.4, we get that $\lambda(y) \leq 0$, and so $\lambda(y)=0$. Hence, $y \in F_{\lambda}$. Therefore F_{λ} is a filter of H.

The following example shows that the converse of Theorem 3.15 is not true in general.

Example 3.16. Let $H=\{0, a, b, c, 1\}$ be a set with the Hasse diagram (Figure 1) and Cayley tables (Tables 5 and 6).

Figure 1: Hasse diagram of (H, \leq)

TABLE 5. Cayley table for the binary operation " \odot "

\odot	0	a	b	c	1
0	0	0	0	0	0
a	0	a	0	a	a
b	0	0	b	b	b
c	0	a	b	c	c
1	0	a	b	c	1

Table 6. Cayley table for the binary operation " \rightarrow "

\rightarrow	0	a	b	c	1
0	1	1	1	1	1
a	b	1	b	1	1
b	a	a	1	1	1
c	0	a	b	1	1
1	0	a	b	c	1

Then $(H, \odot, \rightarrow, 1)$ is a hoop (see [17]). Define a map λ on H as follows:

$$
\lambda: H \rightarrow \mathbb{R}, x \mapsto\left\{\begin{align*}
-5 & \text { if } x=0 \tag{3.14}\\
-3 & \text { if } x=a \\
-1 & \text { if } x=b, \\
0 & \text { if } x \in\{c, 1\} .
\end{align*}\right.
$$

Then $F_{\lambda}=\{c, 1\}$ is a filter of H. Since $\lambda(0)=-5<-4=\lambda(a)+\lambda(a \rightarrow$ 0), λ is not an F-quasi-valuation map of H.

Theorem 3.17. Let F be a filter of H. For any negative real number k, let λ_{F} be a real valued function on H defined by

$$
\lambda_{F}: H \rightarrow \mathbb{R}, x \mapsto \begin{cases}0 & \text { if } x \in F \tag{3.15}\\ k & \text { otherwise }\end{cases}
$$

Then λ_{F} is an F-quasi-valuation map of H and $F_{\lambda_{F}}=F$.
Proof. It is clear that $F_{\lambda_{F}}=F$ and $\lambda_{F}(1)=0$. Let $x, y \in H$. If $y \in F$, then

$$
\lambda_{F}(y)=0 \geq \lambda_{F}(x)+\lambda_{F}(x \rightarrow y) .
$$

Assume that $y \notin F$. Then $x \notin F$ or $x \rightarrow y \notin F$. If $x \in F$ and $x \rightarrow y \notin$ F (or $x \notin F$ and $x \rightarrow y \in F$), then $\lambda_{F}(x)=0$ and $\lambda_{F}(x \rightarrow y)=k$ (or $\lambda_{F}(x)=k$ and $\left.\lambda_{F}(x \rightarrow y)=0\right)$. Hence

$$
\lambda_{F}(y)=k=\lambda_{F}(x)+\lambda_{F}(x \rightarrow y) .
$$

If $x \notin F$ and $x \rightarrow y \notin F$, then

$$
\lambda_{F}(y)=k \geq 2 k=\lambda_{F}(x)+\lambda_{F}(x \rightarrow y) .
$$

Therefore λ_{F} is an F-quasi-valuation map of H.
Corollary 3.18. Let F be a filter of H. For any negative real number k, let λ_{F} be a real valued function on H in (3.15). Then λ_{F} is an S-quasi-valuation map of H.

Proposition 3.19. Every F-quasi-valuation map λ of H satisfies the following assertion.

$$
\begin{equation*}
(\forall x, y, z \in H)(z \leq y \rightarrow x \Rightarrow \lambda(x) \geq \lambda(y)+\lambda(z)) \tag{3.16}
\end{equation*}
$$

Proof. Let $x, y, z \in H$ be such that $z \leq y \rightarrow x$. Then $z \rightarrow(y \rightarrow x)=1$. Using (3.10) and (3.11), we have

$$
\lambda(y \rightarrow x) \geq \lambda(z \rightarrow(y \rightarrow x))+\lambda(z)=\lambda(1)+\lambda(z)=\lambda(z)
$$

and so $\lambda(x) \geq \lambda(y \rightarrow x)+\lambda(y) \geq \lambda(y)+\lambda(z)$.
Corollary 3.20. Every F-quasi-valuation map λ of H satisfies the following assertion.

