DEFICIENCY ZERO GROUPS IN WHICH PRIME POWER OF GENERATORS ARE CENTRAL

M. AHMADPOUR AND H. ABDOLZADEH*

Abstract

The infinite family of groups defined by the presentation $G_{p}=\left\langle x, y \mid x^{p}=y^{p}, x y x^{m} y^{n}=1\right\rangle$, in which p is a prime in $\{2,3,5\}$ and $m, n \in \mathbb{N}_{0}$, will be considered and finite and infinite groups in the family will be determined. For the primes $p=2,3$ the group G_{p} is finite and for $p=5$, the group is finite if and only if $m \equiv n \equiv 1(\bmod 5)$ is not the case.

1. Introduction

Deficiency zero groups are those, presented by an equal number of generators and relations, that is a finitely presented group $G=\langle X \mid R\rangle$ in which X is the set of generators of G and R is the set of relations, is called deficiency zero if $|X|=|R|$. Finite deficiency zero groups are of much interest in group theory, see for example $[1,3,5]$. For a general introduction to group presentations and deficiency zero groups see [4].

In this article we consider the groups $G_{p}=\langle x, y| x^{p}=y^{p}, x y x^{m} y^{n}=$ 1 , of zero deficiency, where $m, n \in \mathbb{N}_{0}$ and $p=2,3$ and 5 . In some states, we use the modified Todd-Coxeter coset enumeration algorithm in the form given in [2]. Also we use the Tietz transformations (see [4]), to find out that the group G_{p} is finite or infinite. Using GAP ([6]), we checked finiteness of G_{p} with small m and n by examining its quotients

[^0]Keywords: deficiency zero group, finitely presented group, coset enumeration alghorithm. Received: 3 February 2020, Accepted: 28 July 2020.

* Corresponding author.
and subgroups and then tried to generalize the results. The notations we use here are standard.

2. Preliminaries

Let p be a prime number and let m, n be non-negative integers. Let G_{p} be the group defined by the presentation $G_{p}=\langle x, y| x^{p}=$ $\left.y^{p}, x y x^{m} y^{n}=1\right\rangle$. The easiest case to think about is the case that the prime p divides one of m or n. In that case the second relation of G_{p} simplifies to $x=y^{r}$ in which r is an integer, therefore the group G_{p} is generated by y. The following lemma shows the detail.
Lemma 2.1. Let p be a prime number. If $m \equiv 0(\bmod p)$ or $n \equiv 0$ $(\bmod p)$ then the group G_{p} is a finite cyclic group of order $p(m+n+2)$.

Proof. By the first relation of G_{p}, the elements x^{p} and y^{p} are central in G_{p}. Let $m=k p$. By the second relation of G_{p} it follows that $x y x^{m} y^{n}=x y x^{k p} y^{n}=x y y^{k p+n}=x y^{m+n+1}=1$. Therefore the relation $x=y^{-(m+n+1)}$ holds in G_{p}. Using this relation to remove the generator x by a Tietz transformation, we get the presentation $G_{p}=\left\langle y \mid\left(y^{-m-n-1}\right)^{p}=y^{p}\right\rangle=\left\langle y \mid y^{p(m+n+2)}=1\right\rangle$ for the group G_{p}. Hence G_{p} is cyclic with $\left|G_{p}\right|=p(m+n+2)$. A similar argument works if $n \equiv 0(\bmod p)$.

Lemma 2.2. Let $p \geq 3$ be a prime number. If $m \equiv 1(\bmod p)$ and $n \equiv r(\bmod p)$ with $1<r<p$ then the group G_{p} is a finite abelian group of order $p(m+n+2)$.
Proof. Let $m=p k_{1}+1$ and $n=p k_{2}+r$. By the second relation of G_{p} we have $1=x y x^{m} y^{n}=x y x y^{p k+r}$ where $k=k_{1}+k_{2}$. Therefore $x y x y^{r}\left(=y^{-p k}\right)$ is a central element of G_{p}, that is $x y x y^{r}=x y^{r} x y$. Hence $x y^{r-1}=y^{r-1} x$. Consequently y^{r-1} commutes with x and hence is a central element of G_{p}. As $y^{p}, y^{r-1} \in Z\left(G_{p}\right)$ and $\operatorname{gcd}(p, r-1)=1$ we see that $[y, x]=1$. Therefore G_{p} is abelian. Now it is easy to see that $\left|G_{p}\right|=p(m+n+2)$.

