Journal of Algebraic Systems Vol. 9, No 1, (2021), pp 35-43

DEFICIENCY ZERO GROUPS IN WHICH PRIME POWER OF GENERATORS ARE CENTRAL

M. AHMADPOUR AND H. ABDOLZADEH*

ABSTRACT. The infinite family of groups defined by the presentation $G_p = \langle x, y | x^p = y^p, xyx^my^n = 1 \rangle$, in which p is a prime in $\{2, 3, 5\}$ and $m, n \in \mathbb{N}_0$, will be considered and finite and infinite groups in the family will be determined. For the primes p = 2, 3the group G_p is finite and for p = 5, the group is finite if and only if $m \equiv n \equiv 1 \pmod{5}$ is not the case.

1. INTRODUCTION

Deficiency zero groups are those, presented by an equal number of generators and relations, that is a finitely presented group $G = \langle X \mid R \rangle$ in which X is the set of generators of G and R is the set of relations, is called deficiency zero if |X| = |R|. Finite deficiency zero groups are of much interest in group theory, see for example [1, 3, 5]. For a general introduction to group presentations and deficiency zero groups see [4].

In this article we consider the groups $G_p = \langle x, y | x^p = y^p, xyx^m y^n = 1 \rangle$, of zero deficiency, where $m, n \in \mathbb{N}_0$ and p = 2, 3 and 5. In some states, we use the modified Todd-Coxeter coset enumeration algorithm in the form given in [2]. Also we use the Tietz transformations (see [4]), to find out that the group G_p is finite or infinite. Using GAP ([6]), we checked finiteness of G_p with small m and n by examining its quotients

DOI: 10.22044/jas.2020.9361.1456

MSC(2010): Primary: 20F05; Secondary: 20D15.

Keywords: deficiency zero group, finitely presented group, coset enumeration algorithm. Received: 3 February 2020, Accepted: 28 July 2020.

^{*}Corresponding author.

and subgroups and then tried to generalize the results. The notations we use here are standard.

2. Preliminaries

Let p be a prime number and let m, n be non-negative integers. Let G_p be the group defined by the presentation $G_p = \langle x, y | x^p = y^p, xyx^my^n = 1 \rangle$. The easiest case to think about is the case that the prime p divides one of m or n. In that case the second relation of G_p simplifies to $x = y^r$ in which r is an integer, therefore the group G_p is generated by y. The following lemma shows the detail.

Lemma 2.1. Let p be a prime number. If $m \equiv 0 \pmod{p}$ or $n \equiv 0 \pmod{p}$ then the group G_p is a finite cyclic group of order p(m+n+2).

Proof. By the first relation of G_p , the elements x^p and y^p are central in G_p . Let m = kp. By the second relation of G_p it follows that $xyx^my^n = xyx^{kp}y^n = xyy^{kp+n} = xy^{m+n+1} = 1$. Therefore the relation $x = y^{-(m+n+1)}$ holds in G_p . Using this relation to remove the generator x by a Tietz transformation, we get the presentation $G_p = \langle y | (y^{-m-n-1})^p = y^p \rangle = \langle y | y^{p(m+n+2)} = 1 \rangle$ for the group G_p . Hence G_p is cyclic with $|G_p| = p(m+n+2)$. A similar argument works if $n \equiv 0 \pmod{p}$.

Lemma 2.2. Let $p \ge 3$ be a prime number. If $m \equiv 1 \pmod{p}$ and $n \equiv r \pmod{p}$ with 1 < r < p then the group G_p is a finite abelian group of order p(m + n + 2).

Proof. Let $m = pk_1 + 1$ and $n = pk_2 + r$. By the second relation of G_p we have $1 = xyx^my^n = xyxy^{pk+r}$ where $k = k_1 + k_2$. Therefore $xyxy^r (= y^{-pk})$ is a central element of G_p , that is $xyxy^r = xy^rxy$. Hence $xy^{r-1} = y^{r-1}x$. Consequently y^{r-1} commutes with x and hence is a central element of G_p . As $y^p, y^{r-1} \in Z(G_p)$ and gcd(p, r-1) = 1 we see that [y, x] = 1. Therefore G_p is abelian. Now it is easy to see that $|G_p| = p(m+n+2)$.

