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C#-IDEALS OF LIE ALGEBRAS

L. GOUDARZI∗

Abstract. Let L be a finite dimensional Lie algebra. A subal-
gebra H of L is called a c#-ideal of L, if there is an ideal K of L
with L = H + K and H ∩ K is a CAP -subalgebra of L. This is
analogous to the concept of a c#-normal subgroup of a finite group.
Now, we consider the influence of this concept on the structure of
finite dimentional Lie algebras.

1. Introduction

In this paper, L will denote a finite dimensional Lie algebra over a
field F . We denote the largest ideal of L contained in all the maximal
subalgebras of L, the Frattini ideal of L, by ϕ(L). For a subalgebra
H of L, the core of H with respect to L, HL, is the largest ideal of L
contained in H. Also vector space direct sums will be denoted by ∔.
We say the factor algebra A/B is a chief factor of L if B is an ideal of L
and A/B is a minimal ideal of L/B. Also, a Lie algebra L is called su-
persolvable, if there is a chain of ideals {0} ⊆ L1 ⊆ L2 ⊆ · · · ⊆ Ln = L
such that dimLi = i.
In 1996, Wang [7] introduced the concept of c-normal subgroups. This
concept has been studied by many mathematicians. Analogously, Tow-
ers [4] introduced the notion of a c-ideal of a Lie algebra as follows:
A subalgebra H of L is a c-ideal of L, if there is an ideal K of L such
that L = H + K and H ∩ K ≤ HL. He obtained some properties of
c-ideals and used them to give some characterizations of solvable and
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supersolvable Lie algebras. Also, similarly to the case of finite groups,
Towers [5] defined the notion of CAP -subalgebras of Lie algebras, as
follows:
Let L be a Lie algebra and H be a subalgebra of L and A/B be a chief
factor of L. We say that
(i) H covers A/B, if H + A = H +B; and
(ii) H avoids A/B, if H ∩ A = H ∩B.
A subalgebra H of L is called a CAP -subalgebra of L, if H either cov-
ers or avoids every chief factor of L. It can be easily seen that each
ideal of L is a c-ideal as well as a CAP -subalgebra of L.
In this paper, we define the notion of a c#-ideal of a Lie algebra and
give some conditions for solvability and supersolvability of a Lie alge-
bra.
Definition. A subalgebra H of L is called a c#-ideal of L, if there is
an ideal K of L with L = H +K and H ∩K is a CAP -subalgebra of
L.
This is analogous to the concept of c#-normal subgroups of finite groups
as introduced by Wang and Wei [6].
Remark. If H is a CAP -subalgebra of L, then we have L = H+L and
H ∩L = H is a CAP -subalgebra of L. Therefore H is a c#-ideal of L.
Also, if H is a c-ideal of L, then by [2, Lemma 2.3(i)], there is an ideal
K of L with L = H+K and H∩K = HL and HL is a CAP -subalgebra
of L, thanks to [5, Lemma 2.1(iii)]. Therefore, CAP -subalgebras and
c-ideals of L are c#-ideals of L
Now, in the following example, we show that a c#-ideal of L is not
necessarily a c-ideal of L.
Example. Let L = Fx+ Fy + Fz be a complex Lie algebra with non-
zero multiplications [x, y] = y and [x, z] = 2z. If we put H = F(y+ z),
then H is not a c-ideal of L, but since H either covers or avoids each
chief factor of L, so H is a CAP -subalgebra of L and therefore it is a
c#-ideal of L.

2. preliminary results

This section is devoted to some basic results which are needed in our
investigation. In the following lemma, we provide a condition under
which in a Lie algebra L, a c#-ideal of L becomes a CAP -subalgebra
of L.

Lemma 2.1. Let L be a Lie algebra and N be an ideal of L. Then
(i) If N ≤ H, then H is a c#-ideal of L if and only if H/N is a c#-ideal
of L/N .
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(ii) If K is a subalgebra of L with H ≤ ϕ(K) and H is a c#-ideal of
L, then H is a CAP -subalgebra of L.

Proof. (i) We suppose that H is a c#-ideal of L. Then there is an ideal
K of L with L = H + K and H ∩ K is a CAP -subalgebra of L. So
L/N = H/N+(K+N)/N and H/N∩(K+N)/N = ((H∩K)+N)/N .
Now, since (H ∩K)+N is a CAP -subalgebra of L, by [5, Lemma 2.5],
so ((H∩K)+N)/N is a CAP -subalgerbra of L/N , thanks to [5, Lemma
2.1(v)]. Therefore H/N is a c#-ideal of L/N .
Conversely, if H/N is a c#-ideal of L/N , then there is an ideal K/N
of L/N with L/N = H/N +K/N = (H +K)/N and H/N ∩K/N =
(H ∩K)/N is a CAP -subalgebra of L/N . Therefore L = H +K and
H ∩K is a CAP -subalgebra of L, by [5, Lemma 2.1(v)].
(ii) Since H is a c#-ideal of L, there exists an ideal N of L such that L =
H+N and H ∩N is a CAP -subalgebra of L. Also, K = H+(K ∩N).
Now, by using [3, Lemma 2.1], we conclude that K = K ∩ N and so
H ⊆ K ⊆ N . Hence L = N and H = H ∩N is a CAP -subalgebra of
L. □

In the following example, we show that the relation ‘to be a c#-ideal’
is not transitive.

