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SOME PROPERTIES ON DERIVATIONS OF LATTICES

M. F. KAWAGUCHI AND M. KONDO∗

Abstract. In this paper we consider some properties of deriva-
tions of lattices and show that (i) for a derivation d of a lattice
L with the maximum element 1, it is monotone if and only if
d(x) ≤ d(1) for all x ∈ L (ii) a monotone derivation d is char-
acterized by d(x) = x ∧ d(1) and (iii) simple characterization the-
orems of modular lattices and of distributive lattices are given by
derivations. We also show that, for a distributive lattice L and
a monotone derivation d of it, the set Fixd(L) of all fixed points
of d is isomorphic to the lattice L/ ker(d). We provide a counter
example to the result (Theorem 4) proved in [3].

1. Introduction

A notion of derivations of algebras with two operations + and ·
has introduced as an analogy of derivations of analysis and then some
properties of derivations are considered. For an algebra A = (A,+, ·),
a map f : A → A is called a derivation if it satisfies the conditions, for
all x, y ∈ A,

f(x+ y) = f(x) + f(y)

f(x · y) = f(x) · y + x · f(y).

The notion of derivation is important in the theory of rings ([5]). After
that, it is applied to lattices ([4]), where operation + and · are inter-
preted as lattice operations ∨ and ∧, respectively. Following the naive
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interpretation, the derivation d of a lattice L may be defined by
(a) d(x ∨ y) = d(x) ∨ d(y)

(b) d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y)).

As proved in [4, 6], the condition (a) represents monotonicity of d and
the condition (b) is equivalent to the condition d(x ∧ y) = d(x) ∧ y.
Hence, as proved later, a monotone derivation f : L → L is charac-
terized by f(x ∧ y) = f(x) ∧ y for all x, y ∈ L. It follows from the
result that a monotone derivation d has the form of d(x) = x ∧ d(1) if
L has the maximum element 1 and thus every monotone derivation is
determined completely by the value d(1).

In order to obtain more interesting properties of derivations of lat-
tices, we adopt another definition of derivations according to [1, 2, 3, 7]
and prove some fundamental properties of them, from which we get
new results about derivations of lattices and provide accurate state-
ments described in [1, 2, 3, 6, 7]. Moreover, we consider properties of
generalized derivation ([1, 2]) and of f -derivation ([3]) from our view
point and give some results which have simpler proofs than those of
[3].

Concretely, we prove that
(i). For a derivation d of a lattice L with the maximum element 1, it
is monotone if and only if d(x) ≤ d(1) for all x ∈ L.
(ii). A monotone derivation d is just the form of d(x) = x ∧ d(1).
(iii). For any lattice L and a derivation d, the condition

d is monotone ⇔ d(d(x) ∨ y) = d(x) ∨ d(y) (∀x, y ∈ L)
is equivalent to that L is a modular lattice.
(iv). For any lattice L and a derivation d, the condition

d is monotone ⇔ d(x ∨ y) = d(x) ∨ d(y) (∀x, y ∈ L),

is equivalent to that L is a distributive lattice.
We also show that, for a distributive lattice L and a monotone deriva-

tion d of it, the set Fixd(L) = {x ∈ L | d(x) = x} of all fixed points of
d is isomorphic to the lattice L/ ker(d).

Lastly, we provide a counter example to the result (Theorem 4)
proved in [3].

2. Derivation

According to [6, 7], we give a definition of derivation of a lattice. Let
L = (L,∨,∧) be a lattice. A map d : L → L is called a derivation of L
if it satisfies the condition

d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y)) (∀x, y ∈ L)
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Moreover, a derivation d is called monotone if
x ≤ y ⇒ d(x) ≤ d(y) (∀x, y ∈ L).

We note that the notion of monotone is called isotone in [1, 2, 3, 7])
Example 1. Let L be a lattice and a ∈ L. If we define a map

da : L → L by da(x) = x∧a, then da is a monotone derivation. Indeed,
for all x, y ∈ L, we have da(x ∧ y) = (x ∧ y) ∧ a = ((x ∧ a) ∧ y) ∨ (x ∧
(y ∧ a)) = (da(x) ∧ y) ∨ (x ∧ da(y)).