Lemma 2.3. Let $p \geq 3$ be a prime number. If $m \equiv p-1(\bmod p)$ then the subgroup $H=\langle y\rangle$ of the group G_{p} has a presentation of the form $H=\left\langle a \mid R_{i}, i=1, \cdots, p\right\rangle$ where the relation R_{i} is $a^{p\left(1+(-1)^{i-1}(m+n+1)^{i}\right)}=$ 1 for $i=1, \cdots, p-1$ and R_{p} is $a^{(m+n+1)^{p}+1}=1$.
Proof. By the first relation of $G=G_{p}$ the elements x^{p} and y^{p} are central elements in G. Hence the second relation of G could be written in the form $x y x^{-1} y^{m+n+1}=1$, that is $x y x^{-1}=y^{-(m+n+1)}$. A p power of the latter relation gives us the relation $y^{p(m+n+2)}=1$. Consider the subgroup $H=\langle a=y\rangle$ of the group $G=G_{p}=\langle x, y| x^{p}=$
$\left.y^{p}, x y x^{-1} y^{m+n+1}=1\right\rangle$. We find a presentation for the subgroup H. The subgroup relation table gives us the bonus $1 . y=a .1$ and by defining $1 . x=2$, the first row of the table of the second relation of G deduces $2 . y=a^{-(m+n+1)} .2$. Now for $i=2, \cdots, p-1$ define $i . x=i+1$ and the i-th row of the table of the second relation of G completes to deduce the bonus $(i+1) \cdot y=a^{(-1)^{i}(m+n+1)^{i}} \cdot(i+1)$. Now the first row of the table of the relation $x^{p} y^{-p}=1$ completes and we deduce $p . x=a^{p} .1$. All the tables are now complete and we have the presentation $H=\left\langle a \mid R_{i}, i=1, \cdots, p\right\rangle$ for the subgroup H in which the relations $R_{i}, i=1, \cdots, p-1$ is $a^{p\left(1+(-1)^{i-1}(m+n+1)^{i}\right)}=1$ and correspond to the rows $2, \cdots, p$ of the table of the relation $x^{p} y^{-p}=1$ and the relation R_{p} is $a^{(m+n+1)^{p}+1}=1$ and corresponds to the last row of the table of the second relation of G_{p}.

Lemma 2.4. Let $p \geq 5$ be a prime number and let $m \equiv p-1(\bmod p)$. Then the following hold
(i) If $n \equiv r(\bmod p)$ with $2<r<p-1$ then the group G_{p} is a finite group of order $p(m+n+2)$.
(ii) If $n \equiv p-1(\bmod p)$ then the group G_{p} is a finite group of order $p^{2}(m+n+2)$.

Proof. By the previous lemma, the index of the subgroup H in G_{p} is p and the order of H is
$h=\operatorname{gcd}\left(\left(p\left(1+(-1)^{i-1}(m+n+1)^{i}\right), i=1, \cdots, p-1\right),(m+n+1)^{p}+1\right)$.
On the other hand if $n \equiv r(\bmod p)$ with $2<r<p-1$ then the number $(m+n+1)^{p}+1$ is not divisible by p and therefore the number h is $(m+n+2)$ and if $n \equiv p-1(\bmod p)$ then the number $(m+n+1)^{p}+1$ is divisible by p and therefore the number h is $p(m+n+2)$.

Lemma 2.5. Let $p \geq 5$ be a prime number and let $m \equiv 1(\bmod p)$. If $n \equiv 1(\bmod p)$ then the group G_{p} is an infinite group.

Proof. Consider the quotient group $H=\langle x, y| x^{p}=y^{p}, x y x^{m} y^{n}=$ $\left.1, x^{p}=1\right\rangle$ of the group G_{p}. As $m, n \equiv 1(\bmod p)$, the second relation of the group H is $(x y)^{2}=1$. Hence $H=\left\langle x, y \mid x^{p}=y^{p}=1,(x y)^{2}=1\right\rangle$ is isomorphic to the triangle group $D(2, p, p)$. As $p \geq 5$ the group $D(2, p, p)$ is an infinite group and hence G_{p} is infinite.

