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ON THE CLASS OF ARRAY-BASED APM-LDPC
CODES

A. NASSAJ∗ AND A. R. NAGHIPOUR

Abstract. In this paper, an explicit class of affine permutation
matrix low-density parity-check (APM-LDPC) codes is presented.
This class is constructed based on the array parity-check matrix by
using two affine maps f(x) = x−1 and g(x) = 2x−1 on Zm, where
m is an odd prime number, with girth 6 and flexible row (column)-
weights. Simulation results justify well performance, minimum dis-
tances and cycle distribution of these codes in comparison of the
array-QC LDPC, structured QC-LDPC and APM-LDPC codes.

1. Introduction

Low-density parity-check (LDPC) codes were first introduced by
Robert Gallager [5] in his PhD thesis, and have been forgotten for a
long time and were again raised by Neal and MacKay [11]. But, today
LDPC codes have become one of the interesting topic in coding theory
[1] because of their performance close to Shannon limit over additive
white Guassian noise (AWGN) channels [4].

Each LDPC code can be defined by a sparse parity-check matrix H.
The numbers of nonzero elements in a row (column) of parity-check
matrix H is called row (column)-weight. By a (J, L)-regular LDPC
code, we mean an LDPC code whose parity-check matrix has row and
column weights L and J , respectively.
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One of the particularly important tools for knowing and reviewing
LDPC codes is Tanner graph [14]. In fact, Tanner graph is a bipartite
graph, which has two sets of vertices, check nodes and bit nodes corre-
spond to the rows and columns of the parity-check matrix H = (hi,j),
respectively, such that hi,j = 1, if and only if the corresponding check
and bit nodes are adjacent. The girth of LDPC codes is the length of
the shortes cycles in the Tanner graph of the corresponding parity-check
matrix H. The performance of LDPC codes under iterative decoding
algorithms is related to the girth of Tanner graph [11], the minimum
distance [14] and the row (column)-weight distributions [7] of parity-
check matrix H. Especially, a 4-cycle, a cycle of length 4, has a bad
influence on the performance of decoding algorithm [4].

LDPC codes based on the construction are divided in two methods,
random codes [5, 11] and structured codes [2, 3, 9]. Random construc-
tion has an excellent BER performance, but, on the other hand, it needs
more memory to store the nonzero elements of a random parity-check
matrix, against, structured LDPC codes have simple implementations
[4].

Quasi-cyclic LDPC (QC-LDPC) codes are an important class of al-
gebraically constructed LDPC codes based on circulant permutation
matrices (CPM) having good performance among the class of LDPC
codes because the required memory for storing corresponding parity-
check matrices can be reduced [13].

Array-QC LDPC codes are a class of structured LDPC codes with
good performance, first are introduced by Fan [3]. Fan has shown the
beauty of algebra in array-LDPC codes.

A class of structured LDPC codes based on affine permutation matri-
ces (APM), called briefly APM-LDPC codes [12], have been proposed
recently which have some advantages other than QC-LDPC codes in
performance, cycle distribution and minimum distance [6]. Anti quasi-
cyclic (AQC) LDPC codes are a special case of APM-LDPC codes [8],
constructed by circulant and anti-circulant permutation matrices.

In this paper, we assume two affine maps f(x) = x − 1 and g(x) =
2x − 1 on Zm, where m is an odd prime number, and define H as a
parity-check matrix of an LDPC code based on f(x), g(x) and com-
position of these functions based on array parity-check matrix. We
show that the girth of Tanner graph H is 6. The presented method is
very convenient and the constructed codes have flexible row (column)-
weights. Simulation results show that the constructed codes outper-
form the array-QC LDPC codes [3], structured QC-LDPC codes [2],
APM-LDPC codes [6] and AQC LDPC codes [8].
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2. Preliminaries

In this section, we present the basic concepts used in the paper.