Lemma 2.3. Let $p \ge 3$ be a prime number. If $m \equiv p-1 \pmod{p}$ then the subgroup $H = \langle y \rangle$ of the group G_p has a presentation of the form $H = \langle a \mid R_i, i = 1, \dots, p \rangle$ where the relation R_i is $a^{p(1+(-1)^{i-1}(m+n+1)^i)} =$ 1 for $i = 1, \dots, p-1$ and R_p is $a^{(m+n+1)^{p+1}} = 1$.

Proof. By the first relation of $G = G_p$ the elements x^p and y^p are central elements in G. Hence the second relation of G could be written in the form $xyx^{-1}y^{m+n+1} = 1$, that is $xyx^{-1} = y^{-(m+n+1)}$. A p power of the latter relation gives us the relation $y^{p(m+n+2)} = 1$. Consider the subgroup $H = \langle a = y \rangle$ of the group $G = G_p = \langle x, y | x^p = 0$.

 y^p , $xyx^{-1}y^{m+n+1} = 1$. We find a presentation for the subgroup H. The subgroup relation table gives us the bonus 1.y = a.1 and by defining 1.x = 2, the first row of the table of the second relation of Gdeduces $2.y = a^{-(m+n+1)}.2$. Now for $i = 2, \dots, p-1$ define i.x = i+1and the *i*-th row of the table of the second relation of G completes to deduce the bonus $(i + 1).y = a^{(-1)^i(m+n+1)^i}.(i + 1)$. Now the first row of the table of the relation $x^py^{-p} = 1$ completes and we deduce $p.x = a^p.1$. All the tables are now complete and we have the presentation $H = \langle a \mid R_i, i = 1, \dots, p \rangle$ for the subgroup H in which the relations $R_i, i = 1, \dots, p-1$ is $a^{p(1+(-1)^{i-1}(m+n+1)^i)} = 1$ and correspond to the rows $2, \dots, p$ of the table of the relation $x^py^{-p} = 1$ and the relation R_p is $a^{(m+n+1)^{p+1}} = 1$ and corresponds to the last row of the table of the second relation of G_p .

Lemma 2.4. Let $p \ge 5$ be a prime number and let $m \equiv p-1 \pmod{p}$. Then the following hold

- (i) If $n \equiv r \pmod{p}$ with 2 < r < p 1 then the group G_p is a finite group of order p(m + n + 2).
- (ii) If $n \equiv p 1 \pmod{p}$ then the group G_p is a finite group of order $p^2(m + n + 2)$.

Proof. By the previous lemma, the index of the subgroup H in G_p is p and the order of H is

$$h = \gcd((p(1+(-1)^{i-1}(m+n+1)^i), i = 1, \cdots, p-1), (m+n+1)^p + 1).$$

On the other hand if $n \equiv r \pmod{p}$ with 2 < r < p-1 then the number $(m+n+1)^p + 1$ is not divisible by p and therefore the number h is (m+n+2) and if $n \equiv p-1 \pmod{p}$ then the number $(m+n+1)^p + 1$ is divisible by p and therefore the number h is p(m+n+2). \Box

Lemma 2.5. Let $p \ge 5$ be a prime number and let $m \equiv 1 \pmod{p}$. If $n \equiv 1 \pmod{p}$ then the group G_p is an infinite group.

Proof. Consider the quotient group $H = \langle x, y | x^p = y^p, xyx^m y^n = 1, x^p = 1 \rangle$ of the group G_p . As $m, n \equiv 1 \pmod{p}$, the second relation of the group H is $(xy)^2 = 1$. Hence $H = \langle x, y | x^p = y^p = 1, (xy)^2 = 1 \rangle$ is isomorphic to the triangle group D(2, p, p). As $p \geq 5$ the group D(2, p, p) is an infinite group and hence G_p is infinite. \Box

3. Main Results

For the prime p = 2, using Lemma 2.1, the only case which remains to consider is the case where m, n are both odd numbers.