Example 2. ([3]) Let L = {0, a, b, 1}, (0 < a < b < c < 1). We
define d : L → L by

d(x) =

 0 (x = 0)
a (x = a, b)
c (x = c, 1)

It is clear that d : L → L is the derivation of L.
We have basic results about derivations of lattices.

Proposition 2.1. Let L be a lattice and d be a derivation of L. For
all x, y ∈ L,
(1) d(x) ≤ x
(2) d(d(x)) = d(x)
(3) If 1 ∈ L, then d(x) = d(x) ∨ (x ∧ d(1))
(4) If 1 ∈ L, then d(1) = 1 ⇔ d = idL
(5) d(x) ∧ d(y) ≤ d(x ∧ y) ≤ d(x) ∨ d(y)
(6) d(d(x) ∧ d(y)) = d(x) ∧ d(y)
(7) If d is monotone, then d(d(x) ∨ d(y)) = d(x) ∨ d(y)
(8) If d(d(x) ∨ y) = d(x) ∨ d(y), then d is monotone.
Proof. We only prove (7) and (8).

(7) If d is monotone, since d(x), d(y) ≤ d(x) ∨ d(y), then we get
d(d(x)), d(d(y)) ≤ d(d(x) ∨ d(y)). By d(d(x)) = d(x) and d(d(y)) =
d(y), we have d(x), d(y) ≤ d(d(x) ∨ d(y)) and d(x) ∨ d(y) ≤ d(d(x) ∨
d(y)). It is clear from (1) that d(d(x) ∨ d(y)) ≤ d(x) ∨ d(y). Hence,
d(d(x) ∨ d(y)) = d(x) ∨ d(y).

(8) Suppose that x ≤ y. Since d(x) ≤ x ≤ y, we have d(y) =
d(d(x) ∨ y) = d(x) ∨ d(y) and thus d(x) ≤ d(y). □

We note that the derivation da(x) = x∧a in Example 1 is monotone.
Moreover, any monotone derivation d has just the form of d(x) = x∧a
for some a ∈ L. In order to prove this fact, we deeply think about
properties of monotone derivations.
Theorem 2.2. For any derivation d, the following conditions are equiv-
alent to each other.



24 KAWAGUCHI AND KONDO

(1) d is monotone ;
(2) d(x ∧ y) = d(x) ∧ d(y) (∀x, y ∈ L);
(3) d(x) ∨ d(y) ≤ d(x ∨ y) (∀x, y ∈ L).

Proof. We only show the case (1) ⇒ (2). The other cases can be proved
easily.

Since x∧y ≤ x, y, we have d(x∧y) ≤ d(x), d(y). On the other hand,
since d(x ∧ y) ≤ d(x) ∧ d(y) ≤ x ∧ y, we get d(x ∧ y) = d(d(x ∧ y)) ≤
d(d(x) ∧ d(y)) ≤ d(x ∧ y). Thus d(x ∧ y) = d(d(x) ∧ d(y)). It follows
that

d(x ∧ y) = d(d(x) ∧ d(y))

= {d(d(x)) ∧ d(y)} ∨ {d(x) ∧ d(d(y))}
= (d(x) ∧ d(y)) ∨ (d(x) ∧ d(y))

= d(x) ∧ d(y).

□

From the result above, a monotone derivation can be characterized
as follows.

Theorem 2.3. Let L be a lattice and f : L → L be a map. Then the
following conditions are equivalent.
(1) f is a monotone derivation;
(2) f(x ∧ y) = f(x) ∧ y (∀x, y ∈ L);
(3) f(x) = x ∧ f(1) (∀x ∈ L).

Proof. Since (2) ⇒ (3) and (3) ⇒ (1) are clear, we show (1) ⇒ (2).
Let f be a monotone derivation. Since x ∧ y ≤ x, y, we get f(x ∧
y) ≤ f(x), f(y) and f(x ∧ y) ≤ f(x) ∧ y, x ∧ f(y) by f(x ∧ y) ≤
x ∧ y ≤ x, y. On the other hand, since f is the derivation, we have
f(x ∧ y) = (f(x) ∧ y) ∨ (x ∧ f(y)) ≥ f(x) ∧ y, x ∧ f(y). This means
that f(x ∧ y) = f(x) ∧ y = x ∧ f(y). □

Corollary 2.4. If L has a maximum element 1 and d is a derivation,
then the following conditions are equivalent.
(1) d is monotone;
(2) d(x) = x ∧ d(1) for all x ∈ L;
(3) d(x) ≤ d(1) for all x ∈ L.