$$
\begin{equation*}
(\forall x, y, z \in H)(z \odot y \leq x \Rightarrow \lambda(x) \geq \lambda(y)+\lambda(z)) . \tag{3.17}
\end{equation*}
$$

Proposition 3.21. Every F-quasi-valuation map λ of H satisfies the following assertion.

$$
\begin{align*}
& (\forall x, y \in H)(\lambda(x)+\lambda(y) \leq \lambda(x \odot y) \leq \min \{\lambda(x)-\lambda(y), \lambda(y)-\lambda(x)\}) \tag{3.18}\\
& (\forall x, y \in H)(\lambda(x)+\lambda(y) \leq \lambda(x \wedge y) \leq \min \{\lambda(x)-\lambda(y), \lambda(y)-\underset{(3)}{\lambda(x)\})} \tag{3.19}\\
& (\forall a, b, x, y \in H)(\lambda(x \rightarrow y)+\lambda(a \rightarrow b) \leq \lambda((x \wedge a) \rightarrow(y \wedge b)), \\
& (\forall a, b, x, y \in H)(\lambda(x \rightarrow y)+\lambda(a \rightarrow b) \leq \lambda((y \rightarrow a) \rightarrow(x \rightarrow b)) \tag{3.21}
\end{align*}
$$

Proof. Let λ be an F-quasi-valuation map of H. Then λ is an S-quasivaluation map of H (see Theorem 3.10), and so $\lambda(x)+\lambda(y) \leq \lambda(x \odot y)$ for all $x, y \in H$. Since $x \odot(x \odot y) \leq y$ for all $x, y \in H$, it follows from Proposition 3.14(1) that $\lambda(x)+\lambda(x \odot y) \leq \lambda(y)$. Thus $\lambda(x \odot y) \leq$ $\lambda(y)-\lambda(x)$. By the similar way, $\lambda(x \odot y) \leq \lambda(x)-\lambda(y)$. Hence $\lambda(x \odot y) \leq \min \{\lambda(y)-\lambda(x), \lambda(x)-\lambda(y)\}$, that is, (3.18) is valid. Since $x \odot y \leq x \wedge y$ for all $x, y \in H$, we have

$$
\lambda(x)+\lambda(y) \leq \lambda(x \odot y) \leq \lambda(x \wedge y)
$$

Also, since $x \odot(x \wedge y) \leq x \odot y \leq y$, it follows that $\lambda(x)+\lambda(x \wedge y) \leq \lambda(y)$. Thus $\lambda(x \wedge y) \leq \lambda(y)-\lambda(x)$. By the similar way, $\lambda(y)+\lambda(x \wedge y) \leq \lambda(x)$ and so $\lambda(x \wedge y) \leq \lambda(x)-\lambda(y)$. Hence

$$
\lambda(x \wedge y) \leq \min \{\lambda(y)-\lambda(x), \lambda(x)-\lambda(y)\} .
$$

Therefore (3.19) is true. Note that $x \rightarrow y \leq(x \wedge a) \rightarrow(y \wedge a)$ and $a \rightarrow b \leq(y \wedge a) \rightarrow(y \wedge b)$ for all $x, y, a, b \in H$. Using (1) and (3) in Proposition 3.14, we get

$$
\begin{aligned}
\lambda(x \rightarrow y)+\lambda(a \rightarrow b) & \leq \lambda((x \wedge a) \rightarrow(y \wedge a))+\lambda((y \wedge a) \rightarrow(y \wedge b)) \\
& \leq \lambda((x \wedge a) \rightarrow(y \wedge b))
\end{aligned}
$$

Using (1) and (3) in Proposition 3.14 and (a7), we have

$$
\begin{aligned}
\lambda((y \rightarrow a) \rightarrow(x \rightarrow b)) & \geq \lambda((y \rightarrow a) \rightarrow(x \rightarrow a))+\lambda((x \rightarrow a) \rightarrow(y \rightarrow b)) \\
& \geq \lambda(x \rightarrow y)+\lambda(a \rightarrow b)
\end{aligned}
$$

for all $x, y, a, b \in H$.
We provide conditions for a real valued function on H to be an F -quasi-valuation map of H.

Theorem 3.22. Let λ be a real valued function on H satisfying the condition (3.10). If λ satisfies the condition (3.16), then it is an F -quasi-valuation map of H.