Example 2.2. Let L be a real Lie algebra with basis {e1, e2, e3, e4} and
with non-zero multiplications [e1, e3] = e1, [e2, e3] = e2, [e1, e4] = −e2
and [e2, e4] = e1. (See Example 1.1 of [5])
If we put H = Re1+Re3 and K = Re1+Re2+Re3, then K is an ideal
of L and so K is a c#-ideal of L. Also, we can easily show that H is a
c#-ideal of K. But H is not a c#-ideal of L, because for every non-zero
ideal A of L that L = H + A, we have H ∩ A = Re1 or H ∩ A = H.
But neither Re1, nor H is a CAP -subalgebra of L, thanks to Example
1.1 of [5].
A non-zero Lie algebra L is called c#-simple, if for each c#-ideal H of
L, either H = 0 or H = L.

Lemma 2.3. A Lie algebra L is c#-simple if and only if L is a simple
Lie algebra.

Proof. Suppose that L is c#-simple and is non-simple. Then there is
a non-zero proper ideal N of L. But N is a c#-ideal of L, so we have
N = L or N = 0, a contradiction.
Conversely, we suppose that L is not c#-simple and H is a non-zero
proper subalgebra of L that is c#-ideal of L. Then there is an ideal K
of L such that L = H+K and H ∩K is a CAP -subalgebra of L. �Since
L is simple, so either K = L or K = 0. If K = 0, then H = L that is
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contradiction. But if K = L, then H ∩K = H and so H + L = H + 0
or H ∩ L = H ∩ 0, that is a contradiction again. □
Lemma 2.4. Let L be a Lie algebra and N be a minimal ideal of L
and M be a maximal subalgebra of N . If M is a c#-ideal of L, then
dimN = 1.
Proof. Since M is a c#-ideal of L, there is an ideal K of L such that L =
M +K and M ∩K is a CAP -subalgebra of L. Also N = M +(N ∩K)
and N ∩ K is an ideal of L. Hence N ∩ K = 0 or N ∩ K = N .
Because the former case is impossible, we have N ∩ K = N . In this
case, M = M ∩K is a CAP -subalgebra of L and so covers or avoids
N/{0}. But M can not cover N . Therefore M ∩ N = M ∩ 0 which
concludes that dimN = 1. □

Also, we will use the following lemma where proved in [4].
Lemma 2.5. [4, Lemma 4.1] Let L be a Lie algebra over any field F ,
let N be an ideal of L, and let U/N be a maximal nilpotent subalgebra
of L/N . Then U = A+N , where A is a maximal nilpotent subalgebra
of L.

3. Main results

In this section, we will first give a condition to imply Lie algebras to
be solvable.
Theorem 3.1. Let L be a Lie algebra over a field of characteristic
zero. Then L is solvable if and only if every maximal subalgebra of L
is a c#-ideal of L.
Proof. First, we suppose that L is a non-solvable Lie algebra of the
smallest dimension satisfying the hypothesis. We can easily show that
L is non-simple. Now, if N is a minimal ideal of L and M/N is a
maximal subalgebra of L/N , then M is a maximal subalgebra of L and
it is a c#-ideal of L, by the assumption. By using Lemma 2.1(i), we
conclude that M/N is a c#-ideal of L/N and so L/N is solvable. Since
the class of all solvable Lie algebras is a saturated formation, we can
assume that N is a unique minimal ideal of L. If N ≤ ϕ(L), then L
is solvable. But if N ≰ ϕ(L), then there is a maximal subalgebra M
of L such that N ≰ M and L = M + N . Also, M is a c#-ideal of
L and there is an ideal K of L such that L = M + K and M ∩ K
is a CAP -subalgebra of L. Therefore M ∩K covers or avoids N/{0}.
Hence either (M ∩ K) + N = M ∩ K and so N ⊆ M ∩ K ⊆ M , a
contradiction, or M ∩K ∩N = M ∩K ∩ 0. Since N ⊆ K, M ∩N = 0.
It follows that L = M ∔N and so M is a solvable maximal subalgebra