Proof. Since (1) ⇒ (3) and (2) ⇒ (1) are clear, we only show the
case (3) ⇒ (2). Let d(x) ≤ d(1). Since d is the derivation, we have
d(x) ≤ x and thus d(x) ≤ x ∧ d(1). This implies d(x) = d(x ∧ 1) =
(d(x) ∧ 1) ∨ (x ∧ d(1)) = d(x) ∨ (x ∧ d(1)) = x ∧ d(1). □
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Corollary 2.5. If d is a monotone derivation of L, then d(d(x) ∨
d(y)) = d(x) ∨ d(y) for all x, y ∈ L.
Proof. The proof follows from d(x)∨d(y) = d(d(x))∨d(d(y)) ≤ d(d(x)∨
d(y)) ≤ d(x) ∨ d(y). □

Unfortunately, the converse of the result above does not hold, namely,
d may not be monotone even if d(d(x)∨ d(y)) = d(x)∨ d(y) holds. We
have a counter example. Let L = {0, a, b, 1} with 0 < a < b < 1. If we
define d : L → L by d(0) = d(1) = 0, d(a) = d(b) = b, then it is easy to
show that d is a derivation and d(d(x) ∨ d(y)) = d(x) ∨ d(y), but d is
not monotone.
Remark 2.6. A map f : L → L for a lattice L is called an interior
operator if

(io1) x ≤ y ⇒ f(x) ≤ f(y)
(io2) f(x) ≤ x
(io3) f(f(x)) = f(x)

It follows from our result above that a monotone derivation is an inte-
rior operator.
Remark 2.7. Similar results to our Theorem 2.2 are already proved in
[7] as Theorem 3.19 and Theorem 3.21.

Theorem 3.19. Let L be a modular lattice and d be
a derivation of L. Then the following conditions are
equivalent:

(1) d is monotone;
(2) d(x ∧ y) = d(x) ∧ d(y);
(3) If d(x) = x, then d(x ∨ y) = d(x) ∨ d(y),

where a lattice L is called modular if
x ≤ z ⇒ x ∨ (y ∧ z) = (x ∨ y) ∧ z (for all x, y, z ∈ L).

Theorem 3.21. Let L be a distributive lattice and d
be a derivation of it. Then the following conditions are
equivalent:

(1) d is monotone.
(2) d(x ∧ y) = d(x) ∧ d(y).
(3) d(x ∨ y) = d(x) ∨ d(y).

Our results are stronger than those of above, because our results
say that monotonicity is equivalent to the condition (2) d(x ∧ y) =
d(x)∧d(y) for all lattices L, namely, we do not assume modularity nor
distributivity to get such results.

Moreover, we obtain a following identity condition instead of (3) If
d(x) = x, then d(x ∨ y) = d(x) ∨ d(y) in Theorem 3.19 in [7].
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Theorem 2.8. Let L be a modular lattice and d be a derivation. Then
d is monotone ⇔ d(d(x) ∨ y) = d(x) ∨ d(y) (∀x, y ∈ L)

Proof. Suppose that d is monotone. Then we have
d(y) = d(y ∧ (d(x) ∨ y))

= {d(y) ∧ (d(x) ∨ y))} ∨ {y ∧ d(d(x) ∨ y)}
= d(y) ∨ {y ∧ d(d(x) ∨ y)} (d(y) ≤ y ≤ d(x) ∨ y)

= (d(y) ∨ d(d(x) ∨ y)) ∧ y (modularity)

= y ∧ d(d(x) ∨ y)

and thus
d(x) ∨ d(y) = d(x) ∨ {y ∧ d(d(x) ∨ y)}

= (d(x) ∨ y) ∧ d(d(x) ∨ y) (modularity)

= d(d(x) ∨ y).

Conversely, suppose d(d(x)∨y) = d(x)∨d(y). If x ≤ y, since d(x) ≤
x ≤ y, then we have d(x)∨ y = y and d(y) = d(d(x)∨ y) = d(x)∨ d(y).
Therefore d(x) ≤ d(y) and d is monotone. □

Moreover we prove the converse.