Proof. Since $x \leq(x \rightarrow y) \rightarrow y$ for all $x, y \in H$, it follows from (3.16) that $\lambda(y) \geq \lambda(x \rightarrow y)+\lambda(x)$ for all $x, y \in H$. Hence λ is an F-quasivaluation map of H.

Corollary 3.23. Let λ be a real valued function on H satisfying the condition (3.10). If λ satisfies the condition (3.16), then it is an S -quasi-valuation map of H.

Corollary 3.24. Let λ be a real valued function on H satisfying the condition (3.10). If λ satisfies the condition (3.17), then it is an F -quasi-valuation map of H.
Proof. Since $x \odot(x \rightarrow y) \leq y$ for all $x, y \in H$, it follows from (3.17) that $\lambda(y) \geq \lambda(x \rightarrow y)+\lambda(x)$ for all $x, y \in H$. Hence λ is an F-quasivaluation map of H.

Corollary 3.25. Let λ be a real valued function on H satisfying the condition (3.10). If λ satisfies the condition (3.17), then it is an S -quasi-valuation map of H.
Theorem 3.26. Let λ be a real valued function on H satisfying the condition (3.10). If λ satisfies the condition

$$
\begin{equation*}
(\forall x, y, z \in H)(\lambda(x \rightarrow y) \geq \lambda(z \rightarrow(x \rightarrow(x \rightarrow y)))+\lambda(z)), \tag{3.22}
\end{equation*}
$$

then λ is an F-quasi-valuation map of H.
Proof. If we take $x=1$ and $z=x$ in (3.22) and use (a5), then
$\lambda(y)=\lambda(1 \rightarrow y) \geq \lambda(x \rightarrow(1 \rightarrow(1 \rightarrow y)))+\lambda(x)=\lambda(x \rightarrow y)+\lambda(x)$.
Therefore λ is an F-quasi-valuation map of H.
Corollary 3.27. Let λ be a real valued function on H satisfying the condition (3.10). If λ satisfies the condition (3.22), then λ is an S -quasi-valuation map of H.
Proposition 3.28. Every F-quasi-valuation map λ of H satisfies the condition

$$
\begin{equation*}
(\forall x, y, z \in H)(\lambda(x \rightarrow(x \rightarrow z)) \geq \lambda(x \rightarrow y)+\lambda(x \rightarrow(y \rightarrow z))) . \tag{3.23}
\end{equation*}
$$

Proof. Let λ be an F-quasi-valuation map of H that satisfies (3.23). Then λ is an S-quasi-valuation map of H (see Theorem 3.10). Since
$(x \rightarrow y) \odot(x \rightarrow(y \rightarrow z))=(x \rightarrow y) \odot(y \rightarrow(x \rightarrow z)) \leq x \rightarrow(x \rightarrow z)$
for all $x, y, z \in H$, it follows that

$$
\begin{aligned}
\lambda(x \rightarrow(x \rightarrow z)) & \geq \lambda((x \rightarrow y) \odot(x \rightarrow(y \rightarrow z))) \\
& \geq \lambda(x \rightarrow y)+\lambda(x \rightarrow(y \rightarrow z))
\end{aligned}
$$

for all $x, y, z \in H$.
Theorem 3.29. If a real valued function λ on H satisfies the conditions (3.10) and (3.23), then λ is an F-quasi-valuation map of H.

Proof. If we take $x=1$ in (3.23) and use (a5), then
$\lambda(z)=\lambda(1 \rightarrow(1 \rightarrow z)) \geq \lambda(1 \rightarrow y)+\lambda(1 \rightarrow(y \rightarrow z))=\lambda(y)+\lambda(y \rightarrow z)$
for all $y, z \in H$. Hence λ is an F-quasi-valuation map of H.
Corollary 3.30. If a real valued function λ on H satisfies the conditions (3.10) and (3.23), then λ is an S-quasi-valuation map of H.

Theorem 3.31. If a real valued function λ on H satisfies the conditions (3.10) and

$$
\begin{equation*}
(\forall x, y, z \in H)(\lambda(x) \geq \lambda(z \rightarrow((x \rightarrow y) \rightarrow x))+\lambda(z)) \tag{3.24}
\end{equation*}
$$

then λ is an F-quasi-valuation map of H.
Proof. If we take $y=1$ in (3.24) and use ($a 5$), then

$$
\lambda(x) \geq \lambda(z \rightarrow((x \rightarrow 1) \rightarrow x))+\lambda(z)=\lambda(z \rightarrow x)+\lambda(z)
$$

for all $x, z \in H$. Therefore λ is an F-quasi-valuation map of H.
Corollary 3.32. If a real valued function λ on H satisfies the conditions (3.10) and (3.24), then λ is an S-quasi-valuation map of H.

