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m-TOPOLOGY ON THE RING OF
REAL-MEASURABLE FUNCTIONS

H. YOUSEFPOUR, A. A. ESTAJI*, A. MAHMOUDI DARGHADAM AND G.
SADEGHI

ABSTRACT. In this article we consider the m-topology on
M(X, a7), the ring of all real measurable functions on a measur-
able space (X, /), and we denote it by M,, (X, o/). We show that
M, (X, /) is a Hausdorfl regular topological ring, moreover we
prove that if (X, &) is a T-measurable space and X is a finite set
with |X| = n, then M,,(X, ) = R" as topological rings. Also,
we show that M,,(X, <) is never a pseudocompact space and it
is also never a countably compact space. We prove that (X, <)
is a pseudocompact measurable space, if and only if M,, (X, o) =
M., (X, o), if and only if M,, (X, <) is a first countable topological
space, if and only if M,,(X, &) is a connected space, if and only if
M, (X, ) is a locally connected space, if and only if M*(X, <)
is a connected subset of M, (X, o).

1. INTRODUCTION

The reader is presumed to have some background in measure theory,
abstract algebra and general topology. Let RX be the collection of all
real-valued functions on a non-empty set X. It is known that RX with
the (pointwise) addition and multiplication is a reduced commutative
ring with identity. Let (X, <) be measurable space and let M (X, o)
be the set of all real measurable functions on X. Then M(X, <) is a
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subring of RX. Many people have studied the rings of real measurable
functions on a measurable space with different aspects. Hager in [12]
shows that M (X, 47) is a regular ring in the sense of Von Neumann
(i.e., for every f € M(X,.o/), there is an element g in M (X, .o/) with
f?g = f). In [21], Viertl studied the real maximal ideals and the
fixed maximal ideals of M (X, o), where o is the set of all Borel sets
of X. In [I], Amini et al. generalized, simultaneously, the ring of
real-valued continuous functions and M (X, <7). In [17], Momtahan
studied the Goldie dimension of M (X, .o7). In [2], Azadi et al. proved
that M(X,.o/) is an Ny-self-injective ring. In [9], Estaji et al. have
given several characterizations of maximal ideals of M (X, .o/), mostly
in terms of certain lattice-theoretic properties of 7. In [7], Estaji and
Mahmoudi Darghadam investigated rings of real measurable functions
vanishing at infinity on a measurable space and in [8], they introduced
realcompact subrings of M(X,.«7), and showed that M(X,o/)* is a
realcompact subring of M (X, .2/), and also M (X, o) is realcompact if
and only if (X, .2/) is a compact measurable space, i.e., &7 is a compact
lattice.

In this article we are going to define a topology on M (X, o), namely
the m-topology and to study the space M (X, .o/) with this topology.
In [I3, pp. 4851, 73-74], Hewitt defined the m-topology on C(X),
the ring of all real valued continuous functions on a completely regular
space X, by taking the sets of the form

{feCX):lg—fl <uj,

as a base for the neighborhood system at g, where u is a positive unit
of C'(X), see [10]. He showed that X is pseudocompact if and only if
Cin(X), the space C(X) with the m-topology, is first countable. In [3],
Azarpanah et al. studied compactness in C'(X) with the m-topology
and they proved that every compact subset of C,,(X) has an empty
interior. In [5], Azarpanah et al. proved that ¢(X) with the m-topology
is connected if and only if X is a pseudocompact almost P-space, if and
only if C'(X) with r-topology is connected, where ¢(X) is the classical
ring of quotients of C'(X) and the r-topology is defined the same as the
m-topology if we consider positive regular functions instead of positive
units and the inequality holds on the cozero-set of the regular function,
see [0] and [14]. For any ideal I C Cy(X), Azarpanah et al. in [/]
defined a topology on C(X) namely the m/-topology, finer than the
m-topology in which the component of 0 is exactly the ideal I and
C(X) with this topology becomes a topological ring. They showed
that compact sets in C'(X) with the m!-topology have empty interior
if and only if X \ () Z[I] is infinite. For every two subsets A, B C X
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such that AU B = X, Manshoor in [16] defined a topology on C(X)
namely the m4, p)-topology, finer than the m-topology and C'(X) with
this topology becomes a topological ring. Connectedness in this space
is studied and it is shown that if A and B are closed realcompact
subsets of X, then the component of the zero function in C'(X) with
m(a,p)-topology is the ideal Cx(X). In [15], Di Maio et al. analyzed
the position of the Krikorian topology with respect to the topology
of uniform convergence, and stated necessary and sufficient conditions
which force inclusions and coincidence. In [20], Douwen et al. and in
[11] Gémez-Pérez and McGovern investigated topological properties of
X via properties of C,(X).