Lemma 3.1. Let m and n are odd numbers. Then the group G_2 is a finite group of order 4(m + n + 2).

Proof. Similar to the argument in the proof of Lemma 2.3, the subgroup $H = \langle y \rangle$ is of index 2 in G_2 and has the presentation $H = \langle a | a^{2(m+n+2)} = 1, a^{(m+n)^2-4} = 1 \rangle$. As 2(m+n+2) divides $(m+n)^2 - 4$, H is cyclic of order 2(m+n+2) and hence the order of G_2 is $|G_2| = 2|H| = 4(m+n+2)$ where m and n are both odd numbers. \Box

The next theorem shows that the group G_p is finite for p = 2 and $m, n \in \mathbb{N}_0$.

Theorem 3.2. Let $m, n \in \mathbb{N}_0$ and p = 2. Then the group

$$G_p = \langle x, y | x^p = y^p, xyx^m y^n = 1 \rangle$$

is a finite group.

Proof. The result follows from Lemmas 2.1 and 3.1.

We continue with the case p = 3. We need the following lemmas to complete the case p = 3.

Lemma 3.3. Let $m \equiv 1 \pmod{3}$, then the followings hold

- (i) If $n \equiv 1 \pmod{3}$, then the group G_3 is a finite group of order 24(m+n+2).
- (ii) If $n \equiv 2 \pmod{3}$, then the group G_3 is a finite group of order 3(m+n+2).

Proof.

(i) Let $m = 3k_1 + 1$ and $n = 3k_2 + 1$. By the second relation of G_3 it follows that $xyx^my^n = xyx^{3k_1+1}y^{3k_2+1} = 1$ and therefore the following relation holds in G_3

$$(xy)^2 y^{3k} = 1,$$

where $k = k_1 + k_2$. Consider the subgroup $N = \langle a = x \rangle$ of the group $G_3 = \langle x, y \mid x^3y^{-3} = 1, (xy)^2y^{3k} = 1 \rangle$. We use the modified Todd-Coxeter coset enumeration algorithm to find a presentation for N. By the table of the generator a we obtain $1 \cdot x = a \cdot 1$. Defining 1.y = 2 and 2.y = 3 completes the first row of the table of the relation $x^3y^{-3} = 1$ to deduce $3.y = a^3 \cdot 1$. Now the first row of the table of the second relation of G_3 also completes to get $2.x = a^{-3k-4} \cdot 3$. Also by defining 3.x = 4 the second row of the table of the first relation of G_3 completes and we deduce that $4.x = a^{3k+7} \cdot 2$. Now the third row of the table of the table of the table of the table of the second relation of G_3 completes and we find $4.y = a^{-6k-7} \cdot 4$. All the tables are complete and we obtain the following presentation for N

$$N \cong \langle a | a^{18k+24} = 1 \rangle.$$

38

On the other hand we have $|G_3: N| = 4$. Hence $|G_3| = 4(18k + 24) = 24(m + n + 2)$. (ii) Lemma 2.2.

Lemma 3.4. Let $m \equiv 2 \pmod{3}$ and $n \equiv 2 \pmod{3}$. Then the group G_3 is a finite group of order 9(m + n + 2).

Proof. By Lemma 2.3 the subgroup H of the group G_3 has the presentation $H = \langle a | a^{3(m+n+2)} = a^{3(1-(m+n+1)^2)} = a^{(m+n+1)^3+1} = 1 \rangle$ which simplifies to $H = \langle a | a^{3(m+n+2)} = 1 \rangle$, as the numbers $(m+n+1)^3 + 1$ and $3(1-(m+n+1)^2)$ are divisible by 3(m+n+2). Therefore the group G_3 is a finite group of order 9(m+n+2) in this case. \Box

Theorem 3.5. Let $m, n \in \mathbb{N}_0$ and let p = 3. Then the group

$$G_p = \langle x, y | x^p = y^p, xyx^m y^n = 1 \rangle,$$

is a finite group.