The following example shows that there is an F-quasi-valuation map λ of H which does not satisfy the condition (3.24).
Example 3.33. Let λ be the F-quasi-valuation map of H as in Example 3.9. Then we have
$0=\lambda(1)+\lambda(1 \rightarrow((b \rightarrow a) \rightarrow b))=\lambda((b \rightarrow a) \rightarrow b))=\lambda(a \rightarrow b) \not \subset \lambda(b)=-20$
Given a real valued function λ on H, consider the following mapping

$$
\begin{equation*}
d_{\lambda}: H \times H \rightarrow \mathbb{R},(x, y) \mapsto-(\lambda(x \rightarrow y)+\lambda(y \rightarrow x)) \tag{3.25}
\end{equation*}
$$

Lemma 3.34. If a real-valued function λ on H is an F-quasi-valuation map of H, then d_{λ} is a pseudo-metric ${ }^{1}$ on H, and so $\left(H, d_{\lambda}\right)$ is a pseudo-metric space.

We say that d_{λ} is the pseudo-metric introduced by an F-quasivaluation map λ of H.

[^1]Proof. If λ is an F-quasi-valuation map of H, then λ is an S-quasivaluation map of H and so $\lambda(x) \leq 0$ for all $x \in H$ by Proposition 3.4. Thus $d_{\lambda}(x, y) \geq 0$ for all $x, y \in H$. It is clear that $d_{\lambda}(x, x)=0$ and $d_{\lambda}(x, y)=d_{\lambda}(y, x)$ for all $x, y \in H$. Using (3) in Proposition 3.14, we get

$$
\begin{aligned}
d_{\lambda}(x, y)+d_{\lambda}(y, z) & =-(\lambda(x \rightarrow y)+\lambda(y \rightarrow x))-(\lambda(y \rightarrow z)+\lambda(z \rightarrow y)) \\
& =-(\lambda(x \rightarrow y)+\lambda(y \rightarrow z))-(\lambda(z \rightarrow y)+\lambda(y \rightarrow x)) \\
& \geq-(\lambda(x \rightarrow z)+\lambda(z \rightarrow x))=d_{\lambda}(x, z) .
\end{aligned}
$$

Hence $\left(H, d_{\lambda}\right)$ is a pseudo-metric space.
Theorem 3.35. If an F-quasi-valuation map λ of H satisfies the following condition

$$
\begin{equation*}
(\forall x \in H)(\lambda(x)=0 \Rightarrow x=1), \tag{3.26}
\end{equation*}
$$

then $\left(H, d_{\lambda}\right)$ is a metric space.
Proof. Let λ be an F-quasi-valuation map of H satisfying (3.26). Then $\left(H, d_{\lambda}\right)$ is a pseudo-metric space (see Lemma 3.34). Suppose that $d_{\lambda}(x, y)=0$ for all $x, y \in H$. Then $0=d_{\lambda}(x, y)=-(\lambda(x \rightarrow y)+\lambda(y \rightarrow$ $x)$), and so $\lambda(x \rightarrow y)=0=\lambda(y \rightarrow x)$. It follows from (3.26) that $x \rightarrow y=1=y \rightarrow x$. Hence $x=y$, and therefore $\left(H, d_{\lambda}\right)$ is a metric space.
Proposition 3.36. If λ is an F-quasi-valuation map of H, then, for all $a, b, x, y \in H$, the pseudo-metric d_{λ} introduced by λ satisfies the following assertions.
(1) $d_{\lambda}(x, y) \geq d_{\lambda}(a \rightarrow x, a \rightarrow y)$.
(2) $d_{\lambda}(x, y) \geq d_{\lambda}(x \rightarrow a, y \rightarrow a)$.
(3) $d_{\lambda}(x \rightarrow y, a \rightarrow b) \leq d_{\lambda}(x \rightarrow y, a \rightarrow y)+d_{\lambda}(a \rightarrow y, a \rightarrow b)$.
(4) $d_{\lambda}(x, y) \geq d_{\lambda}(a \odot x, a \odot y)$.
(5) $d_{\lambda}(x \odot y, a \odot b) \leq d_{\lambda}(x \odot y, a \odot y)+d_{\lambda}(a \odot y, a \odot b)$.