3. Main Results

For the prime $p=2$, using Lemma 2.1, the only case which remains to consider is the case where m, n are both odd numbers.

Lemma 3.1. Let m and n are odd numbers. Then the group G_{2} is a finite group of order $4(m+n+2)$.

Proof. Similar to the argument in the proof of Lemma 2.3, the subgroup $H=\langle y\rangle$ is of index 2 in G_{2} and has the presentation $H=\langle a|$ $\left.a^{2(m+n+2)}=1, a^{(m+n)^{2}-4}=1\right\rangle$. As $2(m+n+2)$ divides $(m+n)^{2}-4$, H is cyclic of order $2(m+n+2)$ and hence the order of G_{2} is $\left|G_{2}\right|=$ $2|H|=4(m+n+2)$ where m and n are both odd numbers.

The next theorem shows that the group G_{p} is finite for $p=2$ and $m, n \in \mathbb{N}_{0}$.

Theorem 3.2. Let $m, n \in \mathbb{N}_{0}$ and $p=2$. Then the group

$$
G_{p}=\left\langle x, y \mid x^{p}=y^{p}, x y x^{m} y^{n}=1\right\rangle
$$

is a finite group.
Proof. The result follows from Lemmas 2.1 and 3.1.
We continue with the case $p=3$. We need the following lemmas to complete the case $p=3$.
Lemma 3.3. Let $m \equiv 1(\bmod 3)$, then the followings hold
(i) If $n \equiv 1(\bmod 3)$, then the group G_{3} is a finite group of order $24(m+n+2)$.
(ii) If $n \equiv 2(\bmod 3)$, then the group G_{3} is a finite group of order $3(m+n+2)$.

Proof.
(i) Let $m=3 k_{1}+1$ and $n=3 k_{2}+1$. By the second relation of G_{3} it follows that $x y x^{m} y^{n}=x y x^{3 k_{1}+1} y^{3 k_{2}+1}=1$ and therefore the following relation holds in G_{3}

$$
(x y)^{2} y^{3 k}=1
$$

where $k=k_{1}+k_{2}$. Consider the subgroup $N=\langle a=x\rangle$ of the group $G_{3}=\left\langle x, y \mid x^{3} y^{-3}=1,(x y)^{2} y^{3 k}=1\right\rangle$. We use the modified ToddCoxeter coset enumeration algorithm to find a presentation for N. By the table of the generator a we obtain $1 \cdot x=a \cdot 1$. Defining $1 . y=2$ and $2 . y=3$ completes the first row of the table of the relation $x^{3} y^{-3}=1$ to deduce $3 . y=a^{3} \cdot 1$. Now the first row of the table of the second relation of G_{3} also completes to get $2 . x=a^{-3 k-4} \cdot 3$. Also by defining $3 . x=4$ the second row of the table of the first relation of G_{3} completes and we deduce that 4. $x=a^{3 k+7} \cdot 2$. Now the third row of the table of the second relation of G_{3} completes and we find $4 . y=a^{-6 k-7} \cdot 4$. All the tables are complete and we obtain the following presentation for N

$$
N \cong\left\langle a \mid a^{18 k+24}=1\right\rangle
$$

On the other hand we have $\left|G_{3}: N\right|=4$. Hence $\left|G_{3}\right|=4(18 k+24)=$ $24(m+n+2)$.
(ii) Lemma 2.2.

Lemma 3.4. Let $m \equiv 2(\bmod 3)$ and $n \equiv 2(\bmod 3)$. Then the group G_{3} is a finite group of order $9(m+n+2)$.

Proof. By Lemma 2.3 the subgroup H of the group G_{3} has the presentation $H=\left\langle a \mid a^{3(m+n+2)}=a^{3\left(1-(m+n+1)^{2}\right)}=a^{(m+n+1)^{3}+1}=1\right\rangle$ which simplifies to $H=\left\langle a \mid a^{3(m+n+2)}=1\right\rangle$, as the numbers $(m+n+1)^{3}+1$ and $3\left(1-(m+n+1)^{2}\right)$ are divisible by $3(m+n+2)$. Therefore the group G_{3} is a finite group of order $9(m+n+2)$ in this case.