C#-IDEALS OF LIE ALGEBRAS 49

that is a c-ideal of L. Therefore L is solvable, by [4, Theorem 3.2].
Conversely, If L is solvable, then it follows from [4, Theorem 3.1], all
maximal subalgebras of L are c-ideals of L and so are c#-ideals of L. □
Theorem 3.2. Let L be a Lie algebra over a field of characteristic zero.
Then L is solvable if and only if L has a solvable maximal subalgebra
which is c#-ideal of L.
Proof. Let L be a minimal counterexample and let M be a solvable
maximal subalgebra of L which is a c#-ideal of L. clearly, ML ≤ R(L).
Now, if R(L) ≰ M , then L = R(L) + M and so L/R(L) is solvable,
that is contradiction.
If R(L) ≤ M , then M/R(L) is a c#-ideal of L/R(L), by Lemma
2.1(i). Therefore L/R(L) satisfies the hypothesis of this theorem and
so L/R(L) is solvable, a contradiction.
The converse follows from the previous theorem. □
Proposition 3.3. Let L be a Lie algebra, in which all maximal sub-
algebras of each maximal nilpotent subalgebra of L are c#-ideals of L.
If N is a minimal ideal of L, then all maximal subalgebras of each
maximal nilpotent subalgebra of L/N are c#-ideals of L/N .
Proof. We suppose that U/N is a maximal nilpotent subalgebra of
L/N . Then U = A + N , where A is a maximal nilpotent subalge-
bra of L, by Lemma 2.5. If B/N is a maximal subalgebra of U/N ,
then B = B∩ (A+N) = (B∩A)+N = D+N , where D is a maximal
subalgebra of A and B∩A ≤ D. Since D is a c#-ideal of L, there exists
an ideal K of L with L = D+K and D∩K is a CAP -subalgebra of L.
Therefore D∩K covers or avoids N/{0}. If D∩K+N = D∩K, then
N ⊆ D ∩ K ⊆ D and so B = D. It follows from Lemma 2.1(i) that
B/N is a c#-ideal of L/N and so the result holds. If D ∩K ∩N = 0,
then we consider two cases:
1. N ≤ K: In this case, L/N = (D + N)/N + K/N = B/N + K/N
and (D + N)/N ∩ K/N = ((D ∩ K) + N)/N . Since D ∩ K is a
CAP -subalgebra of L and N is an ideal of L, then by [5, Lemma 2.5],
(D ∩ K) + N is a CAP -subalgebra of L and so ((D ∩ K) + N)/N is
a CAP -subalgebra of L/N , thanks to [5, Lemma 2.1]. Thus B/N is a
c#-ideal of L/N .
2. N ≰ K: In this case, N ∩ K = 0 and (N + K)/K is a minimal
ideal of L/K and so (N + K)/K ⊆ Z(L/K). This concludes that
[N + K,L] ⊆ K and so [N,L] ⊆ N ∩ K = 0 and N ⊆ Z(L). Con-
sequently, U = A + N is a nilpotent subalgebra of L and so we must
have A = A+N . Therefore N ≤ A and so N ≤ B ∩A. Hence N ≤ D
and therefore B/N is a c#-ideal of L/N . □
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Finally, we obtain a condition implying a Lie algebra L to be super-
solvable.

Theorem 3.4. Let L be a solvable Lie algebra, in which all maximal
subalgebras of each maximal nilpotent subalgebra of L are c#-ideals of
L. Then L is supersolvable.

Proof. Let L be a minimal counterexample and N be a minimal ideal
of L. Then by the previous proposition, L/N satisfies the hypothesis
of this theorem and so L/N is supersolvable. It is enough to show that
dimN = 1. If there is another ideal N ′ of L, then N ∼= (N +N

′
)/N

′ ≤
L/N

′ and so dimN = 1 and L is supersolvable, a contradiction.
Therefore, we suppose that N is a unique minimal ideal of L. If
N ≤ ϕ(L), then L/ϕ(L) is supersolvable and so L is supersolvable
by [1, Theorem 7], a contradiction. If N ≰ ϕ(L), then there is a max-
imal subalgebra of L such that L = N ∔M . Now, if C is a maximal
nilpotent subalgebra of L with N ≤ C, then we consider two cases:
1. C = N : In this case, N is a maximal nilpotent subalgebra of L and
so by the assumption, every maximal subalgebra of N is a c#-ideal of
L. Hence dimN = 1, thanks to Lemma 2.4.
2. N < C: In this case, we have C = N + (C ∩M). Now, let B be a
maximal subalgebra of C that contains C ∩M . Then B is a c#-ideal
of L and so there is an ideal K of L such that L = B +K and B ∩K
is a CAP -subalgebra of L. Therefore B ∩K covers or avoids N/{0}.
If (B ∩ K) + N = B ∩ K, then N ≤ B ∩ K ≤ B and so C ≤ B, a
contradiction.
If B ∩K ∩N = 0, then B ∩N = 0. It follows that C = B ∔N . Thus
C/B ∼= N and consequently dimN = 1 and therefore L is supersolv-
able, a contradiction. □
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لی جبرهای ایدآل های -c#

گودرزی لیلا

ایران بروجرد، بروجردی، اله آیت دانشگاه ریاضی، گروه

هرگاه گوییم، می L از #c-ایدآل یک را L از H زیرجبر باشد. بعد متناهی جبرلی یک L کنیم فرض
باشد. L از CAP-زیرجبر یک H ∩K و L = H +K که طوری به باشد موجود L از K ایدآل
مفهوم این تأثیر ما اکنون است. متناهی گروه یک از #c-نرمال زیرگروه یک مفهوم با مشابه مفهوم این

دهیم. می قرار بررسی مورد بعد متناهی لی جبرهای ساختار روی را

پذیر ابرحل پذیر، حل CAP-زیرجبر، جبرلی، #c-ایدآل، کلیدی: کلمات
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