Theorem 2.9. A lattice L in which any derivation d satisfies the
identity

d(d(x) ∨ y) = d(x) ∨ d(y) (∀x, y ∈ L)

is a modular lattice.

Proof. For every z ∈ L, if we consider a map dz(x) = x∧ z then it is a
monotone derivation. By assumption, the map dz satisfies

dz(dz(x) ∨ y) = dz(x) ∨ dz(y) (∀x, y ∈ L)

and hence ((x∧z)∨y)∧z = (x∧z)∨ (y∧z). This implies that if x ≤ z
then (x ∨ y) ∧ z = x ∨ (y ∧ z). Therefore L is the modular lattice. □

We also have a similar result about distributive lattices.

Theorem 2.10. Let L be a distributive lattice and d be a derivation.
Then we have

d is monotone ⇔ d(x ∨ y) = d(x) ∨ d(y) (∀x, y ∈ L).

Conversely,

Theorem 2.11. A lattice L in which any derivation d satisfies the
identity

d(x ∨ y) = d(x) ∨ d(y) (∀x, y ∈ L),
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is a distributive lattice.

The above results provide characterization theorems of modular lat-
tices and of distributive lattices in terms of derivations.

Remark 2.12. If d is a monotone derivation then a subset
Fixd(L) = {x ∈ L | d(x) = x}

of L is an ideal of L, that is, Fixd(L) satisfies the conditions
(I1) 0 ∈ Fixd(L)
(I2) x ∈ Fixd(L), y ≤ x ⇒ y ∈ Fixd(L)
(I3) x, y ∈ Fixd(L) ⇒ x ∨ y ∈ Fixd(L).

In the case of d being monotone, we have a following result.

Theorem 2.13. If d is a monotone derivation of a lattice L, then
Fixd(L) is a lattice.

Proof. For all x, y ∈ Fixd(L), since d is monotone, we have d(x ∧ y) =
d(x) ∧ d(y) = x ∧ y and hence x ∧ y ∈ Fixd(L). □

Remark 2.14. We note that (Fixd(L),∧,∨) is a lattice for a monotone
derivation d, but it is not always a sublattice of L if L has the maximum
element 1. Because, if 1 ∈ L, then (Fixd(L),∧,∨, 0, d(1)) is also a
lattice, however d(1) = 1 does not hold in general.

Corollary 2.15. If L is a bounded distributive lattice and d is a mono-
tone derivation of L, then the quotient lattice L/ ker(d) is isomorphic
to the lattice Fixd(L), that is,

L/ ker(d) ∼= Fixd(L).

Proof. Let L be a bounded distributive lattice and d be a monotone
derivation. Since d is monotone, d(z) = z∧d(1) for all z ∈ L. It follows
that d(x∨y) = (x∨y)∧d(1) = (x∧d(1))∨(y∧d(1)) = d(x)∨d(y). This
means that a map f : L → Fixd(L) defined by f(x) = d(x) for all x ∈
L is a surjective homomorphism. It follows from the homomorphism
theorem of lattices that L/ ker(f) ∼= Fixd(L) and ker(f) = ker(d),
where x/ ker(d) = y/ ker(d) is defined by d(x) = d(y) for all x, y ∈ L.
Therefore, we have L/ ker(d) ∼= Fixd(L). □

3. Other derivations

Some types of derivations, such as generalized derivation, generalized
(f, g)-derivation and f -derivation, are defined and properties of them
are considered in [1, 2, 3]. For instance, a map D : L → L is called a
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generalized derivation in [1] if it satisfies the condition: For a derivation
d,

D(x ∧ y) = (D(x) ∧ y) ∨ (x ∧ d(y))

We get basic results about a generalized derivation D without diffi-
culty.

Proposition 3.1 (cf. Proposition 3.4, 3.9 [1]). Let d be a derivation
and D be a generalized derivation. Then we have
(1) d(x) ≤ D(x) ≤ x;
(1) D(D(x)) = D(x);
(1) D(x) ∧D(y) ≤ D(x ∧ y);
(1) D(x) ∧D(y) = D(D(x) ∧D(y));
(1) D(x) = d(x) ∨ (x ∧D(1)).

We also have a new result about a generalized derivation D.