The paper is organized as follows:

In the second section we provide some necessary preliminaries about
the m-topology on M (X, ).

In Section 3, we show that M,,(X, ) is a completely metrizable
space and is a topological ring. We have shown in this section that
no point of M,,(X, o) is an almost P-point and M,,(X, o) is never
a pseudocompact and also it is never countably compact. Moreover
we prove that if (X, .«7) be a T-measurable space and X is a finite set
with | X| = n, then M,,(X, /) = R" as topological rings, and if X is
infinite then every compact subset of M,,(X, <) has empty interior.

In Section 4, we study important open and closed subsets of
M, (X, <), and we prove that an ideal I of M (X, <) is bounded if
and only if I is connected subset of M, (X, <), if and only if I C
My (X, o). Also we show f € M,(X, o) if and only if ¢ is contin-
uous, where pr: R — M,,(X, o7) is given by ¢¢(r) = rf for every
feMX, ).

Finally, in Section 5 we prove that the space (X, o) is a pseudo-
compact measurable space if and only if M,,(X, <) coincides with
M,(X, o) and this is equivalent to the first countability, connected-
ness or locally connectedness of M,, (X, 7). Moreover we show that all
of them are equivalent to saying that M*(X,.«7) is a connected subset
of M,,,(X, ).

2. PRELIMINARIES
The m-topology on C(X) is defined by taking the sets of the form
B(f,u) ={g € C(X): |f =gl <u}

as a base for the neighborhood system at f, for each f € C'(X), where

u runs through the set of all positive units of C'(X). Also, for every
feRX Z(f):={xr e X : f(x) =0} is called the zero-set of f.
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Let us recall some general notation from [19]. A collection o of
subsets of a nonempty set X is said to be a measurable sets in X if .o/
has the following three properties:

(1) X e o.

(2) If A € o, then A° € &/, where A° is the complement of A

relative to X.

(3) If {An}nen € &, then |,y An € &7
Also, (X, o) is called a measurable space. If X is a measurable space,
Y is a topological space, and f is a mapping of X into Y, then f is
said to be measurable provided that f~!(V') is a measurable set in X
for every open set V in Y. If X is a measurable space, then the set
of all measurable maps from X into R is denoted M (X, <), and the
members of M (X, /) are called the real measurable functions on X,
where R denotes the set of all real numbers with the ordinary topology.

Remark 2.1. Let (X, .o/) be a measurable space, we set
U(X,o):={g: ¢is a unit element of M (X, /)},
and
Ut(X, o) ={geU(X,): gisa positive element of M(X, o)}
Suppose that
B(fu) :={9€ M(X, &) |f —g| <u}
and
By = {B(f,u): u € UH(X, )}

for every f € M(X,.o/) and every u € UT(X, o). Then the following
statements hold for every f, g € M (X, o)} and every u,v € UT (X, o).

(1) f € B(f,u).

(2) B(f.uv) € B(f,uw) 0 B(f,v).

(3) If g € B(f,u) and v :=u — |f — g|, then B(f,v) C B(f,u).

(4) For every g € B(f,u), there exists an element v in UT (X, o)

such that B(g,v) C B(f,u).

(5) If U € By, then f € U.

(6) If U,V € By, then UNV € By.

(7) If U € By, then there is a V' € By such that U € B, for each

geV.

(8) f U e Bfand U CV C M(X, ), then V € By.

If
T ={GCMX,o):VfeG AU € By; U CG},

then, by [23, Theorem 4.2], 7, is a topology on M (X, <) such that
the neighborhood system at each f € M(X,.o7) is precisely B;. The
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topology 7, on M(X,47) is in fact the m-topology on M (X, o), and
the notation M,,(X, <) will be used when referring to M (X, <) under
the m-topology. Also, if

T. ={GCMX,o):VfeG Fe€R;e>0 and B(f,e) C G},

then, by [23, Theorem 4.2], 7, is a topology on M (X, .o/) which is called
the uniform topology (or the u-topology) on M (X, 7). Throughout
this article, the notation M, (X, .o/) will be used when referring to
M (X, o) under the u-topology. M* (X, /) and M} (X, /) are defined

similarly.