Theorem 3.5. Let $m, n \in \mathbb{N}_{0}$ and let $p=3$. Then the group

$$
G_{p}=\left\langle x, y \mid x^{p}=y^{p}, x y x^{m} y^{n}=1\right\rangle,
$$

is a finite group.
Proof. The result follows from Lemmas 2.1, 3.3 and 3.4.
Lemma 3.6. Let $m \equiv 2(\bmod 5)$. Then the followings hold
(i) If $n \equiv 2(\bmod 5)$, then the group G_{5} is a finite group of order $55(m+n+2)$.
(ii) If $n \equiv 3(\bmod 5)$, then the group G_{5} is a finite group of order $55(m+n+2)$.
(iii) If $n \equiv 4(\bmod 5)$, then the group G_{5} is a finite group of order $5(m+n+2)$.

Proof.
(i) Let 5 divides both $m-2$ and $n-2$. The second relation of the group G_{5} is in the form $1=x y x^{2} y^{2} x^{m+n-4}$ as x^{m-2} and y^{n-2} are central elements of G_{5}. Therefore the element $x y x^{2} y^{2}$ is also a central element of G_{5}. Hence the relation $x y x^{2} y^{2}=x^{2} y^{2} x y$ holds in the group G_{5} and thus $(y x)(x y)=(x y)(y x)$, or equivalently $x y$ commutes with $y x$. In other words the relation $x y^{2} x y^{-1} x^{-2} y^{-1}=1$ holds in G_{5}. Therefore we have $G_{5}=\left\langle x, y \mid x^{5} y^{-5}=1, x y x^{2} y^{2} x^{m+n-4}=1, x y^{2} x y^{-1} x^{-2} y^{-1}=1\right\rangle$ and we call the relations of G_{5} in this order, that is the first relation is $x^{5} y^{-5}=1$, the second is $x y x^{2} y^{2} x^{m+n-4}=1$ and the third is $x y^{2} x y^{-1} x^{-2} y^{-1}=1$.

We find a presentation for the subgroup $N=\langle a=x\rangle$ of the group G_{5}. Let $k=m+n-4$. The subgroup table gives us $1 . x=a .1$. Define $i . y=i+1$ for $i=1, \cdots, 4$ and the first row of the table of the first relation of G_{5} completes to obtain $5 . y=a^{5} .1$. Now by defining $2 . x=6$ the first rows of the tables of the second and the third relations complete and we get $6 . x=a^{-k-6} .4$ and $3 . x=a^{-k-7} .5$ respectively. Defining
4. $x=7$ and then $7 . x=8$ completes the second row of the table of the first relation of G_{5}, the $4-t h$ and the $7-t h$ rows of the table of the second relation and we obtain $8 . x=a^{k+11} .2,7 . y=a^{-2 k-11} .7$ and $8 . y=$ $a^{4 k+28} .6$ respectively. Finally defining $5 . x=9,9 . x=10$ and $6 . y=11$ complete all the tables and we deduce $10 . x=a^{k+10} .11$ from the third row of the table of the first relation. Also by the second, $6-t h$ and $9-t h$ rows of the table of the third relation we obtain $11 . y=a^{-3 k-19} .9$, $11 . x=a^{2} .3$ and $9 . y=a^{-2 k-12} .10$ respectively. From the $6-t h$ row of the table of the second relation we deduce $10 . y=a^{-4 k-22} .8$ and now all the entries of the monitor table are complete. Therefore the index of N in G_{5} is 11 and we have the following presentation for N

$$
N=\left\langle a \mid a^{5(k+6)}=1\right\rangle,
$$

that is N is a cyclic subgroup with order $|N|=5(m+n+2)$ and therefore $\left|G_{5}\right|=55(m+n+2)$ in this case.
(ii) Similar to the previous case the second relation of G_{5} could be written in the form $1=x y x^{2} y^{3} x^{m+n-5}$ as x^{m-2} and y^{n-3} are central elements of G_{5}. Therefore the element $x y x^{2} y^{3}$ is also a central element of G_{5}. Hence $x y x^{2} y^{3}=x^{2} y^{3} x y$ in the group G_{5} and thus $(y x)\left(x y^{2}\right)=\left(x y^{2}\right)(y x)$, or equivalently $x y^{2}$ commutes with $y x$. In other words the relation $x y^{3} x y^{-2} x^{-2} y^{-1}=1$ holds in G_{5}. Therefore we have $G_{5}=\left\langle x, y \mid x^{5} y^{-5}=1, x y x^{2} y^{3} x^{m+n-5}=1, x y^{3} x y^{-2} x^{-2} y^{-1}=1\right\rangle$ and we call the relations of G_{5} in this order, that is the first relation is $x^{5} y^{-5}=1$, the second is $x y x^{2} y^{3} x^{m+n-5}=1$ and the third is $x y^{3} x y^{-2} x^{-2} y^{-1}=1$.

