Journal of Algebraic Systems Vol. 9, No 1, (2021), pp 83-106

m-TOPOLOGY ON THE RING OF REAL-MEASURABLE FUNCTIONS

H. YOUSEFPOUR, A. A. ESTAJI*, A. MAHMOUDI DARGHADAM AND G. SADEGHI

ABSTRACT. In this article we consider the *m*-topology on $M(X, \mathscr{A})$, the ring of all real measurable functions on a measurable space (X, \mathscr{A}) , and we denote it by $M_m(X, \mathscr{A})$. We show that $M_m(X, \mathscr{A})$ is a Hausdorff regular topological ring, moreover we prove that if (X, \mathscr{A}) is a *T*-measurable space and *X* is a finite set with |X| = n, then $M_m(X, \mathscr{A}) \cong \mathbb{R}^n$ as topological rings. Also, we show that $M_m(X, \mathscr{A})$ is never a pseudocompact space and it is also never a countably compact space. We prove that (X, \mathscr{A}) is a pseudocompact measurable space, if and only if $M_m(X, \mathscr{A}) = M_u(X, \mathscr{A})$, if and only if $M_m(X, \mathscr{A})$ is a first countable topological space, if and only if $M_m(X, \mathscr{A})$ is a connected space, if and only if $M_m(X, \mathscr{A})$ is a connected space, if and only if $M_m(X, \mathscr{A})$.

1. INTRODUCTION

The reader is presumed to have some background in measure theory, abstract algebra and general topology. Let \mathbb{R}^X be the collection of all real-valued functions on a non-empty set X. It is known that \mathbb{R}^X with the (pointwise) addition and multiplication is a reduced commutative ring with identity. Let (X, \mathscr{A}) be measurable space and let $M(X, \mathscr{A})$ be the set of all real measurable functions on X. Then $M(X, \mathscr{A})$ is a

DOI: 10.22044/jas.2020.9557.1470.

MSC(2010): Primary 28A20; Secondary: 54C30.

Keywords: *m*-topology, measurable space, pseudocompact measurable space, connected space, first countable topological space.

Received: 10 April 2020, Accepted: 20 August 2020.

^{*}Corresponding author.

subring of \mathbb{R}^X . Many people have studied the rings of real measurable functions on a measurable space with different aspects. Hager in [12]shows that $M(X, \mathscr{A})$ is a regular ring in the sense of Von Neumann (i.e., for every $f \in M(X, \mathscr{A})$, there is an element g in $M(X, \mathscr{A})$ with $f^2q = f$). In [21], Viertl studied the real maximal ideals and the fixed maximal ideals of $M(X, \mathscr{A})$, where \mathscr{A} is the set of all Borel sets of X. In [1], Amini et al. generalized, simultaneously, the ring of real-valued continuous functions and $M(X, \mathscr{A})$. In [17], Momtahan studied the Goldie dimension of $M(X, \mathscr{A})$. In [2], Azadi et al. proved that $M(X, \mathscr{A})$ is an \aleph_0 -self-injective ring. In [9], Estaji et al. have given several characterizations of maximal ideals of $M(X, \mathscr{A})$, mostly in terms of certain lattice-theoretic properties of \mathscr{A} . In [7], Estaji and Mahmoudi Darghadam investigated rings of real measurable functions vanishing at infinity on a measurable space and in [8], they introduced realcompact subrings of $M(X, \mathscr{A})$, and showed that $M(X, \mathscr{A})^*$ is a realcompact subring of $M(X, \mathscr{A})$, and also $M(X, \mathscr{A})$ is realcompact if and only if (X, \mathscr{A}) is a compact measurable space, i.e., \mathscr{A} is a compact lattice.

In this article we are going to define a topology on $M(X, \mathscr{A})$, namely the *m*-topology and to study the space $M(X, \mathscr{A})$ with this topology. In [13, pp. 48-51, 73-74], Hewitt defined the *m*-topology on C(X), the ring of all real valued continuous functions on a completely regular space X, by taking the sets of the form

$$\{f \in C(X) \colon |g - f| \le u\},\$$

as a base for the neighborhood system at g, where u is a positive unit of C(X), see [10]. He showed that X is pseudocompact if and only if $C_m(X)$, the space C(X) with the *m*-topology, is first countable. In [3], Azarpanah et al. studied compactness in C(X) with the *m*-topology and they proved that every compact subset of $C_m(X)$ has an empty interior. In [5], Azarpanah et al. proved that q(X) with the *m*-topology is connected if and only if X is a pseudocompact almost P-space, if and only if C(X) with r-topology is connected, where q(X) is the classical ring of quotients of C(X) and the r-topology is defined the same as the *m*-topology if we consider positive regular functions instead of positive units and the inequality holds on the cozero-set of the regular function, see [6] and [14]. For any ideal $I \subseteq C_{\psi}(X)$, Azarpanah et al. in [4] defined a topology on C(X) namely the m^{I} -topology, finer than the m-topology in which the component of 0 is exactly the ideal I and C(X) with this topology becomes a topological ring. They showed that compact sets in C(X) with the m^{I} -topology have empty interior if and only if $X \setminus \bigcap Z[I]$ is infinite. For every two subsets $A, B \subseteq X$

such that $A \cup B = X$, Manshoor in [16] defined a topology on C(X)namely the $m_{(A,B)}$ -topology, finer than the *m*-topology and C(X) with this topology becomes a topological ring. Connectedness in this space is studied and it is shown that if A and B are closed realcompact subsets of X, then the component of the zero function in C(X) with $m_{(A,B)}$ -topology is the ideal $C_K(X)$. In [15], Di Maio et al. analyzed the position of the Krikorian topology with respect to the topology of uniform convergence, and stated necessary and sufficient conditions which force inclusions and coincidence. In [20], Douwen et al. and in [11] Gómez-Pérez and McGovern investigated topological properties of X via properties of $C_m(X)$.

The paper is organized as follows:

In the second section we provide some necessary preliminaries about the *m*-topology on $M(X, \mathscr{A})$.

In Section 3, we show that $M_m(X, \mathscr{A})$ is a completely metrizable space and is a topological ring. We have shown in this section that no point of $M_m(X, \mathscr{A})$ is an almost *P*-point and $M_m(X, \mathscr{A})$ is never a pseudocompact and also it is never countably compact. Moreover we prove that if (X, \mathscr{A}) be a *T*-measurable space and *X* is a finite set with |X| = n, then $M_m(X, \mathscr{A}) \cong \mathbb{R}^n$ as topological rings, and if *X* is infinite then every compact subset of $M_m(X, \mathscr{A})$ has empty interior.

In Section 4, we study important open and closed subsets of $M_m(X, \mathscr{A})$, and we prove that an ideal I of $M(X, \mathscr{A})$ is bounded if and only if I is connected subset of $M_m(X, \mathscr{A})$, if and only if $I \subseteq M_{\psi}(X, \mathscr{A})$. Also we show $f \in M_{\psi}(X, \mathscr{A})$ if and only if φ_f is continuous, where $\varphi_f \colon \mathbb{R} \longrightarrow M_m(X, \mathscr{A})$ is given by $\varphi_f(r) = \mathbf{r}f$ for every $f \in M(X, \mathscr{A})$.

Finally, in Section 5 we prove that the space (X, \mathscr{A}) is a pseudocompact measurable space if and only if $M_m(X, \mathscr{A})$ coincides with $M_u(X, \mathscr{A})$ and this is equivalent to the first countability, connectedness or locally connectedness of $M_m(X, \mathscr{A})$. Moreover we show that all of them are equivalent to saying that $M^*(X, \mathscr{A})$ is a connected subset of $M_m(X, \mathscr{A})$.

2. Preliminaries

The *m*-topology on C(X) is defined by taking the sets of the form

$$B(f, u) = \{ g \in C(X) \colon |f - g| < u \}$$

as a base for the neighborhood system at f, for each $f \in C(X)$, where u runs through the set of all positive units of C(X). Also, for every $f \in \mathbb{R}^X$, $Z(f) := \{x \in X : f(x) = 0\}$ is called the zero-set of f.

86 YOUSEFPOUR, ESTAJI, MAHMOUDI DARGHADAM AND SADEGHI

Let us recall some general notation from [19]. A collection \mathscr{A} of subsets of a nonempty set X is said to be a *measurable sets* in X if \mathscr{A} has the following three properties:

- (1) $X \in \mathscr{A}$.
- (2) If $A \in \mathscr{A}$, then $A^c \in \mathscr{A}$, where A^c is the complement of A relative to X.
- (3) If $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathscr{A}$, then $\bigcup_{n\in\mathbb{N}}A_n\in\mathscr{A}$.

Also, (X, \mathscr{A}) is called a *measurable space*. If X is a measurable space, Y is a topological space, and f is a mapping of X into Y, then f is said to be *measurable* provided that $f^{-1}(V)$ is a measurable set in X for every open set V in Y. If X is a measurable space, then the set of all measurable maps from X into \mathbb{R} is denoted $M(X, \mathscr{A})$, and the members of $M(X, \mathscr{A})$ are called the *real measurable functions* on X, where \mathbb{R} denotes the set of all real numbers with the ordinary topology.

Remark 2.1. Let (X, \mathscr{A}) be a measurable space, we set

$$U(X,\mathscr{A}) := \{g: g \text{ is a unit element of } M(X,\mathscr{A})\},\$$

and

 $U^+(X,\mathscr{A}) := \{g \in U(X,\mathscr{A}) \colon g \text{ is a positive element of } M(X,\mathscr{A}) \}.$ Suppose that

$$B(f,u) := \{g \in M(X,\mathscr{A}) \colon |f-g| < u\}$$

and

$$B_f := \{ B(f, u) \colon u \in U^+(X, \mathscr{A}) \}$$

for every $f \in M(X, \mathscr{A})$ and every $u \in U^+(X, \mathscr{A})$. Then the following statements hold for every $f, g \in M(X, \mathscr{A})$ and every $u, v \in U^+(X, \mathscr{A})$.