Proposition 3.2. Let d be a derivation and D be a generalized deriva-
tion. Then we have D ◦ d = d ≤ d ◦D

Proof. Since
(D ◦ d)(x) = D(d(x))

= D(x ∧ d(x))

= (D(x) ∧ d(x)) ∨ (x ∧ d(d(x)))

= d(x) ∨ (x ∧ d(x))

= d(x),

we get D ◦ d = d.
For d ◦ D, we have d(D(x)) = d(x ∧ D(x)) = (d(x) ∧ D(x)) ∨ (x ∧

d(D(x)) = d(x) ∨ d(D(x)) ≥ d(x) and hence d ≤ d ◦D. □
It follows from our result that a characterization theorem about

monotone generalized derivations can be proved similarly.

Proposition 3.3 (Proposition 3.12 [1]). For a generalized derivation
D, the following conditions are equivalent to each other:
(1) D is monotone.
(1) D(x ∧ y) = D(x) ∧D(y).
(1) D(x) ∨D(y) ≤ D(x ∨ y).
(1) D(x) = x ∧D(1) if L has a maximum element 1.

Proposition 3.4. If L has a maximum element 1, then any generalized
derivation D has a following form

D(x) = (D(1) ∧ x) ∨ d(x).
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Corollary 3.5. D(1) = 1 ⇔ D = idL

Lemma 3.6. If L has a maximum element 1 and d(x) ≤ D(1) for all
x ∈ L, then

D(x) = x ∧D(1).

In this case, the generalized derivation D is monotone. Conversely,
if D is monotone then d(x) ≤ D(1) for all x ∈ L. Therefore, we have
another characterization of monotone generalized derivations.
Theorem 3.7. For any generalized derivation D,

D is monotone ⇔ d(x) ≤ D(1) (∀x ∈ L).

Corollary 3.8. If d is monotone, then so D is.
Proof. We assume that d is monotone. Since d(x) = x∧d(1) (∀x ∈ L),
we have d(x) = x∧d(1) ≤ x∧D(1) ≤ D(1) and thus D is monotone. □

We may ask whether the converse holds, that is, if a generalized
derivation D is monotone then so d is ?

Unfortunately, this does not hold by the following example.
Example 3 Let L = {0, a, b, 1}, (0 < a < b < 1) and d,D : L → L

be maps defined by

d(x) =

{
0 (x = 0, 1)
a (x = a, b)

D(x) =

{
x (x = 0, a, b)
b (x = 1)

It is easy to show that d is a derivation and D is a generalized deriva-
tion. Moreover D is monotone. However, it is obvious that d is not
monotone.

In the previous section, we provide characterization theorems of
modular lattices and of distributive lattices in terms of derivations.
We also have similar results about generalized derivations.
Theorem 3.9. Let L be a modular lattice and D be a generalized
derivation. Then, D is monotone if and only if D(D(x)∨ y) = D(x)∨
D(y).
Proof. Suppose that D is monotone. Since

D(y) = D((D(x) ∨ y) ∧ y)

= {D(D(x) ∨ y) ∧ y) ∨ ((D(x) ∨ y) ∧ d(y))}
= (D(D(x) ∨ y) ∧ y) ∨ d(y)

= y ∧D(D(x) ∨ y),
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we have

D(x) ∨D(y) = D(x) ∨ (y ∧D(D(x) ∨ y))

= D(D(x)) ∨ (y ∧D(D(x) ∨ y))

= (D(x) ∨ y) ∧D(D(x) ∨ y) (modularity)

= D(D(x) ∨ y).

Conversely, suppose D(D(x) ∨ y) = D(x) ∨ D(y) for all x, y ∈ L.
If x ≤ y, since D(x) ≤ x ≤ y, then we have D(x) ∨ y = y and
D(y) = D(D(x)∨ y) = D(x)∨D(y). Therefore D(x) ≤ D(y) and D is
monotone. □

Theorem 3.10. A lattice L in which any generalized derivation D
satisfies the identity

D(D(x) ∨ y) = D(x) ∨D(y) (∀x, y ∈ L)

is a modular lattice.

Proof. For every z ∈ L, if we define maps dz and Dz by dz(x) =
x ∧ z = Dz(x) for all x ∈ L. It is clear that dz is a derivation and
Dz is also a generalized derivation. Since Dz is monotone, it follows
from assumption that Dz(Dz(x) ∨ y) = Dz(x) ∨Dz(y) and thus ((x ∧
z) ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z). This implies that if x ≤ z then
(x ∨ y) ∧ z = x ∨ (y ∧ z). Therefore L is the modular lattice. □

We also have a similar result about distributive lattices.