Proof. Let λ be an F-quasi-valuation map of H and $a, b, x, y \in H$. Since

$$
(x \rightarrow y) \leq(a \rightarrow x) \rightarrow(a \rightarrow y) \text { and }(y \rightarrow x) \leq(a \rightarrow y) \rightarrow(a \rightarrow x),
$$

it follows from Proposition 3.14(1) that
$\lambda(x \rightarrow y) \leq \lambda((a \rightarrow x) \rightarrow(a \rightarrow y))$ and $\lambda(y \rightarrow x) \leq \lambda((a \rightarrow y) \rightarrow(a \rightarrow x))$.
Hence

$$
\begin{aligned}
d_{\lambda}(x, y) & =-(\lambda(x \rightarrow y)+\lambda(y \rightarrow x)) \\
& \geq-(\lambda((a \rightarrow x) \rightarrow(a \rightarrow y))+\lambda((a \rightarrow y) \rightarrow(a \rightarrow x))) \\
& =d_{\lambda}(a \rightarrow x, a \rightarrow y),
\end{aligned}
$$

which proves (1). Similarly, we can prove the second condition. Using Proposition 3.14(3), we have

$$
\begin{aligned}
& \lambda((x \rightarrow y) \rightarrow(a \rightarrow b)) \geq \lambda((x \rightarrow y) \rightarrow(a \rightarrow y))+\lambda((a \rightarrow y) \rightarrow(a \rightarrow b)), \\
& \lambda((a \rightarrow b) \rightarrow(x \rightarrow y)) \geq \lambda((a \rightarrow b) \rightarrow(a \rightarrow y))+\lambda((a \rightarrow y) \rightarrow(x \rightarrow y))
\end{aligned}
$$

for all $a, b, x, y \in H$. Hence

$$
\begin{aligned}
d_{\lambda}(x \rightarrow y, a \rightarrow b) & =-(\lambda((x \rightarrow y) \rightarrow(a \rightarrow b))+\lambda((a \rightarrow b) \rightarrow(x \rightarrow y))) \\
& \leq-((\lambda((x \rightarrow y) \rightarrow(a \rightarrow y))+\lambda((a \rightarrow y) \rightarrow(a \rightarrow b))) \\
& +\lambda((a \rightarrow b) \rightarrow(a \rightarrow y))+\lambda((a \rightarrow y) \rightarrow(x \rightarrow y))) \\
& =d_{\lambda}(x \rightarrow y, a \rightarrow y)+d_{\lambda}(a \rightarrow y, a \rightarrow b)
\end{aligned}
$$

for all $a, b, x, y \in H$, which proves (3). Since $x \rightarrow y \leq(a \odot x) \rightarrow(a \odot y)$ and $y \rightarrow x \leq(a \odot y) \rightarrow(a \odot x)$ for all $a, x, y \in H$, it follows that

$$
\lambda(x \rightarrow y) \leq \lambda((a \odot x) \rightarrow(a \odot y)) \text { and } \lambda(y \rightarrow x) \leq \lambda((a \odot y) \rightarrow(a \odot x))
$$

Thus

$$
\begin{aligned}
d_{\lambda}(x, y) & =-(\lambda(x \rightarrow y)+\lambda(y \rightarrow x)) \\
& \geq-(\lambda((a \odot x) \rightarrow(a \odot y))+\lambda((a \odot y) \rightarrow(a \odot x))) \\
& =d_{\lambda}(a \odot x, a \odot y)
\end{aligned}
$$

for all $a, x, y \in H$. This proves (4). Note that

$$
((x \odot y) \rightarrow(a \odot y)) \odot((a \odot y) \rightarrow(a \odot b)) \leq(x \odot y) \rightarrow(a \odot b)
$$

for all $a, b, x, y \in H$. Thus

$$
\begin{aligned}
\lambda((x \odot y) \rightarrow(a \odot b)) & \geq \lambda(((x \odot y) \rightarrow(a \odot y)) \odot((a \odot y) \rightarrow(a \odot b))) \\
& \geq \lambda((x \odot y) \rightarrow(a \odot y))+\lambda((a \odot y) \rightarrow(a \odot b)) .
\end{aligned}
$$