- (1) $f \in B(f, u)$.
- (2) $B(f, u \wedge v) \subseteq B(f, u) \cap B(f, v).$
- (3) If $g \in B(f, u)$ and v := u |f g|, then $B(f, v) \subseteq B(f, u)$.
- (4) For every $g \in B(f, u)$, there exists an element ν in $U^+(X, \mathscr{A})$ such that $B(g, \nu) \subseteq B(f, u)$.
- (5) If $U \in B_f$, then $f \in U$.
- (6) If $U, V \in B_f$, then $U \cap V \in B_f$.
- (7) If $U \in B_f$, then there is a $V \in B_f$ such that $U \in B_g$ for each $g \in V$.

(8) If
$$U \in B_f$$
 and $U \subseteq V \subseteq M(X, \mathscr{A})$, then $V \in B_f$.

If

$$\tau_m := \{ G \subseteq M(X, \mathscr{A}) \colon \forall f \in G \; \exists U \in B_f; U \subseteq G \},\$$

then, by [23, Theorem 4.2], τ_m is a topology on $M(X, \mathscr{A})$ such that the neighborhood system at each $f \in M(X, \mathscr{A})$ is precisely B_f . The

topology τ_m on $M(X, \mathscr{A})$ is in fact the *m*-topology on $M(X, \mathscr{A})$, and the notation $M_m(X, \mathscr{A})$ will be used when referring to $M(X, \mathscr{A})$ under the *m*-topology. Also, if

$$\tau_u := \{ G \subseteq M(X, \mathscr{A}) \colon \forall f \in G \; \exists \varepsilon \in \mathbb{R}; \, \varepsilon > 0 \text{ and } B(f, \varepsilon) \subseteq G \},\$$

then, by [23, Theorem 4.2], τ_u is a topology on $M(X, \mathscr{A})$ which is called the uniform topology (or the *u*-topology) on $M(X, \mathscr{A})$. Throughout this article, the notation $M_u(X, \mathscr{A})$ will be used when referring to $M(X, \mathscr{A})$ under the *u*-topology. $M_m^*(X, \mathscr{A})$ and $M_u^*(X, \mathscr{A})$ are defined similarly.

3. Topological properties of space $M_m(X, \mathscr{A})$

If $(X; \rho)$ is a metric space, then by the ball (or spheroid) centered at $x \in X$ and having radius δ we mean the set

$$S_{\rho}(x,\delta) := \{ y \in X \colon \rho(x,y) < \delta \}$$

The constant function, on any set, whose constant value is the real number r, is denoted by \mathbf{r} .

Proposition 3.1. Let (X, \mathscr{A}) be a measurable space. Then the following statements hold.

- (1) $M_u(X, \mathscr{A})$ is a completely metrizable space.
- (2) $M_u^*(X, \mathscr{A})$ is a completely metrizable space.
- (3) $M_{u}^{*}(X, \mathscr{A})$ is a Banach space.

Proof. (1). Clearly $\rho: M(X, \mathscr{A}) \times M(X, \mathscr{A}) \to [0, +\infty)$ defined by

$$\rho(f,g) = \sup_{x \in X} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|}$$

is a metric on $M(X, \mathscr{A})$.

Let $f \in M(X, \mathscr{A})$ and $\varepsilon \in (0, +\infty)$ be given. Then

$$S_{\rho}\left(f, \frac{\varepsilon}{1+\varepsilon}\right) \subseteq B(f, \varepsilon),$$

and there exists an element ε_0 in (0,1) with $\varepsilon_0 < \varepsilon$ such that

$$B\left(f, \frac{\varepsilon_{\mathbf{0}}}{\mathbf{1} - \varepsilon_{\mathbf{0}}}\right) \subseteq S_{\rho}(f, \varepsilon_{\mathbf{0}}) \subseteq S_{\rho}(f, \varepsilon).$$

Therefore, if τ is the metric topology induced by ρ , then $\tau_u = \tau$.

Suppose $\{f_n\}_{n\in\mathbb{N}} \subseteq M(X,\mathscr{A})$ be a cauchy sequence, so that for every $\varepsilon > 0$, there exists an element N in N such that

$$\rho(f_n, f_m) = \sup_{x \in X} \frac{|f_n(x) - f_m(x)|}{1 + |f_n(x) - f_m(x)|} < \frac{\varepsilon}{1 + \varepsilon},$$

for every m, n > N, which implies that $|f_m(x) - f_n(x)| < \varepsilon$ for every $x \in X$ whenever m, n > N. Then, by [18, Theorem 7.8], the sequence of functions $\{f_n\}_{n\in\mathbb{N}}$, defined on X, converges uniformly on X. We define $f: X \to \mathbb{R}$ by $f(x) = \lim_{n\to\infty} f_n(x)$. Then $f \in M(X, \mathscr{A})$ and also, $|f_n - f| < \varepsilon$ whenever n > N, which implies that $\rho(f_n, f) < \frac{\varepsilon}{1 + \varepsilon}$ for every n > N. Therefore, $\{f_n\}_{n\in\mathbb{N}}$ converges to f.

(2). If we define $\rho: M^*(X, \mathscr{A}) \times M^*(X, \mathscr{A}) \to [0, +\infty)$ given by

$$\rho(f,g) = \sup_{x \in X} |f(x) - g(x)|,$$

then ρ is a metric on $M^*(X, \mathscr{A})$. The rest is similar to the proof of the first statement.

(3). Let $\{f_n\} \subseteq M_u^*(X, \mathscr{A})$ be a cauchy sequence. Then for every $\varepsilon > 0$, there exists an element k in \mathbb{N} such that $\sup_{x \in X} |f_n(x) - f_m(x)| < \varepsilon$, for every $m, n \ge k$ and every $x \in X$. Hence $\{f_n(x)\}_{n \in \mathbb{N}}$ is a cauchy sequence in \mathbb{R} , and so $\lim_{n \longrightarrow \infty} f_n(x) = f(x) \in \mathbb{R}$ for every $x \in X$. Consider n be fixed and $m \longrightarrow \infty$. Then we have $\sup_{x \in X} |f_n(x) - f(x)| \le \varepsilon$. Since f is a bounded measurable function, we conclude that $M_u^*(X, \mathscr{A})$ is a Banach space.

Recall that a topological ring is a ring R which is also a Hausdorff topological space such that both the addition and the multiplication operations are continuous.

Proposition 3.2. Let (X, \mathscr{A}) be a measurable space. Then the ring $M(X, \mathscr{A})$ with the m-topology is a topological ring.

Proof. Let $f, g \in M(X, \mathscr{A})$ and $G \in \tau_m$ with $f + g \in G$ be given. Then there exists an element u in $U^+(X, \mathscr{A})$ such that $B(f + g, u) \subseteq G$. It is clear that for every $(t, k) \in B\left(f, \frac{u}{3}\right) \times B\left(g, \frac{u}{3}\right)$,

$$|f + g - (t + k)| \le |f - t| + |g - k| < \frac{u}{3} + \frac{u}{3} < u.$$

Therefore, the addition operation is continuous.

Let $f, g \in M(X, \mathscr{A})$ and $u \in U^+(X, \mathscr{A})$ with $fg \in B(f + g, u)$ be given. We set $v := \frac{u}{\mathbf{2}(\mathbf{1} + |g| + |f| + u)}$. Then $v \in U^+(X, \mathscr{A})$ and for every $(t, k) \in B(f, v) \times B(g, v)$,

$$\begin{split} |fg - tk| &\leq |f - t||g| + |f - t||g - k| + |f||g - k| \\ &< (\mathbf{1} + |g| + |f| + u)v \\ &< u. \end{split}$$

Hence, the multiplication operation is continuous. The proof is now complete. $\hfill \Box$

Remark 3.3. Let (X, \mathscr{A}) be a measurable space. Then

$$\left\{\frac{\mathbf{1}}{\mathbf{n}} \in M(X,\mathscr{A}) \colon n \in \mathbb{N}\right\}$$

is a discrete subspace of $M_m(X, \mathscr{A})$.

It is well known that for every T_1 -space X, X is a regular space if and only if for every $x \in X$ and every neighbourhood U of x there exists a neighbourhood V of x such that $cl_X V \subseteq U$.

Proposition 3.4. $M_m(X, \mathscr{A})$ is a Hausdorff regular space.

Proof. let $f, g \in M(X, \mathscr{A})$ with $f \neq g$ be given. Then there exists an element x_0 in X such that $f(x_0) \neq g(x_0)$. Consider $u := \frac{1}{2}|f(x_0) - g(x_0)|$. If $h \in B(f, u) \cap B(g, u)$, then

$$\begin{aligned} f(x_0) - g(x_0)| &\leq |f(x_0) - h(x_0)| + |h(x_0) - g(x_0)| < 2u \\ &= |f(x_0) - g(x_0)|, \end{aligned}$$

which is a contradiction. Therefore, $M_m(X, \mathscr{A})$ is a Hausdorff space.

Let $f \in M(X, \mathscr{A})$ and a neighbourhood G of f in $M_m(X, \mathscr{A})$ be given. Then there exists an element $u \in U^+(X, \mathscr{A})$ such that $B(f, u) \subseteq G$. If $g \in \operatorname{cl}_m B\left(f, \frac{u}{2}\right)$, then there exists an element hin $B\left(g, \frac{u}{2}\right) \cap B\left(f, \frac{u}{2}\right)$, which implies that

$$|f - g| \le |f - h| + |h - g| < \frac{u}{2} + \frac{u}{2} = u.$$

Therefore, $f \in B\left(f, \frac{u}{2}\right) \subseteq \operatorname{cl}_m B\left(f, \frac{u}{2}\right) \subseteq G$, and the proof is now complete.