2.1. APM-LDPC Codes. Let m be a non-negetive integer. The ring
of integers in modular m is shown by Zm = {0, 1, . . . ,m − 1} and
Z∗

m = {i ∈ Zm | gcd(i,m) = 1}. Now, corresponding to each affine
map f(x) = ax + b (mod m), (a, b) ∈ Z∗

m × Zm, define the affine
permutation matrix (APM) If by the m × m binary matrix (ei,j) in
which ei,j = 1 if and only if f(i) = j in modulus of m. If a = 1, then
If is a CPM. We denote the m × m zero matrix with I∅, for empty
function ∅ on Zm. The following propositions give some of properties
of APMs [6].

Proposition 2.1. Let f , f1 and f2 be bijective functions on Zm. Then
we have,

(1) If1 × If2 = If2◦f1, where f2 ◦ f1 is the composition of f2 and f1.
(2) If

−1
= (If )−1 = (If )T , where (If )T is the transpose of If .

(3) If
n
= If × · · · × If︸ ︷︷ ︸

n

, where fn means the compositions n times

of f .

Proposition 2.2. Let f be an affine map on Zm. If two first rows
(columns) of If are given, then f can be uniquely determined.

Proof. The assertion follows easily by solving of a system of two equa-
tions in two unknowns. □

Let J and L, J < L, be some positive integers. A (J, L) function
matrix F = (fi,j)J×L means a J × L array of fi,j which fi,j’s are some
affine or empty functions on Zm. Corresponding to a function matrix F ,
a (J, L) APM-LDPC code of APM-size m, length mL and rate at least
1− J

L
can be defined by the following parity-check matrix H = H(F ).

H =

 If1,1 · · · IfL,1

... . . . ...
If1,J · · · IfL,J

 , (2.1)

such that the corresponding function matrix is as follows:

F =

 f1,1 · · · fL,1
... . . . ...

f1,J · · · fL,J

 . (2.2)
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A (J, L) APM-LDPC code is called conventional, if H does not contain
the zero block, i.e., the associated function matrix F does not contain
the empty function, otherwise it is called unconventional.

The following lemma gives a necessary and sufficient condition for
H, that the Tanner graph of H has a 2l-cycle.

Lemma 2.3. [12] There is a 2l-cycle in Tanner graph H in (2.1),
by a chain (j0, l0); (j1, l1); · · · ; (jn−1, ln−1); (jn, ln) = (j0, l0), (jk, lk) ̸=
(jk+1, lk+1) that 0 ≤ k ≤ n− 1, if the function

F = fjn,ln ◦ f−1
jn,ln−1

◦ · · · ◦ fj1,l1 ◦ f−1
j1,l0

has a fixed point, it means that there is a ∈ Zm, such that F(a) = a.

QC-LDPC codes are a class of APM-LDPC codes interested for well
performances and simple hardware implementations. In [6], some con-
ditions are discussed which examine whether an APM-LDPC code is
equivalent with a QC-LDPC code or not.

Theorem 2.4. An APM-LDPC code with parity-check matrix H in
(2.1), can be considered as a QC-LDPC code, if Ifj1,l1 ×Ifj2,l2 = Ifj2,l2 ×
Ifj1,l1 , for each (j1, l1) ̸= (j2, l2), 1 ≤ j1, j2 ≤ J and 1 ≤ l1, l2 ≤ L.

Lemma 2.5. An APM-LDPC code with function matrix F in (2.2),
can be considered as a QC-LDPC code, if each two functions of F ,
interchanges with each other under the composition function, it means
fj2,l2 ◦ fj1,l1 = fj1,l1 ◦ fj2,l2, for each (j1, l1) ̸= (j2, l2), 1 ≤ j1, j2 ≤ J and
1 ≤ l1, l2 ≤ L.

Remark 2.6. If in (2.1), aj,l = 1 for every 1 ≤ j ≤ J and 1 ≤ l ≤ L,
then by using Lemma 2.5, H is a parity-check matrix of a QC-LDPC
code.

2.2. Array-QC LDPC codes. Let n,m are some positive integers,
such that n ≤ m, m is an odd prime number, a (n,m) array-QC LDPC
code is defined by the following parity check matrix.