3. TOPOLOGICAL PROPERTIES OF SPACE M,,(X, )

If (X p) is a metric space, then by the ball (or spheroid) centered at
x € X and having radius 0 we mean the set

Sy(x,6) ={y € X: p(z,y) < d}.

The constant function, on any set, whose constant value is the real
number r, is denoted by r.

Proposition 3.1. Let (X, &) be a measurable space. Then the follow-
ing statements hold.

(1) My(X, o) is a completely metrizable space.

(2) M} (X, ) is a completely metrizable space.

(3) M} (X, <) is a Banach space.

Proof. (1). Clearly p: M(X, o) x M(X,o/) — [0,400) defined by

@) - ()]
PUF9) = S0 T Ry — o))

is a metric on M (X, o).
Let f € M(X, ) and € € (0,4+00) be given. Then

s, (f, : )gB(f,e>,

1+¢

and there exists an element ¢ in (0,1) with g9 < £ such that

B (1) S S € 5002

Therefore, if 7 is the metric topology induced by p, then 7, = 7.

Suppose { f, }nen € M (X, .o7) be a cauchy sequence, so that for every
e > 0, there exists an element N in N such that
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for every m,n > N, which implies that |f,,(z) — f.(x)| < € for every
x € X whenever m,n > N. Then, by [18, Theorem 7.8], the sequence
of functions {f,}nen, defined on X, converges uniformly on X. We
define f: X — R by f(z) = lim, o fn(x). Then f € M(X,.o/) and

also, | f, — f| < & whenever n > N, which implies that p(f,, f) < 1+z
€

for every n > N. Therefore, { f, }nen converges to f.
(2). If we define p: M*(X, o) x M*(X, ) — [0,400) given by
p(f,g) =sup|f(z) — g(z)|,
zeX

then p is a metric on M*(X, 7). The rest is similar to the proof of the
first statement.

(3). Let {f.} € M}!(X,<) be a cauchy sequence.Then for every
e > 0, there exists an element k in N such that sup,.y | fn(2) — fin(2)] <
e, for every m,n > k and every x € X. Hence {f.(2)}nen is a
cauchy sequence in R, and so lim, . f.(z) = f(z) € R for ev-
ery x € X. Consider n be fixed and m — oo. Then we have
SUp,ex | fn(z) — f(x)| < e. Since f is a bounded measurable function,
we conclude that M*(X, /) is a Banach space. 0J

Recall that a topological ring is a ring R which is also a Hausdorff
topological space such that both the addition and the multiplication
operations are continuous.

Proposition 3.2. Let (X, /) be a measurable space. Then the ring
M (X, o) with the m-topology is a topological ring.

Proof. Let f,g € M(X, <) and G € 7, with f+ g € G be given. Then
there exists an element u in U (X, /) such that B(f + g,u) C G. It
is clear that for every (¢,k) € B <f, g) x B (g, §>’
u o ou
[f+g—-(+R)<|f—tl+]lg—kl<g+3<u

Therefore, the addition operation is continuous .
Let f,g € M(X, o) and uw € UM (X, o) with fg € B(f + g,u) be
given. We set v := “ . Then v € Ut (X, <) and for

201+ gl + |/ +u)
every (t,k) € B(f,v) x B(g,v),

Fg—th] < |f —tllgl +1f — tllg — k| +1fllg — k]
< (1419l + 1] +
< u.
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Hence, the multiplication operation is continuous. The proof is now
complete. O
Remark 3.3. Let (X, .o/) be a measurable space. Then

{% € M(X, o) neN}

is a discrete subspace of M,, (X, o).

It is well known that for every Ti-space X, X is a regular space if
and only if for every z € X and every neighbourhood U of x there
exists a neighbourhood V' of z such that clxyV C U.