Similarly, $\lambda((a \odot b) \rightarrow(x \odot y)) \geq \lambda((a \odot b) \rightarrow(a \odot y))+\lambda((a \odot y) \rightarrow(x \odot y))$. It follows that

$$
\begin{aligned}
d_{\lambda}(x \odot y, a \odot b) & =-(\lambda((x \odot y) \rightarrow(a \odot b))+\lambda((a \odot b) \rightarrow(x \odot y))) \\
& \leq-(\lambda((x \odot y) \rightarrow(a \odot y))+\lambda((a \odot y) \rightarrow(a \odot b)) \\
& +\lambda((a \odot b) \rightarrow(a \odot y))+\lambda((a \odot y) \rightarrow(x \odot y))) \\
& =d_{\lambda}(x \odot y, a \odot y)+d_{\lambda}(a \odot y, a \odot b)
\end{aligned}
$$

which proves (5).
Let $\left(H_{1}, \odot_{1}, \rightarrow_{1}, 1_{1}\right)$ and $\left(H_{2}, \odot_{2}, \rightarrow_{2}, 1_{2}\right)$ be hoops. Define binary operations \odot and \rightarrow on $H_{1} \times H_{2}$ by

$$
\begin{equation*}
\left(\forall(x, y),(a, b) \in H_{1} \times H_{2}\right)\binom{(x, y) \odot(a, b)=\left(x \odot_{1} a, y \odot_{2} b\right)}{(x, y) \rightarrow(a, b)=\left(x \rightarrow_{1} a, y \rightarrow_{2} b\right)} \tag{3.27}
\end{equation*}
$$

Then $\left(H_{1} \times H_{2}, \odot, \rightarrow,\left(1_{1}, 1_{2}\right)\right)$ is a hoop (see [10]).

Lemma 3.37. Let d_{λ} be the pseudo-metric introduced by an F-quasi-valuation map λ of H. Then $\left(\mathcal{H}, d_{\lambda}^{*}\right)$ is a pseudo-metric space, where $\mathcal{H}:=H \times H$ and

$$
\begin{equation*}
d_{\lambda}^{*}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R},((x, y),(a, b)) \mapsto \max \left\{d_{\lambda}(x, a), d_{\lambda}(y, b)\right\} . \tag{3.28}
\end{equation*}
$$

Proof. Let $(x, y),(a, b),(u, v) \in H \times H$. It is clear that $d_{\lambda}^{*}((x, y),(a, b)) \geq 0$, and we get

$$
\begin{aligned}
d_{\lambda}^{*}((x, y),(x, y))= & \max \left\{d_{\lambda}(x, x), d_{\lambda}(y, y)\right\}=0, \\
d_{\lambda}^{*}((x, y),(a, b)) & =\max \left\{d_{\lambda}(x, a), d_{\lambda}(y, b)\right\} \\
& =\max \left\{d_{\lambda}(a, x), d_{\lambda}(b, y)\right\} \\
& =d_{\lambda}^{*}((a, b),(x, y)) .
\end{aligned}
$$

and

$$
\begin{aligned}
& d_{\lambda}^{*}((x, y),(u, v))+d_{\lambda}^{*}((u, v),(a, b)) \\
& =\max \left\{d_{\lambda}(x, u), d_{\lambda}(y, v)\right\}+\max \left\{d_{\lambda}(u, a), d_{\lambda}(v, b)\right\} \\
& \geq \max \left\{d_{\lambda}(x, u)+d_{\lambda}(u, a), d_{\lambda}(y, v)+d_{\lambda}(v, b)\right\} \\
& \geq \max \left\{d_{\lambda}(x, a)+d_{\lambda}(y, b)\right\}=d_{\lambda}^{*}((x, y),(a, b)) .
\end{aligned}
$$

Therefore $\left(\mathcal{H}, d_{\lambda}^{*}\right)$ is a pseudo-metric space.
Theorem 3.38. Let λ be an F-quasi-valuation map of H. If λ satisfies the condition (3.26), then $\left(\mathcal{H}, d_{\lambda}^{*}\right)$ is a metric space.
Proof. Let λ be an F-quasi-valuation map of H satisfying the condition (3.26). Then d_{λ} is a pseudo-metric on H (see Lemma 3.34), and so ($\mathcal{H}, d_{\lambda}^{*}$) is a pseudo-metric space (see Lemma 3.37). Assume that $d_{\lambda}^{*}((x, y),(a, b))=0$ for all $(x, y),(a, b) \in H \times H$. Then