Hm,n =


I I I · · · I
I M M2 · · · Mm−1

I M2 M4 · · · M2(m−1)

... ... ... · · · ...
I Mn−1 M (n−1)2 · · · M (n−1)(m−1)

 , (2.3)
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where M denotes a m×m permutation matrix of the form

M =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 0 · · · 0
... ... ... . . . ...
0 0 · · · 1 0

 . (2.4)

Array based QC-LDPC codes are among regular LDPC codes whose
Tanner graphs are free of 4-cycles, having an acceptable bit-error rate
performance [3]. They have been proposed for a number of applications,
magnetic recording and including digital subscriber lines.

It is interesting that the matrix M is equivalent to an affine map
f(x) = x − 1 in modular m. Then, Hm,n can be considered as the
parity-check matrix of an APM-LDPC code, so we have the function
matrix F ,

F =


f(x)0 f(x)0 · · · f(x)0

f(x)0 f(x)1 · · · f(x)m−1

f(x)0 f(x)2 · · · f(x)2(m−1)

... ... · · · ...
f(x)0 f(x)n−1 · · · f(x)(n−1)(m−1)

 , (2.5)

which, f(x)0 means the identity function I(x) = x.
Structured LDPC codes have been more attention than random

LDPC codes. In fact, a regular algebraic structure can guarantee to
improve the minimum distances, cycle distribution and to simplify the
implementation. Recently, efforts have been made to build structured
LDPC codes. Therefore, we use the structure of array parity-check
matrix to construct a class of APM-LDPC codes.

3. Construction

Let f(x) = x − 1 and g(x) = 2x − 1 on Zm, such that m is an odd
prime number. Define the following function matrix F of dimension
s×m

F =


g0 ◦ f 0 g0 ◦ f 1 · · · g0 ◦ fm−1

g1 ◦ f 0 g1 ◦ f 1 · · · g1 ◦ fm−1

... ... . . . ...
gs−1 ◦ f 0 gs−1 ◦ f 1 · · · gs−1 ◦ fm−1

 , (3.1)

where s is the order of 2 in the field of Zm. Now, for the given function
matrix F , let H be the corresponding parity-check matrix of a (s,m)-
regular APM-LDPC as follows:
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H =


I If · · · If

m−1

Ig Ig◦f · · · Ig◦f
m−1

... ... . . . ...
Ig

s−1
Ig

s−1◦f · · · Ig
s−1◦fm−1

 , (3.2)

in which Ig
i◦fj is the APM matrix of size m corresponding to the

function gi ◦ f j(x) = 2ix − 2ij − (2i − 1) in modulus of m, where
1 ≤ i, j ≤ m− 1.

By the definition of APM based on an affine map,

Ig =



0 0 · · · 0 1
0 1 · · · 0 0
... ... . . . ... ...
0 0 · · · 1 0
1 0 · · · 0 0
... ... . . . ... ...
0 · · · 1 0 0


, (3.3)

and matrix representation of Igi◦fj ’s are depended on Zm. For instance,
Ig

2◦f2 in Z5 as follows: 
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 , (3.4)

and in Z7 as follows: 

0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1


. (3.5)

The data rate of the parity-check matrix H in (3.2) is R ≥ 1− m(m−s)
m2 .

Hence, by increasing m, R tends to 1. Notice, we can take a part of
matrix H in (2.5), as parity-check matrix of an APM-LDPC code, thus
in this case, the data rate will be change.
Example 3.1. For m = 7, the order of 2 in the field Z7 is 3, thus in
this case the column-weight of parity-check matrix H can be equal or
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less than three. But for m = 11, the order of 2 in the field Z11 is 10. So
we can consider (J, L)-regular APM-LDPC code such that 1 ≤ J ≤ 10
and 1 ≤ L ≤ 11.

Proposition 3.2. The given matrix H in (3.2) is not a parity-check
matrix of a QC-LDPC code.