Proof. The result follows from Lemmas 2.1, 3.3 and 3.4.

Lemma 3.6. Let $m \equiv 2 \pmod{5}$. Then the followings hold

- (i) If $n \equiv 2 \pmod{5}$, then the group G_5 is a finite group of order 55(m+n+2).
- (ii) If $n \equiv 3 \pmod{5}$, then the group G_5 is a finite group of order 55(m+n+2).
- (iii) If $n \equiv 4 \pmod{5}$, then the group G_5 is a finite group of order 5(m+n+2).

Proof.

(i) Let 5 divides both m-2 and n-2. The second relation of the group G_5 is in the form $1 = xyx^2y^2x^{m+n-4}$ as x^{m-2} and y^{n-2} are central elements of G_5 . Therefore the element xyx^2y^2 is also a central element of G_5 . Hence the relation $xyx^2y^2 = x^2y^2xy$ holds in the group G_5 and thus (yx)(xy) = (xy)(yx), or equivalently xy commutes with yx. In other words the relation $xy^2xy^{-1}x^{-2}y^{-1} = 1$ holds in G_5 . Therefore we have $G_5 = \langle x, y | x^5y^{-5} = 1, xyx^2y^2x^{m+n-4} = 1, xy^2xy^{-1}x^{-2}y^{-1} = 1 \rangle$ and we call the relations of G_5 in this order, that is the first relation is $x^5y^{-5} = 1$, the second is $xyx^2y^2x^{m+n-4} = 1$ and the third is $xy^2xy^{-1}x^{-2}y^{-1} = 1$.

We find a presentation for the subgroup $N = \langle a = x \rangle$ of the group G_5 . Let k = m + n - 4. The subgroup table gives us 1.x = a.1. Define i.y = i + 1 for $i = 1, \dots, 4$ and the first row of the table of the first relation of G_5 completes to obtain $5.y = a^5.1$. Now by defining 2.x = 6 the first rows of the tables of the second and the third relations complete and we get $6.x = a^{-k-6}.4$ and $3.x = a^{-k-7}.5$ respectively. Defining

4.x = 7 and then 7.x = 8 completes the second row of the table of the first relation of G_5 , the 4 - th and the 7 - th rows of the table of the second relation and we obtain $8.x = a^{k+11} \cdot 2$, $7.y = a^{-2k-11} \cdot 7$ and $8.y = a^{4k+28} \cdot 6$ respectively. Finally defining 5.x = 9, 9.x = 10 and 6.y = 11 complete all the tables and we deduce $10.x = a^{k+10} \cdot 11$ from the third row of the table of the first relation. Also by the second, 6 - th and 9 - th rows of the table of the third relation we obtain $11.y = a^{-3k-19} \cdot 9$, $11.x = a^2 \cdot 3$ and $9.y = a^{-2k-12} \cdot 10$ respectively. From the 6 - th row of the table of the monitor table are complete. Therefore the index of N in G_5 is 11 and we have the following presentation for N

$$N = \langle a \mid a^{5(k+6)} = 1 \rangle,$$

that is N is a cyclic subgroup with order |N| = 5(m + n + 2) and therefore $|G_5| = 55(m + n + 2)$ in this case.