$$
0=d_{\lambda}^{*}((x, y),(a, b))=\max \left\{d_{\lambda}(x, a), d_{\lambda}(y, b)\right\}
$$

and thus $0=d_{\lambda}(x, a)=-(\lambda(x \rightarrow a)+\lambda(a \rightarrow x))$ and $0=d_{\lambda}(y, b)=$ $-(\lambda(y \rightarrow b)+\lambda(b \rightarrow y))$. Hence $\lambda(x \rightarrow a)=0=\lambda(a \rightarrow x)$ and $\lambda(y \rightarrow$ $b)=0=\lambda(b \rightarrow y)$. It follows from (3.26) that $x \rightarrow a=1, a \rightarrow x=1$, $y \rightarrow b=1$ and $b \rightarrow y=1$. Thus $(x, y)=(a, b)$, and therefore $\left(\mathcal{H}, d_{\lambda}^{*}\right)$ is a metric space.

Theorem 3.39. If an F-quasi-valuation map λ of H satisfies the condition (3.26), then the operations " \rightarrow ", " \odot " and " \wedge " in H are uniformly continuous.
Proof. For any $a, b, x, y \in H$ and $\varepsilon>0$, let $d_{\lambda}^{*}((x, y),(a, b))<\frac{\varepsilon}{2}$. Then $d_{\lambda}(x, a)<\frac{\varepsilon}{2}$ and $d_{\lambda}(y, b)<\frac{\varepsilon}{2}$. It follows from Proposition 3.36 that

$$
\begin{aligned}
d_{\lambda}(x \rightarrow y, a \rightarrow b) & \leq d_{\lambda}(x \rightarrow y, a \rightarrow y)+d_{\lambda}(a \rightarrow y, a \rightarrow b) \\
& \leq d_{\lambda}(x, a)+d_{\lambda}(y, b) \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& =\varepsilon .
\end{aligned}
$$

Therefore the operation " \rightarrow " in H is uniformly continuous. By Proposition 3.36 , the proof of other cases is similar.

Theorem 3.39 is illustrated in the following example.
Example 3.40. The F-quasi-valuation map λ of H in Example 3.9 satisfies the condition (3.26), and so $\left(H, d_{\lambda}\right)$ is a metric space by Theorem 3.35 where d_{λ} is obtained by (3.25) and it is given by Table 7.

Table 7. Tabular representation of " d_{λ} "

$H \times H$	$(0,0)$	$(0, a)$	$(0, b)$	$(0,1)$	(a, a)	(a, b)	$(a, 1)$	(b, b)	$(b, 1)$	$(1,1)$
$d_{\lambda}(x, y)$	0	25	30	30	0	25	25	0	20	0

Also, $\left(\mathcal{H}, d_{\lambda}^{*}\right)$ is a metric space by Theorem 3.38 where d_{λ}^{*} is obtained by (3.28), for example,

$$
\begin{aligned}
& d_{\lambda}^{*}((a, b),(1, a))=\max \left\{d_{\lambda}(a, 1), d_{\lambda}(b, a)\right\}=\max \{25,25\}=25 \\
& d_{\lambda}^{*}((b, 1),(0, b))=\max \left\{d_{\lambda}(b, 0), d_{\lambda}(1, b)\right\}=\max \{30,20\}=30
\end{aligned}
$$

and so on. It is routine to check that the operations " \rightarrow ", " \odot " and " \wedge " in H are uniformly continuous.

4. Conclusions

In this paper, we have introduced the notion of quasi-valuation maps such as $S_{\odot^{-}}, S_{\rightarrow^{-}}, S$ - and F-quasi-valuation map based on sub-hoop and filter. We have investigated several properties, and we have discussed relations between S-quasi-valuation map and F-quasi-valuation map. Using the notion of F-quasi-valuation map, we have introduced a (pseudo) metric space and have shown that the operations " \rightarrow ", " \odot " and " \wedge " in a hoop are uniformly continuous.