Theorem 3.11 (Theorem 3.14 [1]). Let L be a distributive lattice and
D be a generalized derivation. Then we have

D is monotone ⇔ D(x ∨ y) = D(x) ∨D(y) (∀x, y ∈ L).

Conversely,

Theorem 3.12. A lattice L in which any generalized derivation D
satisfies the identity

D(x ∨ y) = D(x) ∨D(y) (∀x, y ∈ L)

is a distributive lattice.

The above results provide characterization theorems of modular lat-
tices and of distributive lattices in terms of generalized derivations.

We also consider another type of derivation, f -derivation, according
to [3]. A map d : L → L is called an f -derivation if there exists a map
f : L → L such that

d(x ∧ y) = (d(x) ∧ f(y)) ∨ (f(x) ∧ d(y)) (∀x, y ∈ L).
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It is clear that if f = idL then an f -derivation is the same as the
derivation defined in the previous section.

As basic results about f -derivations, we have
Proposition 3.13 (Proposition 1,2 [3]). Let d : L → L be an f -
derivation. Then, for all x, y ∈ L,
(1) d(x) ≤ f(x);
(2) d(x) ∧ d(y) ≤ d(x ∧ y) ≤ d(x) ∨ d(y);
(3) f(x) ≤ d(1), f(1) = 1 ⇒ d(x) = f(x);
(4) d(1) = 1 ⇒ d = f , hence d is monotone.

We also have similar results about monotone f -derivations.
Proposition 3.14 (cf. Theorem 1 [3]). For an f -derivation d, the
following conditions are equivalent:
(1) d is monotone;
(2) d(x) ∨ d(y) ≤ d(x ∨ y) (∀x, y ∈ L);
(3) d(x ∧ y) = d(x) ∧ d(y) (∀x, y ∈ L);
(4) d(x) = f(x) ∧ d(x ∨ y) (∀x, y ∈ L).
Proof. We only show that (1) is equivalent to (4). Suppose that d is
monotone. Since d(x) ≤ f(x) and d(x) ≤ d(x ∨ y), we get d(x) ≤
f(x) ∧ d(x ∨ y). On the other hand, since d(x) ≤ d(x ∨ y) ≤ f(x ∨ y),
we have
d(x) = d(x ∧ (x ∨ y))

= (d(x) ∧ f(x ∨ y)) ∨ (f(x) ∧ d(x ∨ y)) (∵ d is an f−derivation)

= d(x) ∨ (f(x) ∧ d(x ∨ y)) (∵ d(x) ≤ f(x ∨ y)).

This means that f(x) ∧ d(x ∨ y) ≤ d(x). Therefore, we get d(x) =
f(x) ∧ d(x ∨ y).

Conversely, we assume that d(x) = f(x) ∧ d(x ∨ y) (∀x, y ∈ L). If
x ≤ y, then d(x) = f(x) ∧ d(x ∨ y) = f(x) ∧ d(y) ≤ d(y). Hence d is
monotone.

□
We note that the result above was already proved in [3] as Theorem 1

under the conditions f(1) = 1 and f(x∧y) = f(x)∧f(y) for all x, y ∈ L.
Our result shows that the conditions are redundant. Moreover, our
result implies that the modularity condition is also redundant in the
Theorem 2 (a) in [3], where it said that

Theorem 2. Let L be a modular lattice and d be an
f -derivation on L.
(a) d is a monotone f -derivation if and only if d(x∧y) =
dx ∧ dy.
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In cases of modular lattices and of distributive lattices, we have
following results.
Theorem 3.15. Let L be a modular lattice and d : L → L be an f -
derivation. Then, d is monotone if and only if d(x) ∨ d(y) = (d(x) ∨
f(y)) ∧ d(x ∨ y) for all x, y ∈ L.
Proof. Suppose that d is monotone. Since d(y) = f(y) ∧ d(x ∨ y), we
have d(x) ∨ d(y) = d(x) ∨ (f(y) ∧ d(x ∨ y)) = (d(x) ∨ f(y)) ∧ d(x ∨ y)
by modularity.