Proof. If H is a parity-check matrix of a QC-LDPC code, then by
Lemma 2.5, every two elements of F in (3.1), should be interchanged.
Without loss of generality, we assume two elements of F (H), the
(2, 1)th array and (2, 2)th array, i.e., g(x) and g(x)◦ f(x), respectively.
Therefore with a simple calculation, g(x)◦(g(x)◦f(x)) = 4x+7(m−1)
and (g(x)◦f(x))◦g(x) = 4x+5(m−1) in modular m. This is clear that
−7 ̸= −5 (mod m). Therefore g(x)◦(g(x)◦f(x)) ̸= (g(x)◦f(x))◦g(x).
Accordingly, H in (3.2), is not a parity-check matrix of a QC-LDPC
code. Thus, the constructed code is not a QC-LDPC code. □

Theorem 3.3. Let the given matrix H in (3.2) be a parity-check matrix
of an APM-LAPC code. Then the girth of Tanner graph of H is 6.
Proof. First we show that there is no 4-cycle in Tanner graph H in
(3.2). Otherwise, by Lemma 2.3, a chain of 4-cycle is (j0, l0), (j0, l1),
(j1, l1), (j1, l0), 0 ≤ j0, j1 ≤ s−1 and 0 ≤ l0, l1 ≤ m−1, (j0, l0) ̸= (j1, l1)
and we have,

F = (gj0 ◦ f l0) ◦ (gj0 ◦ f l1)−1 ◦ (gj1 ◦ f l1) ◦ (gj1 ◦ f l0)−1. (3.6)
gk(x) = 2kx − (2k − 1), g−k(x) = (2k)−1(x + 2k − 1), fk(x) = x − k
and f−k(x) = x+ k (mod m), where k is a positive integer, thus

F(x) = x+ 2j1−j0(l0 − l1) + (l1 − l0) (mod m)

If F(a) = a for a ∈ Zm, then,
2j1−j0(l0 − l1) + (l1 − l0) = 0 (mod m) (3.7)

Set l0 − l1 = y and j1 − j0 = x, Equation (3.7) is equal to
2xy = y (mod m) (3.8)

We have two choices
(1) y = 0, thus l0 = l1, this is a contradiction.
(2) 2x = 1 (mod m), it means x is the order of 2 in the field Zm,

besides, the maximum column-weight of parity-check matrix H
in (3.2) is s, thus the maximum amount of x is s− 1, so x ̸= s.
As regarding to the definition of s, 2x ̸= 1.
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Therefore, the equation (3.8) has no solution and there is no 4-cycle in
Tanner graph H in (3.2), and accordingly the girth is at least 6. Then
again, we may assume the block sequence (0, 0), (0, 1), (1, 1), (1, r),
(2, r), (2, 0), where r = −2−1(mod m), coincides to a cycle of length 6.
This completes the proof.

□

4. Numerical and Simulation Results

Tabel 1 provides some comparisons between the (6, 8)-cycle multi-
plicities of (J, L) constructed codes, and cycle distributions 6 and 8 of
the 4-cycle free APM-LDPC codes [6], array-QC LDPC codes [3] and
structured QC-LDPC codes [2] with the same length.

As Table 1 shows, the constructed codes have remarkably smaller
cycles rather than the 4-cycle free APM-LDPC [6], array-QC LDPC [3]
and QC-LDPC [2] codes.

Table 2 presents the minimum distance of constructed codes against
APM-LDPC [6], array-QC LDPC [3] and structured QC-LDPC [2]
codes with girth 6, denoted by d, dAPM , dArray and dQC , respectively.
As the outputs show, the constructed codes have better minimum dis-
tance than APM-LDPC in [6], array-QC LDPC in [3] and QC-LDPC
codes in [2].

Figure 1 displays a binary performance comparison between the con-
structed code, on one hand, and an APM-LDPC code [6], a structured
QC-LDPC code [2], an array-QC LDPC code [3] and a structured AQC-
LDPC code [8] with girth 6, rate 0.875 and length 32672, on the other
hand. We use Sum-product algorithm [10] on the AWGN channel for
decoding of these codes with maximum iteration 20. The simulation
result shows that the constructed code outperforms APM-LDPC code,
QC-LDPC code, array-QC LDPC code and AQC LDPC code.