References

1. M. Aaly Kologani and R. A. Borzooei, On ideal theory of hoops, Math. Bohemica, 145 (2020), 141-162.
2. P. Aglianò, I. M. A. Ferreirim and F. Montagna, Basic hoops: An algebraic study of continuous t-norms, Studia Logica, 87 (2007), 73-98.
3. S. Z. Alavi, R. A. Borzooei and M. Aaly Kologani, Filter theory of pseudo hoopalgebras, Italian J. Pure Appl. Math., 37 (2017), 619-632.
4. R. A. Borzooei and M. Aaly kologani, Filter theory of hoop-algebras, J. Adv. Research Pure Math., 6 (2014), 1-15.
5. R. A. Borzooei and M. Aaly Kologani, Local and perfect semihoops, J. Intelligent Fuzzy Systems, 29 (2015), 223-234.
6. R. A. Borzooei, M. Mohseni Takallo, M. Aaly Kologani and Y. B. Jun, Fuzzy sub-hoops based on fuzzy points, submitted.
7. R. A. Borzooei, H. R. Varasteh and K. Borna, Fundamental hoop-algebras, Ratio Math., 29 (2015), 25-40.
8. B. Bosbach, Komplementäre Halbgruppen. Axiomatik und Arithmetik, Fund. Math., 64 (1969), 257-287.
9. B. Bosbach, Komplementäre Halbgruppen. Kongruenzen und Quatienten, Fund. Math., 69 (1970), 1-14.
10. G. Georgescu, L. Leustean and V. Preoteasa, Pseudo-hoops, J. Multiple-Valued Logic Soft Comput., 11 (2005), 153-184.
11. S. Ghorbani, Localization of hoop-algebras, J. Adv. Research Pure Math., 5 (2013), 1-13.
12. P. Hájek, Metamathematics of Fuzzy Logic, Springer, (1998).
13. K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26-29.
14. C. F. Luo, X. L. Xin and P. He, n-fold (positive) implicative filters of hoops, Italian J. Pure Appl. Math., 38 (2017), 631-642.
15. J. Neggers, Y. B. Jun and H. S. Kim, On d-ideals in d-algebras, Math. Slovaca, 49 (1999), 243-251.
16. S. Z. Song, E. H. Roh and Y. B. Jun, Quasi-valuation maps on BCK/BCIalgebras, Kyungpook Math. J., 55 (2015), 859-870.
17. R. Tayebi Khorami and A. Borumand Saeid, Some unitary operators on hoopalgebras, Fuzzy Inf. Eng., 9(2) (2017), 205-223.
18. L. A. Zadeh, Toward a generalized theory of uncertainty (GTU)-an outline, Inform. Sci., 172 (2005), 1-40.
19. M. A. Zander, Decomposability of the finitely generated free hoop residuation algebra, Studia Logica, 88 (2008), 233-246.

Mona Aaly Kologani

Hatef Higher Education Institute, P.O. Box 9816848165, Zahedan, Iran.
Email: mona4011@gmail.com

Gholam-Reza Rezaei

Department of Mathematics, University of Sistan and Baluchestan, P.O. Box 9816745845, Zahedan, Iran.
Email: grezaei@math.usb.ac.ir

Rajab-Ali Borzooei

Department of Mathematics, Shahid Beheshti University, P.O. Box 1983969411, Tehran, Iran.
Email: borzooei@sbu.ac.ir

Young Bae Jun

Department of Mathematics, Education, Gyeongsang National University, P.O. Box 52828, Jinju, Korea.
Email: skywine@gmail.com

Journal of Algebraic Systems

HOOPS WITH QUASI-VALUATION MAPS

M. AALY KOLOGANI, G. R. REZAEI, R. A. BORZOOEI and Y. B. JUN

هوبها با نگاشتهاى شبه-ارزنشى

 * روه آموزش رياضيات، دانشگاه ملى گيونگسانگ، كره جنوبى اينى

 ©ه، \rightarrow و ^ به صورت يكنواخت پيوسته هستند.

كلمات كليدى: هوپ، نگاشت شبه-ارزشى، فيلتر، فضاى متريك.

[^0]: DOI: 10.22044/jas.2020.8499.1413.
 MSC(2010): Primary: 06B30; Secondary: 03G25, 06D20.
 Keywords: Hoop, quasi-valuation map, S_{\odot}-quasi-valuation map, $S_{\rightarrow-\text { quasi-valuation map, }}$ F-quasi-valuation map, (pseudo) metric space.
 Received: 27 May 2019, Accepted: 7 April 2020.

 * Corresponding author.

[^1]: ${ }^{1}$ By a pseudo-metric on H, we mean a real-valued function $d: H \times H \rightarrow \mathbb{R}$ satisfying the following properties: $d(x, y) \geq 0, d(x, x)=0, d(x, y)=d(y, x)$ and $d(x, z) \leq d(x, y)+d(y, z)$ for every $x, y, z \in H$.