Conversely, assume that d(x)∨ d(y) = (d(x)∨ f(y))∧ d(x∨ y) for all
x, y ∈ L. If x ≤ y then d(x) ≤ d(x)∨d(y) = (d(x)∨f(y))∧d(y) ≤ d(y)
and thus d is monotone. □
Corollary 3.16. Let L be a modular lattice and d : L → L be a
derivation. Then, d is monotone if and only if d(d(x)∨y) = d(x)∨d(y).
Proof. For an f -derivation d of a modular lattice L, if we take f = idL,
then d is a derivation of L and thus d ◦ d = d and d(x) ≤ x for all
x ∈ L. It follows from the above that d(x)∨d(y) = (d(x)∨y)∧d(x∨y)
for all x, y ∈ L. By use of these facts, if d is monotone, then we
have d(x) ∨ d(y) = d(d(x)) ∨ d(y) = (d(d(x)) ∨ y) ∧ d(d(x) ∨ y) =
(d(x) ∨ y) ∧ d(d(x) ∨ y) = d(d(x) ∨ y). The converse is obvious. □

For the case of distributive lattices, we also have a following result.
Theorem 3.17. Let L be a distributive lattice and d be an f -derivation.
Then, d is monotone if and only if d(x)∨d(y) = (f(x)∨f(y))∧d(x∨y)
for all x, y ∈ L.
Proof. Let d be a monotone f -derivation. Since d(x) = f(x)∧ d(x∨ y)
and L is the distributive lattice, we have d(x) ∨ d(y) = (f(x) ∧ d(x ∨
y)) ∨ (f(y) ∧ d(x ∨ y)) = (f(x) ∨ f(y)) ∧ d(x ∨ y).

Conversely, suppose that d(x)∨d(y) = (f(x)∨f(y))∧d(x∨y) for all
x, y ∈ L. If x ≤ y, then d(x) ≤ d(x)∨d(y) = (f(x)∨f(y))∧d(y) ≤ d(y).
Therefore d is monotone. □
Corollary 3.18. Let L be a distributive lattice and d be a derivation.
Then, d is monotone if and only if d(x)∨d(y) = d(x∨y) for all x, y ∈ L.

Remark 3.19. The following result was proved as theorem 4 which was
one of the main results of [3].

Theorem 4. Let L be a lattice. If there exists an f -
derivation d on L such that d(x ∨ y) = d(x) ∨ d(y) for
all x, y ∈ L and f is an epimorphism, then L is a dis-
tributive lattice.
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Unfortunately, this is not true, because we have a following counter
example. Let L = N5 = {0, a, b, c, 1}, (0 < a < 1, 0 < b < c < 1) and
f = d = idL. Then it is trivial that d and f satisfy the assumption of
the theorem, but the lattice L is neither distributive nor modular.
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مشبکه ها مشتقات خواص برخی

کوندو ٢میشیرو و کاواگوچی ١مایوکا

ژاپن ساپورو، هوکایدو، دانشگاه اطلاعات، فناوری و علوم تکمیلی تحصیلات دانشکده ١

ژاپن توکیو، دنکی، توکیو دانشگاه فناوری، و سیستم طراحی دانشکده ریاضی، گروه ٢

L مشبکه از d مشتق (i) می دهیم نشان و کرده بررسی را مشبکه ها مشتقات خواص برخی مقاله این در
یکنوای مشتق (ii) ،x ∈ L هر برای d(x) ≤ d(١) اگر تنها و اگر است یکنوا ،١ ماکسیمم عنصر با
برای ساده بندی رده قضایای برخی (iii) و می شود (توصیف) مشخص d(x) = x ∧ d(١) توسط d
خواهد بیان مشبکه ها مشتقات از استفاده با (پخشی)، مشبکه های  توزیع پذیر و پیمانه ای مشبکه های
مجموعه مشبکه، این از d یکنوای مشتق و L توزیع پذیر مشبکه برای که داد خواهیم نشان همچنین شد.
نقضی مثال به علاوه، می باشد. یکریخت L/ker(d) مشبکه با d ثابت نقاط تمام از متشکل Fixd(L)

کرد. خواهیم ارائه ،[٣] مرجع از که ۴ قضیه برای

توزیع پذیر. مشبکه پیمانه ای، مشبکه ترتیب، حافظ مشتق، کلیدی: کلمات
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