We find again a presentation for the subgroup $N=\langle b=x\rangle$ of the group G_{5} and show that its index is 11 . Let $d=m+n-5$. The subgroup table gives us $1 . x=b .1$. Define $i . y=i+1$ for $i=1, \cdots, 4$ and the first row of the table of the first relation of G_{5} completes to obtain $5 . y=b^{5}$.1. Now by defining $2 . x=6$ the first rows of the tables of the second and the third relations complete and we got $6 . x=b^{-d-6} .3$ and $4 . x=b^{-d-7} .5$ respectively. Defining $3 . x=7$ and then $7 . x=8$ completes the second row of the table of the first relation of G_{5} and we obtain $8 . x=b^{d+11} .2$. Now define $7 . y=9$ to completing the third row of the table of the second relation to get the bonus $9 . x=b^{2} .4$ and define $6 . y=10$ to complete and get the bonus $10 . x=b^{(-d-7)} .9$ from the second row of that table. Finally defining $5 . x=11$ completes all the tables and we deduce $11 . x=b^{2 d+17} .10$ from the $5-t h$ row of the table of the first relation. Also by the $8-t h$ and $11-t h$ rows of the table of the third relation we obtain $8 . y=b^{d+8} .8$ and $10 . y=b^{-d-8} .11$ respectively. From the $5-$ th and $6-t h$ rows of the table of the second relation we deduce $11 . y=b^{-2 d-11} .7$ and $9 . y=b^{3 d+24} .6$ respectively.

Now all the entries of the monitor table are complete. Therefore the index of N in G_{5} is 11 and we have the presentation

$$
N=\left\langle b \mid b^{5(d+7)}\right\rangle
$$

that is N is a cyclic subgroup with order $|N|=5(m+n+2)$ and therefore $\left|G_{5}\right|=55(m+n+2)$ in this case.
(iii) Lemma 2.4.

Lemma 3.7. Let $m \equiv 3(\bmod 5)$. Then the followings hold
(i) If $n \equiv 3(\bmod 5)$, then the group G_{5} is a finite group of order $55(m+n+2)$.
(ii) If $n \equiv 4(\bmod 5)$, then the group G_{5} is a finite group of order $5(m+n+2)$.

Proof.
(i) Let 5 divides both $m-3$ and $n-3$. The second relation of the group G_{5} is in the form $1=x y x^{3} y^{3} x^{m}+n-6$ as x^{m-3} and y^{n-3} are central elements of G_{5}. Therefore the element $x y x^{3} y^{3}$ is also a central element of G_{5}. Hence the relation $x y x^{3} y^{3}=x^{3} y^{3} x y$ holds in the group G_{5} and thus $(y x)\left(x^{2} y^{2}\right)=\left(x^{2} y^{2}\right)(y x)$, or equivalently $x^{2} y^{2}$ commutes with $y x$. In other words the relation $x^{2} y^{3} x y^{-2} x^{-3} y^{-1}=1$ holds in G_{5}. Therefore we have $G_{5}=\langle x, y| x^{5} y^{-5}=1, x y x^{3} y^{3} x^{m+n-6}=$ $\left.1, x^{2} y^{3} x y^{-2} x^{-3} y^{-1}=1\right\rangle$ and we call the relations of G_{5} in this order, that is the first relation is $x^{5} y^{-5}=1$, the second is $x y x^{3} y^{3} x^{m+n-6}=1$ and the third is $x^{2} y^{3} x y^{-2} x^{-3} y^{-1}=1$.