Recall that a point x of a topological space X is called an almost P-point of X if, whenever $x \in Z(f)$ for some $f \in C(X)$, it follows that $x \in cl_X int_X Z(f)$. Equivalently, $x \in X$ is an almost P-point if and only if every G_{δ} -set containing x has nonempty interior.

Proposition 3.5. Let (X, \mathscr{A}) be a measurable space. $M_m(X, \mathscr{A})$ does not contain any almost *P*-point.

Proof. Let $f \in M(X, \mathscr{A})$ be given. Then $\bigcap_{n \in \mathbb{N}} B\left(f, \frac{1}{n}\right) = \{f\}$ is a G_{δ} -set in $M_m(X, \mathscr{A})$. Since $\frac{u}{2} + f \in B(f, u)$ for every $u \in U^+(X, \mathscr{A})$, we conclude that $\{f\}$ is not open, which implies that $\inf_m \{f\} = \emptyset$. Therefore, f is not an almost P-point, and this completes the proof. \Box

90 YOUSEFPOUR, ESTAJI, MAHMOUDI DARGHADAM AND SADEGHI

Recall that a topological space X is said to be pseudocompact if every function in C(X) is bounded and X is countably compact if and only if each countable open cover of X has a finite subcover.

Proposition 3.6. Let (X, \mathscr{A}) be a measurable space. Then the following statements hold.

- (1) $M_m(X, \mathscr{A})$ is never a pseudocompact space.
- (2) $M_m(X, \mathscr{A})$ is never a countably compact space.

Proof. (1). Let $a \in X$ be given. We define $\eta_a \colon M_m(X, \mathscr{A}) \to \mathbb{R}$ by $\eta_a(f) = f(a)$. Since $\eta_a(g) = g(a) \in (f(a) - \varepsilon, f(a) + \varepsilon)$ for every $\varepsilon \in (0, \infty)$ and every $g \in B(f, \varepsilon)$, we conclude that η_a is a continuous function. Now using $\eta_a(\mathbf{n}) = n$ for every $n \in \mathbb{N}$, we obtain that η_a is an unbounded continuous function. Therefore, $M_m(X, \mathscr{A})$ is not a pseudocompact space.

(2). Since every countably compact space is pseudocompact, $M_m(X, \mathscr{A})$ is not countably compact.

Remark 3.7. Let (X, \mathscr{A}) be a measurable space. For every $f \in M(X, \mathscr{A})$, there is a unit real-measurable function u in $M(X, \mathscr{A})$ such that $(-\mathbf{1} \vee f) \wedge \mathbf{1} = uf$.

We recall from [22, Theorem 4.5] that the connected component C of zero in a topological ring A is a closed ideal, and a + C is the connected component of a for each $a \in A$. Also, we recall from [9] that a measurable space (X, \mathscr{A}) is said to be *T*-measurable if whenever x and y are distinct points in X, there is a measurable set containing one and not the other.

Proposition 3.8. Let (X, \mathscr{A}) be a *T*-measurable space. If *X* is a finite set with |X| = n, then $M_m(X, \mathscr{A}) \cong \mathbb{R}^n$ as topological rings.

Proof. Since $\mathscr{A} = \mathcal{P}(X)$, $M_m(X, \mathscr{A}) = C(X) \cong \mathbb{R}^n$ as topological rings.

The following example shows that *T*-measurable in proposition 3.8 can not be removed. More generally, whenever (X, \mathscr{A}) is not even *T*measurable and *X* is finite, then again we have $M_m(X, \mathscr{A}) \cong \mathbb{R}^k$ as topological rings, where $k \leq |X|$.

Example 3.9. Let $X = \{1, 2, 3, 4, 5\}$ and

$$\chi_{\{1\}} = \begin{cases} 1 & \text{ if } x = 1\\ 0 & \text{ if } x \in \{2, 3, 4, 5\}. \end{cases}$$

be given. Hence, $\mathscr{A} = \{\emptyset, \{1\}, \{2, 3, 4, 5\}, X\}$ is the smallest σ -algebra on X such that $\chi_{_{\{1\}}}$ is a measurable function and consequently

$$M(X,\mathscr{A}) = \{a\chi_{\{1\}} + b\chi_{\{2,3,4,5\}} \colon a, b \in \mathbb{R}\} \cong \mathbb{R}^2.$$

For the proof of the following proposition we apply the same technique which is used in that of Theorem 4.1 in [3].

Proposition 3.10. Let (X, \mathscr{A}) be a measurable space, and let X be an infinite set. If F is a compact subset of $M_m(X, \mathscr{A})$, then $\operatorname{int}_m F = \emptyset$.

Proof. We argue by contradiction. Let us assume that $f \in \operatorname{int}_m F$. Then there exists a positive unit function $u \in M(X, \mathscr{A})$ such that $B(f, u) \subseteq F$. By hypothesis, there exist $g_1, g_2, \ldots, g_m \in F$ such that $F \subseteq \bigcup_{m=1}^n B\left(g_m, \frac{u}{4}\right)$. Let $A := \{x_1, x_2, \ldots, x_n, x_{n+1}\} \subseteq X$ with $x_i \neq x_j$ for every $1 \leq i \neq j \leq n+1$, be given. We set $t_i := \frac{u}{2}\chi_{\{x_i\}}$ and $h_i := f + t_i$ for every $1 \leq i \leq n+1$, then $h_i \in B(f, u) \subseteq \operatorname{int}_m F$, and so, by the "pigeon-hole" principle, there exist $1 \leq i \neq j \leq n+1$ and $1 \leq s \leq n$ such that $h_i, h_j \in B(g_s, \frac{u}{4})$, which implies that

$$|t_i - t_j| = |h_i - h_j| \le |h_i - g_s| + |h_j - g_s| < \frac{u}{4} + \frac{u}{4} = \frac{u}{2}$$

Therefore,

$$\frac{u(x_i)}{2} = |t_i(x_i) - t_j(x_i)| < \frac{u}{2}(x_i)$$

and this is a contradiction.

4. Open and closed subsets of $M_m(X, \mathscr{A})$

In this section, we are going to find the largest bounded ideal of $M(X, \mathscr{A})$ which is at the same time the largest connected ideal. Using this find the component of 0 in $M_m(X, \mathscr{A})$.

Let (X, \mathscr{A}) be a measurable space. We set

$$M^+(X,\mathscr{A}) := \{ f \in M(X,\mathscr{A}) \colon f(x) \ge 0 \text{ for all } x \in X \},\$$

and

$$M^{-}(X,\mathscr{A}) := \{ f \in M(X,\mathscr{A}) \colon f(x) \le 0 \text{ for all } x \in X \}.$$

Proposition 4.1. Let (X, \mathscr{A}) be a measurable space. Then the following statements hold.

- (1) The interior of a proper ideal I of $M(X, \mathscr{A})$ in $M_m(X, \mathscr{A})$ is the empty set.
- (2) The set $M^*(X, \mathscr{A})$ is a clopen subset of $M_m(X, \mathscr{A})$.
- (3) The set $U(X, \mathscr{A})$ is a dense open subset of $M_m(X, \mathscr{A})$.
- (4) If D is the set of all zero divisors of $M(X, \mathscr{A})$, then $D = M(X, \mathscr{A}) \setminus U(X, \mathscr{A})$.

92 YOUSEFPOUR, ESTAJI, MAHMOUDI DARGHADAM AND SADEGHI

- (5) The set $U^+(X, \mathscr{A})$ is an open subset of $M_m(X, \mathscr{A})$.
- (6) The set M⁺(X, 𝒜) coincides with the closure of U⁺(X, 𝒜) in M_m(X, 𝒜).
- The set M[−](X, A) coincides with the closure of U[−](X, A) in M_m(X, A).
- (8) The set $M^+(X, \mathscr{A}) \cup M^-(X, \mathscr{A})$ is contained in the closure of $U(X, \mathscr{A})$.
- (9) The set $M^+(X, \mathscr{A})$ is not an open subset of $M_m(X, \mathscr{A})$.

Proof. (1). We argue by contradiction. Let us assume that I is a proper ideal of $M(X, \mathscr{A})$, and suppose that $f \in M(X, \mathscr{A})$ is in the interior of I. Then there exists an element u in $U^+(X, \mathscr{A})$ such that $f + \frac{u}{2} \in B(f, u) \subseteq I$, which implies that $\frac{u}{2} \in I$ and this is a contradiction to the fact that I is a proper ideal of $M(X, \mathscr{A})$.

(2). Since for every $f \in M^*(X, \mathscr{A})$, $f \in B(f, \mathbf{1}) \subseteq M^*(X, \mathscr{A})$, we conclude that $M^*(X, \mathscr{A})$ is an open subset of $M_m(X, \mathscr{A})$. Let $f \in M(X, \mathscr{A})$ be in the closure of $M^*(X, \mathscr{A})$. Then there is an element g in $B(f, 1) \cap M^*(X, \mathscr{A})$, which implies that there is an element n in \mathbb{N} such that $|f| \leq |g| + \mathbf{1} \leq \mathbf{n}$, and so $f \in M^*(X, \mathscr{A})$. Therefore, $M^*(X, \mathscr{A})$ is a clopen subset of $M_m(X, \mathscr{A})$.

(3). Since for every $u \in U(X, \mathscr{A})$, $B\left(u, \frac{|u|}{2}\right) \subseteq U(X, \mathscr{A})$, we conclude that $U(X, \mathscr{A})$ is an open subset of $M_m(X, \mathscr{A})$.

Let $f \in M(X, \mathscr{A})$ and $u \in U^+(X, \mathscr{A})$ be given. We define $h \colon X \to \mathbb{R}$ by

$$h(x) := \begin{cases} f(x) + \frac{u(x)}{2} & \text{if } f(x) \ge 0\\ f(x) - \frac{u(x)}{2} & \text{if } f(x) < 0. \end{cases}$$

Then $h \in U(X, \mathscr{A}) \cap B(f, u) \neq \emptyset$. Therefore, $U(X, \mathscr{A})$ is a dense subset of $M_m(X, \mathscr{A})$.