(ii) Similar to the previous case the second relation of G_5 could be written in the form $1 = xyx^2y^3x^{m+n-5}$ as x^{m-2} and y^{n-3} are central elements of G_5 . Therefore the element xyx^2y^3 is also a central element of G_5 . Hence $xyx^2y^3 = x^2y^3xy$ in the group G_5 and thus $(yx)(xy^2) = (xy^2)(yx)$, or equivalently xy^2 commutes with yx. In other words the relation $xy^3xy^{-2}x^{-2}y^{-1} = 1$ holds in G_5 . Therefore we have $G_5 = \langle x, y | x^5y^{-5} = 1, xyx^2y^3x^{m+n-5} = 1, xy^3xy^{-2}x^{-2}y^{-1} = 1 \rangle$ and we call the relations of G_5 in this order, that is the first relation is $x^5y^{-5} = 1$, the second is $xyx^2y^3x^{m+n-5} = 1$ and the third is $xy^3xy^{-2}x^{-2}y^{-1} = 1$.

We find again a presentation for the subgroup $N = \langle b = x \rangle$ of the group G_5 and show that its index is 11. Let d = m + n - 5. The subgroup table gives us $1 \cdot x = b \cdot 1$. Define $i \cdot y = i + 1$ for $i = 1, \dots, 4$ and the first row of the table of the first relation of G_5 completes to obtain $5.y = b^5.1$. Now by defining 2.x = 6 the first rows of the tables of the second and the third relations complete and we got $6 \cdot x = b^{-d-6} \cdot 3$ and $4x = b^{-d-7}$.5 respectively. Defining 3x = 7 and then 7x = 8completes the second row of the table of the first relation of G_5 and we obtain $8 \cdot x = b^{d+11} \cdot 2$. Now define $7 \cdot y = 9$ to completing the third row of the table of the second relation to get the bonus $9 \cdot x = b^2 \cdot 4$ and define 6.y = 10 to complete and get the bonus $10.x = b^{(-d-7)}.9$ from the second row of that table. Finally defining $5 \cdot x = 11$ completes all the tables and we deduce $11.x = b^{2d+17}.10$ from the 5 - th row of the table of the first relation. Also by the 8 - th and 11 - th rows of the table of the third relation we obtain $8.y = b^{d+8}.8$ and $10.y = b^{-d-8}.11$ respectively. From the 5-th and 6-th rows of the table of the second relation we deduce $11.y = b^{-2d-11}.7$ and $9.y = b^{3d+24}.6$ respectively.

Now all the entries of the monitor table are complete. Therefore the index of N in G_5 is 11 and we have the presentation

$$N = \langle b \mid b^{5(d+7)} \rangle,$$

that is N is a cyclic subgroup with order |N| = 5(m + n + 2) and therefore $|G_5| = 55(m + n + 2)$ in this case. (iii) Lemma 2.4.

Lemma 3.7. Let $m \equiv 3 \pmod{5}$. Then the followings hold

- (i) If $n \equiv 3 \pmod{5}$, then the group G_5 is a finite group of order 55(m+n+2).
- (ii) If $n \equiv 4 \pmod{5}$, then the group G_5 is a finite group of order 5(m+n+2).

Proof.

(i) Let 5 divides both m-3 and n-3. The second relation of the group G_5 is in the form $1 = xyx^3y^3x^m + n - 6$ as x^{m-3} and y^{n-3} are central elements of G_5 . Therefore the element xyx^3y^3 is also a central element of G_5 . Hence the relation $xyx^3y^3 = x^3y^3xy$ holds in the group G_5 and thus $(yx)(x^2y^2) = (x^2y^2)(yx)$, or equivalently x^2y^2 commutes with yx. In other words the relation $x^2y^3xy^{-2}x^{-3}y^{-1} = 1$ holds in G_5 . Therefore we have $G_5 = \langle x, y | x^5y^{-5} = 1, xyx^3y^3x^{m+n-6} = 1, x^2y^3xy^{-2}x^{-3}y^{-1} = 1 \rangle$ and we call the relations of G_5 in this order, that is the first relation is $x^5y^{-5} = 1$, the second is $xyx^3y^3x^{m+n-6} = 1$ and the third is $x^2y^3xy^{-2}x^{-3}y^{-1} = 1$.