Notice that the constructed APM-LDPC codes in this paper have an
explicit structure in terms of a and a random structure in terms of b.

5. Conclusion

In this work, a class of APM-LDPC codes are presented whose parity-
check matrices are based on parity-check matrix of array-LDPC codes.
A constructed codes have some benefits rather than APM, structured
QC and array-QC LDPC codes in terms of the cycle distribution, min-
imum distances and error-rate performance. In addition, the presented
codes have flexible row and column-weights. We show the constructed
codes have the new class of APM-LDPC and not the class of QC-LDPC
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codes. Moreover, we present the girth of these codes have 6. As Ta-
ble 1 shows, the constructed codes have better cycle distributions rather
than APM, array-QC and structured QC-LDPC codes with the same
girth. Tables 2 illustrates that the constructed codes have bigger mini-
mum distances rather than APM, array-QC and structured QC-LDPC
codes. In the last, simulation result shows that the binary constructed
codes perform better than APM, array-QC, structured QC and AQC
LDPC codes with the same girth, rates and lengths.

Table 1. A comparison between the cycle multiplic-
ities of the (J, L) constructed codes and APM-LDPC
codes [6], array-QC LDPC codes [3] and structured QC-
LDPC codes [2] with girth 6 and the same block size
m.

m J L Cycle length Constructed code APM Array QC
5 2 3 6 0 0 0 0

8 5 5 5 5
5 2 4 6 0 0 0 0

8 30 30 30 30
11 3 4 6 22 22 44 66

8 242 242 286 253
13 3 5 6 52 78 104 104

8 767 702 858 832
17 3 6 6 102 204 456 513

8 1938 2295 2295 2363
19 4 5 6 266 152 456 513

8 3135 3439 4066 3857
23 4 6 6 460 667 828 1334

8 8050 8165 10396 11109
29 4 7 6 870 754 1624 2523

8 17197 16936 23258 27666
31 4 8 6 1488 2139 2356 3844

8 30814 33046 40610 49352
37 5 6 6 1036 1110 2960 4292

8 25160 25345 40108 44696
41 5 7 6 1886 2296 5084 7052

8 50594 51455 80688 94915
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Table 2. The minimum distance of constructed codes, in
comparison with APM-LDPC codes [6], array-QC LDPC
codes [3] and structured QC-LDPC codes [2] with the same
girth and block size m.

m J × L d dAPM dArray dQC

13 3× 5 8 8 6 6
17 3× 6 8 6 6 4
19 4× 5 16 16 12 4
23 4× 6 16 16 12 12
29 4× 7 14 14 12 12

Figure 1. A girth-6 constructed code against an APM-
LDPC code [6], an array-QC LDPC code [3], an AQC-LDPC
code [8] and a structured QC-LDPC code [2] with girth 6.

3.4 3.6 3.8 4 4.2 4.4
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آرایه ای کدهای پایه بر آفین خلوت کدهای از کلاسی

نقی پور٢ عليرضا و نساج١ اکرم

ایران شهرکرد، شهرکرد، دانشگاه ریاضی، علوم دانشکده ١,٢

ماتریس طرح اساس بر کلاس این می شود. ارائه آفین خلوت کدهای از صریحی کلاس مقاله، این در
g(x) = ٢x − ١ و f(x) = x − ١ آفین نگاشت دو از استفاده با آرایه ای کدهای توازن بررسی
کدهای می شود. مطرح است، فرد اول عدد یک m آن در که ،m صحیح اعداد پیمانه ای حلقه روی
می دهد نشان عددی نتایج هستند. ۶ کمر همچنین و انعطاف پذیر ستونی و سطری وزن دارای شده ساخته
با مقایسه در مناسب تری اجرای و بهتر دوری توزیع بیشتر، فاصله کمترین دارای شده ساخته کدهای که

می باشد. آفین خلوت کدهای و ساختاری شبه دوری کدهای آرایه ای، کدهای

تنر. گراف آرایه ای، کد آفین، خلوت کد کلیدی: کلمات
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