(4). Let $\mathbf{0} \neq f \in M(X, \mathscr{A}) \setminus U(X, \mathscr{A})$ be given. Since $\chi_{Z(f)} f = \mathbf{0}$ and $\mathbf{0} \neq \chi_{Z(f)} \in M(X, \mathscr{A})$, we conclude that $f \in D$. Therefore, $D = M(X, \mathscr{A}) \setminus U(X, \mathscr{A})$, because $D \subseteq M(X, \mathscr{A}) \setminus U(X, \mathscr{A})$.

(5). If $u \in U^+(X, \mathscr{A})$, then $B(u, \frac{u}{2}) \subseteq U^+(X, \mathscr{A})$, which implies that $U^+(X, \mathscr{A})$ is an open subset of $M_m(X, \mathscr{A})$.

(6). If $f \in M^+(X, \mathscr{A})$ and $u \in U^+(X, \mathscr{A})$, then

$$f + \frac{u}{2} \in U^+(X, \mathscr{A}) \cap B(f, u),$$

which implies that $M^+(X, \mathscr{A}) \subseteq \mathrm{cl}_m U^+(X, \mathscr{A})$. Let $g \in M(X, \mathscr{A})$ and $a \in X$ with g(a) < 0 be given. We put $r = \frac{1}{2}|g(a)| > 0$. If $h \in B(g, \mathbf{r}) \cap U^+(X, \mathscr{A})$, then

$$|g(a) - h(a)| \ge |g(a)| = 2r > r,$$

which is a contradiction. Therefore, $M^+(X, \mathscr{A}) = \operatorname{cl}_m U^+(X, \mathscr{A})$.

- (7). The proof is similar to the proof of part (6).
- (8). It is clear.

(9). Let $f \in M^+(X, \mathscr{A}) \setminus U^+(X, \mathscr{A})$ be given. Then $B(f, u) \notin M^+(X, \mathscr{A})$ for every $u \in U^+(X, \mathscr{A})$. Therefore, $M^+(X, \mathscr{A})$ is not an open subset of $M_m(X, \mathscr{A})$.

Recall that a space X is said to be extremally disconnected if every open set has an open closure.

As an immediate consequence we now have the following proposition.

Proposition 4.2. Let (X, \mathscr{A}) be a measurable space. Then $M_m(X, \mathscr{A})$ is not an extremally disconnected space.

Recall that an element c of a lattice L is said to be compact if for any $S \subseteq L$, $c \leq \bigvee S$ implies $c \leq \bigvee T$ for some finite $T \subseteq S$.

Definition 4.3. Let (X, \mathscr{A}) be a measurable space. We denote by $M_{\infty}(X, \mathscr{A})$ the family of all functions $f \in M(X, \mathscr{A})$ for which the set $\left\{x \in X : |f(x)| \geq \frac{1}{n}\right\}$ is a compact element of \mathscr{A} for every $n \in \mathbb{N}$.

Proposition 4.4. Let (X, \mathscr{A}) be a measurable space. Then $M_{\infty}(X, \mathscr{A})$ is a closed subset of $M_m(X, \mathscr{A})$.

Proof. Let $f \in cl_m M_{\infty}(X, \mathscr{A})$ and $n \in \mathbb{N}$ be given. Then there exists an element g in $B\left(f, \frac{1}{2^n}\right) \cap M_{\infty}(X, \mathscr{A})$, which implies that for every $x \in X$,

$$|f(x)| \ge \frac{1}{n} \Rightarrow |g(x)| \ge |f(x)| - \frac{1}{2^n} \ge \frac{1}{n} - \frac{1}{2^n} \ge \frac{1}{2^n},$$

that is

$$\left\{x \in X \colon |f(x)| \ge \frac{1}{n}\right\} \subseteq \left\{x \in X \colon |g(x)| \ge \frac{1}{2^n}\right\},\$$

and since $g \in M_{\infty}(X, \mathscr{A})$, we conclude that $\{x \in X : |f(x)| \geq \frac{1}{n}\}$ is a compact element of the lattice \mathscr{A} . Therefore, $f \in M_{\infty}(X, \mathscr{A})$ and the proof is now complete.

To prove the main results of this section, we need the following lemma.

Lemma 4.5. If g is an element of $M(X, \mathscr{A})$, then the set

 $A_g := \{ f \in M(X, \mathscr{A}) : fg \text{ is a bounded element of } M(X, \mathscr{A}) \}$ is a clopen subset of $M_m(X, \mathscr{A}).$

Proof. Let $f \in A_g$ be given. Since for every $h \in B\left(f, \frac{1}{1+|g|}\right)$, $|hg| < |fg| + \frac{|g|}{1+|g|}$, we conclude that $B\left(f, \frac{1}{1+|g|}\right) \subseteq A_g$. Therefore, A_g is an open subset of $M_m(X, \mathscr{A})$.

Let $f \in \operatorname{cl}_m A_g$ be given. Then there exists an element h in $B\left(f, \frac{1}{1+|g|}\right) \cap A_g$, and since $|fg| < |hg| + \frac{|g|}{1+|g|}$, we conclude that $f \in A_g$. Therefore, A_g is a clopen subset of $M_m(X, \mathscr{A})$.

Throughout this article we assume that

$$U_{\{x_n\}} := \{ u \in U^+(X, \mathscr{A}) \colon \lim_{n \to \infty} u(x_n) = 0 \}$$

and

$$A_{\{x_n\}} := \{ f \in M(X, \mathscr{A}) \colon |f| < u \text{ for some } u \in U_{\{x_n\}} \}$$

for every sequence $\{x_n\}_{n\in\mathbb{N}} \subseteq X$. It is obvious that for every $f, g \in U_{\{x_n\}}, f + g \in U_{\{x_n\}}$ and $fg \in U_{\{x_n\}}$.

To prove Proposition 4.13, we need the following lemma.

Lemma 4.6. For every sequence $\{x_n\}_{n\in\mathbb{N}} \subseteq X$, $A_{\{x_n\}}$ is a clopen subset of $M_m(X, \mathscr{A})$.

Proof. Let $f \in A_{\{x_n\}}$ be given. Then there exists an element u in $U_{\{x_n\}}$ such that |f| < u, which implies that for every $v \in U_{\{x_n\}}$,

$$h \in B(f, v) \Rightarrow |h| < |f| + v < u + v \in U_{\{x_n\}} \Rightarrow h \in A_{\{x_n\}}$$

Hence $A_{\{x_n\}}$ is an open subset of $M_m(X, \mathscr{A})$.

Let $f \in cl_m A_{\{x_n\}}$ and $v \in U_{\{x_n\}}$ be given. Then there exists an element h in $B(f, v) \cap A_{\{x_n\}}$, which implies that there exists an element $u \in U_{\{x_n\}}$ such that |h| < u, and so $|f| < |h| + v < u + v \in U_{\{x_n\}}$, i.e., $f \in A_{\{x_n\}}$. Therefore, $A_{\{x_n\}}$ is a clopen subset of $M_m(X, \mathscr{A})$.

Remark 4.7. Let (X, \mathscr{A}) be a measurable space. Since $M_m(X, \mathscr{A})$ is a topological ring, then:

- (1) If A is an open subset of $M_m(X, \mathscr{A})$, then f + A is an open subset of $M_m(X, \mathscr{A})$ for every $f \in M(X, \mathscr{A})$.
- (2) If A is a connected subset of $M_m(X, \mathscr{A})$ with $\mathbf{0} \in A$, then f + A is a connected subset of $M_m(X, \mathscr{A})$ for every $f \in M(X, \mathscr{A})$.

Proposition 4.8. Let (X, \mathscr{A}) be a measurable space. If $f \in M(X, \mathscr{A})$ is an unbounded measurable function, then there is a sequence $\{x_n\}_{n\in\mathbb{N}} \subseteq X$ such that for every function $g: \{x_n\}_{n\in\mathbb{N}} \to \mathbb{R}$, there exists an element \bar{g} in $M(X, \mathscr{A})$ with $\bar{g}(x_n) = g(x_n)$ and $f(x_n) > n$ for every $n \in \mathbb{N}$.

Proof. By induction, define a sequence $\{x_n\}_{n\in\mathbb{N}} \subseteq X$ and a family $\{A_n\}_{n\in\mathbb{N}} \in \mathscr{A}$ such that

$$A_1 \supsetneq A_2 \supsetneq A_3 \supsetneq \cdots \supsetneq A_k$$

and

$$x_k \in A_k \setminus \bigcup_{j=1}^{k-1} A_j$$

for every $k \in \mathbb{N}$ as follows. By hypothesis, there exists an element x_1 in X such that $|f(x_1)| > 1$. We set $A_1 := f^{-1}((-\infty, -1) \cup (1, \infty))$. If n > 1, then, by hypothesis, there exists an element x_n in X such that $|f(x_n)| > \max\{n, |f(x_{n-1})|\}$. We set

$$A_n := f^{-1} \big((-\infty, -\max\{n, |f(x_{n-1})|\}) \cup (\max\{n, |f(x_{n-1})|\}, \infty) \big).$$

Let $g: \{x_n\}_{n\in\mathbb{N}} \to \mathbb{R}$ be a function. We set $B_n := A_n \setminus \bigcup_{j=n+1}^{\infty} A_j$ for every $n \in \mathbb{N}$. It is clear that $A_1 = \bigcup_{n=0}^{\infty} B_n$ and $B_n \cap B_m = \emptyset$ for every $n, m \in \mathbb{N}$ with $m \neq n$. We define $\bar{g}: X \longrightarrow \mathbb{R}$ by

$$\bar{g}(x) = \begin{cases} g(x_n) & \text{if } x \in B_n \text{ for some } n \in \mathbb{N} \\ 1 & x \in X \setminus A_1 \end{cases}$$

Then $\bar{g} \in M(X, \mathscr{A})$ and $\bar{g}(x_n) = g(x_n)$ for every $n \in \mathbb{N}$.