Suppose a = yx, $b = x^2y^2$, $c = x^5$, u = xy and $w = x^3y^3$. Consider the subgroup $N = \langle a, b, c, u, w \rangle$ of the group G_5 . We find a presentation for N. Defining 1.y = 2 completes the table of the generator a and gives us the bonus 2.x = a.1 and defining 1.x = 3 completes the table of uwith bonus 3.y = u.1. By defining 3.x = 4 the table of b completes with the result $4.y = bu^{-1}.3$ and finally by defining 4.x = 5 all the tables became complete and from the table of the generator c we get $5.x = ca^{-1}.2$ and from the table of w we conclude $5.y = wb^{-1}.4$ and from the first row of the table of the first relation of G_5 we deduce $2.y = cw^{-1}.5$. Now the relations of N are as follows, from the rows of the table of the first relation we get the relations [c, a] = [c, u] = [c, b] =[c, w] = 1, that is the generator c is central in N. From the table of the third relation of G_5 we deduce the relations $[b, a] = auw^{-1}a^{-1}u^{-1}w =$ $[w, u] = a^{-1}u^{-1}baub^{-1} = [b, w] = 1$ and from the table of the second relation the following relations for N,

$$R_{1} : uwc^{\kappa} = 1,$$

$$R_{2} : a^{2}bc^{k} = 1,$$

$$R_{3} : bu^{-1}a^{-1}u^{-1}c^{k+2} = 1,$$

$$R_{4} : wb^{-2}c^{k+2} = 1,$$

$$R_{5} : a^{-1}w^{-1}uw^{-1}c^{k+4} = 1,$$

where k = (m + n - 6)/5. It is easy to show that N is abelian and after some straightforward calculations we get the following presentation for N

$$N \cong \langle a, c | [a, c] = 1, a^{11} c^{4k+2} = 1, c^{5k+8} = 1 \rangle.$$

The subgroup N is cyclic if and only if gcd(11, 4k + 2) = 1 and the order of N is |N| = 11(5k + 8). As the index of N in G_5 is 5, we see that G_5 is finite with order $|G_5| = 55(5k + 8) = 55(m + n + 2)$. (ii) Lemma 2.3.

Lemma 3.8. Let $m \equiv 4 \pmod{5}$ and $n \equiv 4 \pmod{5}$. Then the group G_5 is a finite group of order 25(m + n + 2).

Proof. Lemma 2.4.

Theorem 3.9. Let $m, n \in \mathbb{N}_0$ and p = 5. Then the group

$$G_p = \langle x, y | x^p = y^p, xyx^m y^n = 1 \rangle,$$

is a finite group except in the case that $m \equiv 1 \pmod{5}$ and $n \equiv 1 \pmod{5}$.

Proof. The result follows from Lemmas 2.1, 2.2, 2.5, 3.6, 3.7 and 3.8. \Box

References

- H. Abdolzadeh and R. Sabzchi, An infinite family of finite 2-groups with deficiency zero, Int. J. Group Theory, Vol. 6(3) (2017), 45–49.
- M. J. Beetham and C. M. Campbell, A note on the Todd-Coxeter coset enumeration algorithm, P. Edinburgh Math. Soc. 20 (1976) 73–79.
- G. Havas, M. F. Newman and E. A. O'Brien, Groups of deficiency zero, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 25 (1994) 53–67.
- D. L. Johnson, Topics in the theory of group presentations, London Math. Soc. Lecture Note Ser., 42 Cambridge University Press, Cambridge, 1980.
- R. Sabzchi and H. Abdolzadeh, An infinite family of finite 3-groups with deficiency zero, J. Algebra Appl., Vol. 18(7) (2019), 1–12.
- 6. The GAP Group, GAP | Groups, Algorithms and Programming, Version 4.4 (available from www.gap-system.org), 2005.

42

Mohammad Ahmadpour

Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, P.O.Box 56199-11367, Ardabil, Iran. Email: ahmadpourmohamad80gmail.com

Hossein Abdolzadeh

Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, P.O.Box 56199-11367, Ardabil, Iran. Email: narmin.hsn@gmail.com