Suppose $a=y x, b=x^{2} y^{2}, c=x^{5}, u=x y$ and $w=x^{3} y^{3}$. Consider the subgroup $N=\langle a, b, c, u, w\rangle$ of the group G_{5}. We find a presentation for N. Defining 1. $y=2$ completes the table of the generator a and gives us the bonus $2 . x=a .1$ and defining $1 . x=3$ completes the table of u with bonus $3 . y=u .1$. By defining $3 . x=4$ the table of b completes with the result $4 . y=b u^{-1} .3$ and finally by defining $4 . x=5$ all the tables became complete and from the table of the generator c we get $5 . x=c a^{-1} .2$ and from the table of w we conclude $5 . y=w b^{-1} .4$ and from the first row of the table of the first relation of G_{5} we deduce $2 . y=c w^{-1} .5$. Now the relations of N are as follows, from the rows of the table of the first relation we get the relations $[c, a]=[c, u]=[c, b]=$ $[c, w]=1$, that is the generator c is central in N. From the table of the third relation of G_{5} we deduce the relations $[b, a]=a u w^{-1} a^{-1} u^{-1} w=$ $[w, u]=a^{-1} u^{-1} b a u b^{-1}=[b, w]=1$ and from the table of the second
relation the following relations for N,

$$
\begin{aligned}
& R_{1}: u w c^{k}=1 \\
& R_{2}: a^{2} b c^{k}=1 \\
& R_{3}: b u^{-1} a^{-1} u^{-1} c^{k+2}=1 \\
& R_{4}: w b^{-2} c^{k+2}=1 \\
& R_{5}: a^{-1} w^{-1} u w^{-1} c^{k+4}=1,
\end{aligned}
$$

where $k=(m+n-6) / 5$. It is easy to show that N is abelian and after some straightforward calculations we get the following presentation for N

$$
N \cong\left\langle a, c \mid[a, c]=1, a^{11} c^{4 k+2}=1, c^{5 k+8}=1\right\rangle
$$

The subgroup N is cyclic if and only if $\operatorname{gcd}(11,4 k+2)=1$ and the order of N is $|N|=11(5 k+8)$. As the index of N in G_{5} is 5 , we see that G_{5} is finite with order $\left|G_{5}\right|=55(5 k+8)=55(m+n+2)$.
(ii) Lemma 2.3.

Lemma 3.8. Let $m \equiv 4(\bmod 5)$ and $n \equiv 4(\bmod 5)$. Then the group G_{5} is a finite group of order $25(m+n+2)$.

Proof. Lemma 2.4.
Theorem 3.9. Let $m, n \in \mathbb{N}_{0}$ and $p=5$. Then the group

$$
G_{p}=\left\langle x, y \mid x^{p}=y^{p}, x y x^{m} y^{n}=1\right\rangle,
$$

is a finite group except in the case that $m \equiv 1(\bmod 5)$ and $n \equiv 1$ $(\bmod 5)$.

Proof. The result follows from Lemmas 2.1, 2.2, 2.5, 3.6, 3.7 and 3.8.

References

1. H. Abdolzadeh and R. Sabzchi, An infinite family of finite 2 -groups with deficiency zero, Int. J. Group Theory, Vol. 6(3) (2017), 45-49.
2. M. J. Beetham and C. M. Campbell, A note on the Todd-Coxeter coset enumeration algorithm, P. Edinburgh Math. Soc. 20 (1976) 73-79.
3. G. Havas, M. F. Newman and E. A. O'Brien, Groups of deficiency zero, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 25 (1994) 53-67.
4. D. L. Johnson, Topics in the theory of group presentations, London Math. Soc. Lecture Note Ser., 42 Cambridge University Press, Cambridge, 1980.
5. R. Sabzchi and H. Abdolzadeh, An infinite family of finite 3 -groups with deficiency zero, J. Algebra Appl., Vol. 18(7) (2019), 1-12.
6. The GAP Group, GAP | Groups, Algorithms and Programming, Version 4.4 (available from www.gap-system.org), 2005.

Mohammad Ahmadpour

Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, P.O.Box 56199-11367, Ardabil, Iran.
Email: ahmadpourmohamad8@gmail.com

Hossein Abdolzadeh

Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, P.O.Box 56199-11367, Ardabil, Iran.
Email: narmin.hsn@gmail.com

[^0]: DOI: 10.22044/jas.2020.9361.1456
 MSC(2010): Primary: 20F05; Secondary: 20D15.