For a measurable space (X, \mathscr{A}) , the subset $M^*(X, \mathscr{A})$ of $M(X, \mathscr{A})$, consisting of all bounded functions in $M(X, \mathscr{A})$, is also closed under the algebraic and order operations on $M(X, \mathscr{A})$. A measurable space (X, \mathscr{A}) is said to be pseudocompact if every function in $M(X, \mathscr{A})$ is bounded, i.e., $M^*(X, \mathscr{A}) = M(X, \mathscr{A})$.

For a measurable space (X, \mathscr{A}) and a non-empty subset Y of X, we set

$$\mathscr{A}_Y := \{ V \cap Y \colon V \in \mathscr{A} \}$$

and (Y, \mathscr{A}_Y) is a measurable space.

Proposition 4.9. If a measurable space (X, \mathscr{A}) is not pseudocompact, then there exists an infinite countable subset A of X such that

- (1) for every function $f: A \to \mathbb{R}$, there exists an element f in $M(X, \mathscr{A})$ such that $\overline{f}(x) = f(x)$ for every $x \in A$, and
- (2) if $f: A \to \mathbb{R}$ is a function with $Z(f) = \emptyset$, then there exists an element \overline{f} in $U(X, \mathscr{A})$ such that $\overline{f}(x)f(x) = 1$ for every $x \in A$.

Proof. The proof is similar to the proof of Proposition 4.8.

Definition 4.10. Let (X, \mathscr{A}) be a measurable space. We denote by $M_{\psi}(X, \mathscr{A})$ the family of all functions $f \in M(X, \mathscr{A})$ for which $(\operatorname{coz}(f), \mathscr{A}_{\operatorname{coz}(f)})$ is a pseudocompact measurable space. It is clear that $M_{\psi}(X, \mathscr{A}) \subseteq M^*(X, \mathscr{A})$.

As in Proposition 3.11 in [3], we define $\varphi_f \colon \mathbb{R} \longrightarrow M_m(X, \mathscr{A})$ given by $\varphi_f(r) = \mathbf{r}f$ for every $f \in M(X, \mathscr{A})$.

The following lemma is the counterpart of Proposition 3.11 in [3].

Lemma 4.11. Let (X, \mathscr{A}) be a measurable space. Then $f \in M_{\psi}(X, \mathscr{A})$ if and only if φ_f is continuous.

Proof. Necessity. Let $u \in U^+(X, \mathscr{A})$ be given. By hypothesis, there exists an element α in \mathbb{R} such that $u(x) > \alpha > 0$ for every $x \in \operatorname{coz}(f)$, and also, there exists an element t in \mathbb{N} such that |f| < t. We claim that

$$(r - \frac{\alpha}{t}, r + \frac{\alpha}{t}) \subseteq \varphi_f^{-1}(B(\mathbf{r}f, u))$$

Let $s \in (r - \frac{\alpha}{t}, r + \frac{\alpha}{t})$ be given. If $x \in \operatorname{coz}(f)$, then

 $|\mathbf{r}f - \varphi_f(s)|(x) = |\mathbf{r}f - \mathbf{s}f|(x) = |r - s||f(x)| < \frac{\alpha}{t}|f(x)| < \alpha < u(x),$

and if $x \in Z(f)$, then

$$|\mathbf{r}f - \varphi_f(s)|(x) = |\mathbf{r}f - \mathbf{s}f|(x) = 0 < u(x).$$

This proves the claim. Therefore, φ_f is continuous.

Sufficiency. We argue by contradiction. Let us assume that φ_f is continuous and $f \notin M_{\psi}(X, \mathscr{A})$ for some $f \in M(X, \mathscr{A})$. Then, by Proposition 4.9, there is a sequence $\{x_n\}_{n\in\mathbb{N}} \subseteq \operatorname{coz}(f)$ such that for every function $f: \{x_n\}_{n\in\mathbb{N}} \to \mathbb{R}$, there exists an element \overline{f} in $M(\operatorname{coz}(f), \mathscr{A}_{\operatorname{coz}(f)})$ such that $\overline{f}(x_n) = f(x_n)$ for every $n \in \mathbb{N}$. To get a contradiction, we need to consider two cases:

Case 1: Suppose that there exists a positive real number α such that $|f(x_n)| > \alpha$ for every $n \in \mathbb{N}$. We define $g: \{x_n\}_{n \in \mathbb{N}} \to \mathbb{R}$ by $g(x_n) = n$. Then there exists an element \bar{g} in $M(\cos(f), \mathscr{A}_{\cos(f)})$ such that $\bar{g}(x_n) = g(x_n) = n$, by Proposition 4.8.

Now, we define $h: X \to \mathbb{R}$ by

$$h(x) = \begin{cases} \bar{g}(x) & \text{if } x \in \operatorname{coz}(f) \\ 0 & \text{if } x \in Z(f). \end{cases}$$

Then $h \in M(X, \mathscr{A})$ and $h(x_n) = n$ for every $n \in \mathbb{N}$. Let $s \in (0, +\infty)$ such that $\varphi_f((-s, s)) \subseteq B(\mathbf{0}, \frac{1}{1+|\mathbf{h}|})$. Then $|t|\alpha < |tf(x_n)| \leq C$

 $\frac{1}{1+|h(x_n)|} = \frac{1}{1+n}$ for every $t \in (-s,s)$ and every $n \in \mathbb{N}$, which implies that $\lim_{n\to\infty} \frac{1}{1+n} = 0 \ge |t|\alpha > 0$ and this is a contradiction.

Case 2: Suppose that for every $i \in \mathbb{N}$, there is $x_{n_i} \in \{x_n\}$ such that $|f(x_{n_i})| < \frac{1}{i+1}$, then $\lim_{i\to\infty} f(x_{n_i}) = 0$. We define $g: \{x_n\} \to \mathbb{R}$ by

$$g(x_n) = \begin{cases} \frac{1 - f^2(x_n)}{f^2(x_n)} & \text{if } n \in \{n_i\}_{i \in \mathbb{N}} \\ 0 & \text{if } n \notin \{n_i\}_{i \in \mathbb{N}} \end{cases}$$

Then there exists an element \bar{g} in $M(\operatorname{coz}(f), \mathscr{A}_{\operatorname{coz}(f)})$ such that $\bar{g}(x_n) = g(x_n)$. Now, we define $h: X \to \mathbb{R}$ by

$$h(x) = \begin{cases} \bar{g}(x) & \text{if } x \in \operatorname{coz}(f) \\ 0 & \text{if } x \in z(f). \end{cases}$$

Then $h \in M(X, \mathscr{A})$ and

$$\frac{1}{1+|h(x_{n_i})|} = \frac{1}{1+|\frac{1-f^2(x_{n_i})}{f^2(x_{n_i})}|} = \frac{f^2(x_{n_i})}{f^2(x_{n_i})+(1-f^2(x_{n_i}))} = f^2(x_{n_i})$$

for every $i \in \mathbb{N}$. Let $s \in (0, +\infty)$ such that $\varphi_f((-s, s)) \subseteq B\left(\mathbf{0}, \frac{1}{1+|h|}\right)$, then $|tf(x_{n_i})| \leq \frac{1}{1+|h(x_{n_i})|} = f^2(x_{n_i})$ for every $t \in (-s, s)$ and every $i \in \mathbb{N}$, which implies that $|t| \leq \lim_{i \to \infty} |f(x_{n_i})| = 0$, i.e., $(-s, s) = \{0\}$, which is a contradiction.

Definition 4.12. Let (X, \mathscr{A}) be a measurable space. An ideal I of $M(X, \mathscr{A})$ is called bounded if every element of I is bounded, i.e., $I \subseteq M^*(X, \mathscr{A})$.

By the following result, $M(X, \mathscr{A})$ is the largest bounded and connected ideal of $M(X, \mathscr{A})$.

Proposition 4.13. Let I be an ideal of $M(X, \mathscr{A})$. Then the following statements are equivalent.

- (1) I is a connected subset of $M_m(X, \mathscr{A})$.
- (2) I is bounded.
- (3) $I \subseteq M_{\psi}(X, \mathscr{A}).$

Proof. (1) \Rightarrow (2). We argue by contradiction. Let us assume that $f \in I$ is an unbounded function, then there is a sequence $\{x_n\}_{n\in\mathbb{N}} \subseteq \operatorname{coz}(f)$ such that $\lim_{n\to\infty} f(x_n) = \infty$, which implies that $f \in I \setminus A_{\{x_n\}}$. Since $\mathbf{0} \in I \cap A_{\{x_n\}}$, we conclude from Lemma 4.6 that I is a disconnected subset of $M_m(X, \mathscr{A})$, which is a contradiction.

 $(2) \Rightarrow (3)$. By way of contradiction assume that $f \in I \setminus M_{\psi}(X, \mathscr{A})$, then, by Proposition 4.9, there is a sequence $\{x_n\}_{n \in \mathbb{N}} \subseteq \operatorname{coz}(f)$ such that $\lim_{n\to\infty} f(x_n) = \infty$ and there exists an element \bar{g} in $M(X, \mathscr{A})$ such that $\bar{g}(x_n)f(x_n) = 1$ for every $n \in \mathbb{N}$. It is clear that $\bar{g}f^2$ is an unbounded function and $\bar{g}f^2 \in I$, which is a contradiction.

 $(3) \Rightarrow (1)$. Since the continuous image of a connected space is connected, we conclude from Lemma 4.11 that $\varphi_f(\mathbb{R})$ is a connected subset of $M_m(X, \mathscr{A})$ for every $f \in I$. It is clear that $\mathbf{0} \in \bigcap_{f \in I} \varphi_f(\mathbb{R})$ and $I = \bigcup_{f \in I} \varphi_f(\mathbb{R})$, then I is a connected subset of $M_m(X, \mathscr{A})$. \Box

As an immediate consequence from Proposition 4.13 we now have the following corollary.

Corollary 4.14. Let (X, \mathscr{A}) be a measurable space. Then $M_{\psi}(X, \mathscr{A})$ is the largest bounded ideal in $M(X, \mathscr{A})$.

Proposition 4.15. Let (X, \mathscr{A}) be a measurable space, and $f \in M(X, \mathscr{A})$. Then $f \in M_{\psi}(X, \mathscr{A})$ if and only if fg is a bounded function for every $g \in M(X, \mathscr{A})$.

Proof. If $f \in M_{\psi}(X, \mathscr{A})$, then $fg \in M_{\psi}(X, \mathscr{A})$ for all $f \in M(X, \mathscr{A})$, so fg is bounded. Conversely f = f.1 is bounded, hence $f \in M_{\psi}(X, \mathscr{A})$.

Corollary 4.16. A measurable space (X, \mathscr{A}) is pseudocompact if and only if every ideal of $M(X, \mathscr{A})$ is a connected subset of $M_m(X, \mathscr{A})$.

Proof. By Proposition 4.13, it is clear.

Also, the following proposition that was proved in [7] is needed in this paper.

Proposition 4.17. The following statements are equivalent.

- (1) The measurable space (X, \mathscr{A}) is compact.
- (2) The set X is a finite set and $\mathscr{A} = \mathcal{P}(X)$.
- (3) The measurable space (X, \mathscr{A}) is pseudocompact.

As an immediate consequence from Proposition 4.17 we now have the following corollary.

Corollary 4.18. For measurable space (X, \mathscr{A}) , $f \in M_{\psi}(X, \mathscr{A})$ if and only if $\operatorname{coz}(f)$ is a compact element of \mathscr{A} for every $f \in M(X, \mathscr{A})$.

We recall from [9] that an ideal I of $M(X, \mathscr{A})$ is called fixed if the set $\bigcap_{f \in I} Z(f)$ is nonempty; otherwise, I is called free.

The following results which is the counterpart of Corollary 3.9 in [3] show the connection between free maximal ideals of $M(X, \mathscr{A})$ and connected ideals of $M_m(X, \mathscr{A})$.

Proposition 4.19. Let (X, \mathscr{A}) be not a pseudocompact measurable space, and assume that I is a proper ideal of $M(X, \mathscr{A})$. Then I is a connected subset of $M_m(X, \mathscr{A})$ if and only if $I \subseteq M$ for every free maximal ideal M of $M(X, \mathscr{A})$.

Proof. Necessity. Let J be a free ideal of $M(X, \mathscr{A})$, and let $f \in I$ be given. Then for every $x \in \operatorname{coz}(f)$, there exists an element f_x in J such that $x \in \operatorname{coz}(f_x)$, which implies that $\operatorname{coz}(f) \subseteq \bigcup_{x \in \operatorname{coz}(f)} \operatorname{coz}(f_x)$. Since, by Proposition 4.13 and Corollary 4.18, $\operatorname{coz}(f)$ is a compact element of \mathscr{A} , there are $x_1, \ldots, x_n \in \operatorname{coz}(f)$ such that

$$\operatorname{coz}(f) \subseteq \bigcup_{i=1}^{n} \operatorname{coz}(f_{x_i}) = \operatorname{coz}\left(\sum_{i=1}^{n} f_{x_i}^2\right),$$

and so there exists an element h in $M(X, \mathscr{A})$ such that

$$f = h\left(\sum_{i=1}^{n} f_{x_i}^2\right) \in J.$$

Sufficiency. Let $f \in I$ be given. Hence, by Proposition 4.13 and Corollary 4.18, it suffices to prove that $\cos(f)$ is a compact element of \mathscr{A} . If not, then there exists an element g in $M(\cos(f), \mathscr{A}_{\cos(f)})$ such that $g \notin M^*(\cos(f), \mathscr{A}_{\cos(f)})$, and so the map $h: X \to \mathbb{R}$ by

$$h(x) = \begin{cases} |g(x)| + 1 & \text{if } x \in \operatorname{coz}(f) \\ 0 & \text{if } x \in X \setminus \operatorname{coz}(f) \end{cases}$$

belongs to $M(X, \mathscr{A}) \setminus M^*(X, \mathscr{A})$. We put $V_n := \{x \in X : |h(x)| \ge n\}$ for every $n \in \mathbb{N}$. Since $\{V_n : n \in \mathbb{N}\} \subseteq \mathscr{A}$ has the finite intersection property, we conclude that there exists a free ultrafilter \mathcal{F} of \mathscr{A} such that $\{V_n : n \in \mathbb{N}\} \subseteq \mathcal{F}$, which implies from [9, Proposition 3.6] that

$$M := \{ f \in M(X, \mathscr{A}) \colon Z(f) \in \mathcal{F} \}$$

is a free maximal ideal of $M(X, \mathscr{A})$, and by our hypothesis, we infer that $f \in M$. Therefore, $\emptyset = Z(f) \cap \operatorname{coz}(f) = Z(f) \cap V_1 \in \mathcal{F}$ and this is a contradiction to the fact that $\emptyset \notin \mathcal{F}$.

Proposition 4.20. Let (X, \mathscr{A}) be a measurable space, and let I be an ideal of $M(X, \mathscr{A})$. Then the following statements hold.

- (1) If I is a Lindelöf subspace of $M_m(X, \mathscr{A})$, then $I \subseteq M_{\psi}(X, \mathscr{A})$.
- (2) If $I \neq \{0\}$, then I is not a compact subset of $M_m(X, \mathscr{A})$.

Proof. (1). By hypothesis, there exists a family $\{B(f_n, u_n)\}_{n \in \mathbb{N}}$ such that

$$I \subseteq \bigcup_{n=1}^{\infty} B(f_n, u_n).$$

We argue by contradiction. Let us assume that there exists an element f in I such that $f \notin M_{\psi}(X, \mathscr{A})$, which implies from Lemma 4.8 that there is a sequence $A := \{x_n\}_{n \in \mathbb{N}} \subseteq X$ such that for every function $g: \{x_n\}_{n \in \mathbb{N}} \to \mathbb{R}$, there exists an element \bar{g} in $M(X, \mathscr{A})$ such that $\bar{g}(x_n) = g(x_n)$ and $f(x_n) > n$ for every $n \in \mathbb{N}$. We define $g: \{x_n\}_{n \in \mathbb{N}} \to \mathbb{R}$ by $g(x_n) = |f_n(x_n)| + u_n(x_n)$, and so there exists a $\bar{g} \in M(X, \mathscr{A})$ such that $\bar{g}|_A = g$. We can assume that there exists an element m in \mathbb{N} such that $\bar{g}f \in B(f_m, u_m)$, which implies that $|\bar{g}f| < |f_m| + u_m$, and so $|f_m(x_m)| + u_m(x_m) = |\bar{g}(x_m)| < |f(x_m)\bar{g}|(x_m) < |f_m(x_m)| + u_m(x_m)$, which is a contradiction.

(2). We proceed by contradiction. Assume that there exist

 $f_1, f_2, ..., f_n \in M(X, \mathscr{A})$

and $u \in U^+(X, \mathscr{A})$ such that $I \subseteq \bigcup_{i=1}^n B(f_i, u)$. Let $a \notin \bigcap_{f \in I} Z(f)$ and $g \in I$ with $g(a) \neq 0$ be given. We set $b := \max\{|f_1(a)| + u(a), \ldots, f_n(a)| + u(a)\}$ and $f := \mathbf{b}(\mathbf{g}(\mathbf{a}))^{-1}g$, then there is a natural number k such that $f \in B(f_k, u)$, which implies that $b = |f(a)| < |f_k(a)| + u(a)$, and this is a contradiction with choose b. \Box

Example 4.21. The following statements hold.

- (1) The ideal $\{f \in M_m(\mathbb{N}, \mathcal{P}(\mathbb{N})) : f(1) = 0\}$ of $M(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ is not a Lindelöf subspace of $M_m(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.
- (2) The set $\{f \in M(\mathbb{N}, \mathcal{P}(\mathbb{N})) : \mathbb{N} \setminus \{n\} \subseteq Z(f)\}$ is a Lindelöf ideal of $M_m(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.
- (3) If $I_n := \{f \in M(\mathbb{N}, \mathcal{P}(\mathbb{N})) : \mathbb{N} \setminus \{n\} \subseteq Z(f)\}$ for every natural number n, then $I_{n_1} + \cdots + I_{n_k}$ is a Lindelöf ideal of $M_m(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ for every natural number k.
- (4) $M_{\psi}(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ is a Lindelöf ideal of $M_m(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.

We recall from [23, 26B] that the quasicomponent of x in a space X is the intersection of all clopen subsets of X which contain x, and the component of x is contained in the quasicomponent of x.

Proposition 4.22. If K is the quasicomponent of zero in $M_m(X, \mathscr{A})$, then K is a subideal of $M_{\psi}(X, \mathscr{A})$, especially,

$$M_{\psi}(X,\mathscr{A}) = K = \bigcap_{g \in M(X,\mathscr{A})} A_g.$$

Proof. Let C be the component of zero in $M_m(X, \mathscr{A})$. Then by Lemma 4.5 and Proposition 4.13,

$$C \subseteq M_{\psi}(X,\mathscr{A}) \subseteq K \subseteq \bigcap_{g \in M(X,\mathscr{A})} A_g$$

One can easily confirm that $\bigcap_{g \in M(X,\mathscr{A})} A_g$ is a bounded ideal of $M(X,\mathscr{A})$, then, Proposition 4.13, $M_{\psi}(X,\mathscr{A}) = K = \bigcap_{g \in M(X,\mathscr{A})} A_g$.

5. Pseudocompactness of (X, \mathscr{A}) versus topological properties of $M_m(X, \mathscr{A})$

In this section, we shall establish some properties of a pseudocompact measurable space (X, \mathscr{A}) which are equivalent to properties of the topological space $M_m(X, \mathscr{A})$.

Proposition 5.1. A measurable space (X, \mathscr{A}) is pseudocompact if and only if $M_m(X, \mathscr{A}) = M_u(X, \mathscr{A})$

Proof. Necessity. By Remark 2.1, $\tau_m \subseteq \tau_u$. Let $G \in \tau_m$ and $f \in G$ be given. Then there exists an element u in $U^+(X)$ such that $B(f, u) \subseteq G$. Since (X, \mathscr{A}) is pseudocompact, we conclude that $\varepsilon := \inf\{U(X, \mathscr{A}) : x \in X\}$ is a non-zero real number, which implies that $u(f, \varepsilon) \subseteq B(f, u) \subseteq G$, and so $G \in \tau_u$. Therefore, $\tau_u \subseteq \tau_m$.

Sufficiency. We argue by contradiction. Let us assume that f is an unbounded function in $M(X, \mathscr{A})$. Then there exists an element $\varepsilon > 0$ in \mathbb{R} such that $B(\mathbf{0}, \varepsilon) \subseteq B(\mathbf{0}, \frac{1}{|f| \vee 1})$, which implies that $\frac{\varepsilon}{2} < \frac{1}{|f| \vee 1}$, and so $|f| \vee \mathbf{1} < \frac{2}{\varepsilon}$, that is f is bounded, and this is a contradiction. \Box

Proposition 5.2. If $M_m(X, \mathscr{A})$ is a Lindelöf space, then (X, \mathscr{A}) is a pseudocompact measurable space.

Proof. By hypothesis, there exist $\{f_n\}_{\mathbb{N}} \subseteq M(X,\mathscr{A})$ and $\{u_n\}_{\mathbb{N}} \subseteq U^+(X,\mathscr{A})$ such that $M(X,\mathscr{A}) = \bigcup_{n=1}^{\infty} B(f_n, u_n)$. By way of contradiction assume that \mathscr{A} is not a pseudocompact measurable space. Then there exists a subset $A := \{x_n : n \in \mathbb{N}\}$ of X such that for every $f \in \mathbb{R}^A$, there exists an element $\overline{f} \in M(X,\mathscr{A})$ such that $\overline{f}|_A = f$. We define $g : A \to \mathbb{R}$ by $g(x) = u_n(x) + f_n(x)$, then there exist $\overline{g} \in M(X,\mathscr{A})$ and $n \in \mathbb{N}$ such that $\overline{g}|_A = g$ and $\overline{g} \in B(f_n, u_n)$, which implies that

$$u_n(x_n) = |g(x_n) - f_n(x_n)| < u_n(x_n),$$

and this is a contradiction.

We recall that a topological space X is called semi-compact if there exists a family of compact subsets $\{K_n\}_{n\in\mathbb{N}}$ of X such that for every compact subset K of X, there exists an element n in \mathbb{N} such that $K \subseteq K_n$.

The following corollary which follows from Proposition 3.10 is the counterpart of Corollary 4.3 in [3].

Corollary 5.3. Let (X, \mathscr{A}) be a *T*-measurable space. Then the following statements are equivalent.

- (1) $M_m(X, \mathscr{A})$ is locally compact.
- (2) $M_m(X, \mathscr{A})$ is σ -compact.
- (3) $M_m(X, \mathscr{A})$ is semi-compact.
- (4) $M_m(X, \mathscr{A})$ is a second category space.
- (5) X is finite.

Proof. If X is a finite set, then, by Proposition 3.8, $M_m(X, \mathscr{A})$ is locally compact, σ - compact and semi-compact.

 $(1) \Rightarrow (5)$. By Proposition 3.10, it is clear.

 $(2) \Rightarrow (4)$. By hypothesis, there exists a family of compact subsets $\{F_n\}_{n\in\mathbb{N}}$ of $M_m(X,\mathscr{A})$ such that $M_m(X,\mathscr{A}) = \bigcup_{n=1}^{\infty} F_n$. Then $M_m(X,\mathscr{A})$ is a Lindelöf space, which implies from Proposition 5.2 that (X,\mathscr{A}) is a pseudocompact space, and so, by Propositions 5.1, 3.1 and Theorem 16.25 in [10], $M_m(X,\mathscr{A})$ is a second category space.

 $(4) \Rightarrow (5)$. Suppose on the contrary, that X is an infinite set. Then, by Proposition 3.10, $M(X, \mathscr{A}) \setminus F_n$ is a dense open subset of $M_m(X, \mathscr{A})$ for every $n \in \mathbb{N}$. But

$$\bigcap_{n=1}^{\infty} \left(M(X,\mathscr{A}) \setminus F_n \right) = M(X,\mathscr{A}) \setminus \bigcup_{n=1}^{\infty} F_n = \emptyset,$$

which contradics the fact that $M_m(X, \mathscr{A})$ is a second category space.

(3) \Rightarrow (5). It is well known that every semi-compact is σ - compact.

We say that a space X satisfies the first axiom of countability or is first-countable; this means that at every point z of X there exists a countable base.

Proposition 5.4. $M_m(X, \mathscr{A})$ is a first countable topological space if and only if (X, \mathscr{A}) is a pseudocompact measurable space.

Proof. Necessity. We argue by contradiction. Let us assume that (X, \mathscr{A}) is not pseudocompact.

We consider constant function **0** and we demonstrate for every countable collection of open neighborhood for **0**. Then there exists any neighborhood of this function such that is not contained any element of this collection. Since X is not a pseudocompact measurable space; there exists an element f in $M(X, \mathscr{A}) \setminus M^*(X, \mathscr{A})$. We set $g := f^2 + \mathbf{1}$. Then $g \in U^+(X, \mathscr{A})$ is unbounded. Thus there exist a family $\{a_n\}_{n \in \mathbb{N}} \subseteq \mathbb{R}^+$ and a family $\{x_n\}_{n \in \mathbb{N}} \subseteq X$ such that $\{a_n\}_{n \in \mathbb{N}}$ is a ascending sequence with $\lim_{n\to\infty} a_n = \infty$ and $g(x_n) = a_n$ for every $n \in \mathbb{N}$. Now, let $\{B(0, u_n)\}_n \in \mathbb{N}$ be a countable collection of open neighborhood of **0**. We put $b_n = \frac{1}{2}u_n(x_n)$ for every $n \in \mathbb{N}$. Then there exists a positive element σ in $C(\mathbb{R})$ such that $\sigma(a_n) = \frac{1}{b_n}$ for every $n \in \mathbb{N}$. Consider $v := \frac{1}{\sigma \circ g}$. Then $v \in U^+(X, \mathscr{A})$ and $\nu(x_n) = b_n \leq \frac{1}{2}u_n(x_n)$ for every $n \in \mathbb{N}$, which implies that $B(0, u_n) \not\subseteq B(0, v)$ for every $n \in \mathbb{N}$, and this is a contradiction to the fact that $M_m(X, \mathscr{A})$ is a first countable topological space.

Sufficiency. By Proposition 5.1, $M_m(X, \mathscr{A}) = M_u(X, \mathscr{A})$. Then by Proposition 3.1, $M_m(X, \mathscr{A})$ is a metric space, which implies that $M_m(X, \mathscr{A})$ is a first countable space.

Proposition 5.5. If (X, \mathscr{A}) is not a pseudocompact measurable space, then the following statements hold.

- The set of all constant functions in M(X, 𝒜) is a discrete subspace of M_m(X, 𝒜).
- (2) $M(X, \mathscr{A})$ has an unbounded unit element.

Proof. (1). By hypothesis, $M(X, \mathscr{A})$ must contain an unbounded function f. Consider $\varepsilon \in (0, +\infty)$. Then $u := |f| \lor \varepsilon \in U^+(X, \mathscr{A})$ is an unbounded function, which implies that u^{-1} is also a positive unit such that $0 \in cl_{\mathbb{N}}(u^{-1}[X])$. Hence, there exist a family $\{a_n\}_{n\in\mathbb{N}} \subseteq \mathbb{R}^+$ and a family $\{x_n\}_{n\in\mathbb{N}} \subseteq X$ such that $\{a_n\}_{n\in\mathbb{N}}$ is a ascending sequence with $\lim_{n\to\infty} a_n = \infty$ and $u(x_n) = a_n$ for every $n \in \mathbb{N}$. Let $r, t \in \mathbb{R}$ be given. If $\mathbf{t} \in B(\mathbf{r}, u^{-1})$, then

$$|r-t| = \lim_{n \to \infty} |\mathbf{r}(x_n) - \mathbf{t}(x_n)| \le \lim_{n \to \infty} u^{-1}(x_n) = 0,$$

which implies that $\mathbf{t} = \mathbf{r}$. Therefore, the set of all constant functions in $M(X, \mathscr{A})$ is a discrete subspace of $M_m(X, \mathscr{A})$.

(2). It is evident.

Proposition 5.6. Let (X, \mathscr{A}) be a measurable space. Then the following statements are equivalent.

- (1) (X, \mathscr{A}) is a pseudocompact measurable space.
- (2) $M_m(X, \mathscr{A})$ is a connected space.
- (3) $M_m(X, \mathscr{A})$ is a locally connected space.
- (4) $M^*(X, \mathscr{A})$ is a connected subset of $M_m(X, \mathscr{A})$.

Proof. $(1) \Rightarrow (2)$. By Proposition 4.13, it is clear.

 $(2) \Rightarrow (3)$. By Proposition 4.13,

$$M(X,\mathscr{A}) = M^*(X,\mathscr{A}) = M_{\psi}(X,\mathscr{A}).$$

Let $0 < \varepsilon \in \mathbb{R}$ be given. By Lemma 4.11, for every $f \in M(X, \mathscr{A})$ with $|f| < \varepsilon$, $\varphi_f([-1, 1])$ is a connected subset of $M_m(X, \mathscr{A})$ and since $\mathbf{0} \in \bigcap_{|f| < \varepsilon} \varphi_f([-1, 1])$, we conclude that $B(\mathbf{0}, \varepsilon) = \bigcup_{|f| < \varepsilon} \varphi_f([-1, 1])$ is a connected subset of $M_m(X, \mathscr{A})$. Therefore, by Remark 4.7, $f + B(\mathbf{0}, \varepsilon)$ is a connected open subset of $M_m(X, \mathscr{A})$ for every $f \in M(X, \mathscr{A})$. The proof is now complete.

 $(3) \Rightarrow (1)$. It is evident that $M_m(X, \mathscr{A}) \subseteq M_{\psi}(X, \mathscr{A})$ implies every function is bounded.

 $(3) \Rightarrow (4)$. Let X is not a pseudocompact. Then there exists an element f in $M(X, \mathscr{A})$ such that $f \notin M_{\psi}(X, \mathscr{A})$. Let C be the connected component of zero in $M_m(X, \mathscr{A})$. Then by Lemma 4.13, $C \subseteq M_{\psi}(X, \mathscr{A})$. By hypothesis, there exists an open connected subset G such that $\mathbf{0} \in G$. Then there exists an element u in $U^+(X, \mathscr{A})$ such that $B(\mathbf{0}, u) \subseteq G \subseteq C$. Since $\frac{f}{1+|f|}u \in B(\mathbf{0}, u)$, we conclude that $f = \frac{f}{1+|f|}u(1+|f|)u^{-1} \in C \subseteq M_{\psi}(X, \mathscr{A})$, which is a contradiction.

(4) \Rightarrow (1). By Proposition 4.13, $\mathbf{1} \in M^*(X, \mathscr{A}) = M_{\psi}(X, \mathscr{A})$. Then (X, \mathscr{A}) is a pseudocompact measurable space, because $\operatorname{coz}(\mathbf{1}) = X$.

Ackowledgments

The authors thank the anonymous referees for their valuable comments and suggestions for improving the paper.

References

- A. Amini, B. Amini, A. Momtahan, and M. H. Shirdareh Haghigi, Generalized rings of measurable and continuous function, *Bull. Iranian Math. Soc.*, 39(1) (2013), 49–64.
- [2] H. Azadi, M. Henriksen, and E. Momtahan, Some properties of algebras of real-valued measurable functions, Acta Math. Hungar., 124(1-2) (2009), 15– 23.

- [3] F. Azarpanah, F. Manshoor, and R. Mohamadian, Connectedness and compactness in C(X) with the *m*-topology and generalized *m*-topology, *Topology Appl.*, **159** (2012), 3486–3493.
- [4] F. Azarpanah, F. Manshoor, and R. Mohamadian, A generalization of the m-topology on C(X) finer than the *m*-topology, *Filomat*, **31**(8) (2017), 3509–3515.
- [5] F. Azarpanah, M. Paimann, and A.R. Salehi, Connectedness of some rings of quotients of C(X) with the *m*-topology, *Comment. Math. Univ. Carolin.*, **56**(1) (2015), 63–76.
- [6] F. Azarpanah, M. Paimann and A.R. Salehi, Compactness, connectedness and countability properties of C(X) with r-topology, Acta Math. Hungar., 146(2) (2015), 265–284.
- [7] A. A. Estaji and A. Mahmoudi Darghadam, Rings of real measurable functions vanishing at infinity on a measurable space, Submitted.
- [8] A. A. Estaji and A. Mahmoudi Darghadam, Some properties of algebras of real-valued measurable functions, Submitted.
- [9] A. A. Estaji, A. Mahmoudi Darghadam, and H. Yousefpour, Maximal ideals in rings of real measurable functions, *Filomat*, **32**(15) (2018), 5191–5203.
- [10] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, 1976.
- [11] J. Gómez-Pérez and W. W. McGovern, The m-topology on $C_m(X)$ revisited, Topology Appl., 153 (2006), 1838–1848.
- [12] A. Hager, Algebras of measurable functions, Duke Math. J., 38 (1971), 21–27.
- [13] E. Hewitt, Rings of real-valued continuous functions, I, Trans. Amer. Math. Soc., 64 (1948), 54–99.
- [14] W. Iberkleid, R. Lafuente-Rodriguez and W. W. McGovern, The regular topology on C(X), Comment. Math. Univ. Carolinae, 52(3) (2011), 445–461.
- [15] G. Di Maio, L. Holá, D. Holý, and R. A. McCoy, Topologies on the space of continuous functions, *Topology Appl.*, 86(2) (1998), 105–122.
- [16] F. Manshoor, Another generalization of the *m*-topology, Int. Math. Forum, 9(14) (2014), 683–688.
- [17] E. Momtahan, Essential ideals in rings of measurable functions, Comm. Algebra, 38(12) (2010), 4739–4746.
- [18] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, Inc., New York, 1976.
- [19] W. Rudin, Real and Complex Analysis, (3rd edition), McGraw-Hill, New York, 1986.
- [20] E. van Douwen, Nonnormality or hereditary paracompactness of some spaces of real functions, *Topology Appl.*, **39**(1) (1991), 3–32.
- [21] R. Viertl, A note on maximal ideals and residue class rings of rings of measurable functions, An. Acad. Brasil. Ciênc., 49(3) (1977), 357–358.
- [22] S. Warner, *Topological Rings*, North-Holland Math. Stud. 178, P.O. Box 211,1000 AE Amsterdam, The Netherlands, 1993.
- [23] S. Willard, General Topology, Addison-Wesley Pub. Co., 1970.

Hassan Yousefpour

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

106 YOUSEFPOUR, ESTAJI, MAHMOUDI DARGHADAM AND SADEGHI

Email: h.yousef790gmail.com

Ali Akbar Estaji

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran. Email: aaestaji@hsu.ac.ir

Ahmad Mahmoudi Darghadam

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran. Email: m.darghadam@yahoo.com

Gadir Sadeghi

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

Email: g.sadeghi@hsu.ac.ir

Journal of Algebraic Systems

m-TOPOLOGY ON THE RING OF REAL-MEASURABLE FUNCTIONS

H. YOUSEFPOUR AND A. A. ESTAJI AND A. MAHMOUDI DARGHADAM AND G. SADEGHI

m- توپولوژی روی حلقه توابع اندازه پذیر حقیقی ^۱حسن یوسف پور، ^۲علی اکبر استاجی، ^۳احمد محمودی درقدم و ^۴قدیر صادقی ^{۱٫۲٫۳٫۴}دانشکده ریاضی و علوم کامپیوتر، دانشگاه حکیم سبزواری، سبزوار، ایران.

در این مقاله ما m-توپولوژی را روی $(\mathcal{N}, \mathcal{A})$ ، که حلقه توابع اندازه پذیر حقیقی روی فضای اندازه پذیر (X, \mathcal{A}) است، در نظر میگیریم و آن را با نماد $(\mathcal{N}, \mathcal{A})$ نشان میدهیم. ثابت میکنیم که (X, \mathcal{A}) است، در نظر میگیریم و آن را با نماد $(\mathcal{N}, \mathcal{A})$ نشان میدهیم. ثابت میکنیم که -T (X, \mathcal{A}) است، در نظر میگیریم و هاسدورف است و علاوه بر این، اگر $(\mathcal{N}, \mathcal{A})$ فضای T- $M_m(X, \mathcal{A})$ اندازه پذیر و X با n = |X| باشد، آنگاه به عنوان حلقه های توپولوژیکی \mathbb{R}^n (X, \mathcal{A}) اندازه پذیر و X با n = |X| باشد، آنگاه به عنوان حلقه می توپولوژیکی $\mathbb{R}^n(X, \mathcal{A}) \cong \mathbb{R}$. که $(\mathcal{M}, \mathcal{A}, \mathcal{A}) \cong \mathbb{R}^n$ (X, \mathcal{A}) فضای $M_m(X, \mathcal{A}) \cong \mathbb{R}^n$ (X, \mathcal{A}) اندازه پذیر و X با n = |X| باشد، آنگاه به عنوان حلقه می توپولوژیکی $(X, \mathcal{A}) = M_m(X, \mathcal{A})$ اندازه پذیر و $\mathcal{A}_m(X, \mathcal{A}) = M_m(X, \mathcal{A})$ اگر و همچنین ثابت کرده ایم که $M_m(X, \mathcal{A}) = M_m(X, \mathcal{A})$ اگر و تنها اگر $(\mathcal{M}, \mathcal{A}) = M_m(X, \mathcal{A})$ اگر و تنها اگر $(\mathcal{M}, \mathcal{A}, \mathcal{A})$ وضای همبند باشد اگر و تنها اگر $M_m(X, \mathcal{A})$ وضای همبند باشد اگر و تنها اگر $M_m(X, \mathcal{A})$ وضای همبند باشد اگر و تنها اگر $M_m(X, \mathcal{A})$ وضای همبند باشد اگر و تنها اگر $M_m(X, \mathcal{A})$ و $M_m(X, \mathcal{A})$ و تنها اگر $M_m(X, \mathcal{A})$ و تنها اگر $M_m(X, \mathcal{A})$ و میند باشد اگر و تنها اگر $M_m(X, \mathcal{A})$ و تنها اگر $M_m(X, \mathcal{A})$

کلمات کلیدی: m-توپولوژی، فضای اندازه پذیر، فضای اندازهپذیر شبهفشرده، فضای همبند، فضای شمارای اول.