Proposition 3.4. M,,(X, o) is a Hausdorff reqular space.
Proof. let f,g € M(X, ) with f # g be given. Then there exists an
element xy in X such that f(xg) # g(xo). Consider u := %|f(a:0) -
g(xo)|. If h € B(f,u)N B(g,u), then
|f (o) — g(zo)| < |f(20) — hlzo)| + [(x0) — g(z0)| < 2u
= [f(z0) — g(z0)],

which is a contradiction. Therefore, M,,(X, /) is a Hausdorff space.
Let f € M(X, ) and a neighbourhood G of f in M,,(X, <) be
given. Then there exists an element u € UT(X, ) such that

B(f,u) € G. If g € cl,B (f, g), then there exists an element h
in B <g, g) NnB (f, g), which implies that

u
2
Therefore, f € B (f, g) C cl,B (f, g) C G, and the proof is now

complete.

u
[f =gl <If=hl+|h—gl<5+5=u

Recall that a point x of a topological space X is called an almost
P-point of X if, whenever z € Z(f) for some f € C(X), it follows that
x € clyinty Z(f). Equivalently, z € X is an almost P-point if and only
if every Gs-set containing x has nonempty interior.

Proposition 3.5. Let (X, .o/) be a measurable space. M, (X, o) does
not contain any almost P-point.

Proof. Let f € M(X, <) be given. Then ),y B (f. 1) = {f} is a
Gs-set in M,,(X, 7). Since g+ f € B(f,u) for every u € UM (X, o),

we conclude that {f} is not open, which implies that int,,{f} = 0.
Therefore, f is not an almost P-point, and this completes the proof. [
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Recall that a topological space X is said to be pseudocompact if
every function in C'(X) is bounded and X is countably compact if and
only if each countable open cover of X has a finite subcover.

Proposition 3.6. Let (X, .«7) be a measurable space. Then the follow-
ing statements hold.

(1) M,,(X, <) is never a pseudocompact space.
(2) M, (X, o) is never a countably compact space.

Proof. (1). Let a € X be given. We define n,: M,,(X, <) — R by
na(f) = f(a). Since na(g) — g(a) € (f(a) — & f(a) + <) for every
e € (0,00) and every g € B(f,¢), we conclude that 7, is a continuous
function. Now using 7,(n) = n for every n € N, we obtain that 7,
is an unbounded continuous function. Therefore, M,,(X, /) is not a
pseudocompact space.

(2). Since every countably compact space is pseudocompact,
M, (X, <7) is not countably compact. O

Remark 3.7. Let (X,</) be a measurable space. For every
f € M(X,.4), there is a unit real-measurable function v in M (X, %)
such that (=1V f)A1l=uf.

We recall from [22, Theorem 4.5] that the connected component
C of zero in a topological ring A is a closed ideal, and a + C' is the
connected component of a for each a € A. Also, we recall from [9] that
a measurable space (X, /) is said to be T-measurable if whenever x
and y are distinct points in X, there is a measurable set containing one
and not the other.

Proposition 3.8. Let (X, .o7) be a T-measurable space. If X is a finite
set with | X| = n, then M,,(X,o/) =2 R" as topological rings.

Proof. Since o = P(X), M,,(X,o/) = C(X) = R" as topological
rings. 0

The following example shows that T-measurable in proposition 3.8
can not be removed. More generally, whenever (X, .2/) is not even 7T-
measurable and X is finite, then again we have M,,(X, ) = RF as
topological rings, where k < | X|.

Example 3.9. Let X = {1,2,3,4,5} and

1 ifa=1
Yoo T 0 ifee{2,3,4,5)
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be given. Hence, o7 = {0, {1},{2,3,4,5}, X} is the smallest c—algebra
on X such that x, is a measurable function and consequently

M(X, o) = {ax,, + X oy 00 € R} =R

For the proof of the following proposition we apply the same tech-
nique which is used in that of Theorem 4.1 in [3].

Proposition 3.10. Let (X, 7) be a measurable space, and let X be an
infinite set. If F is a compact subset of M,,(X, o), then int,, F = ().

Proof. We argue by contradiction. Let us assume that f € int,,F.
Then there exists a positive unit function v € M(X, <) such that
B(f,u) C F. By hypothesis, there exist g1, go, ..., gm € F such that
FC'_,B (gm, %) Let A :={z1, 29, ..., Ty, 1} € X with x; #
for every 1 < ¢ # 57 < n+ 1, be given. We set t; := %X{zi and
hi = f+t; for every 1 <i < n+1, then h; € B(f,u) C int,,, F, and
so, by the “pigeon-hole” principle, there exist 1 < i # j < n+ 1 and
1 < s < n such that h;, h; € B(gs, ), which implies that

U U
ti — 5] = [hi — hy| < |hi — gs| + Ry — gd] < it
Therefore,
5 = ti(zi) — t(x:)] < 5(%)
and this is a contradiction. O

4. OPEN AND CLOSED SUBSETS OF M,, (X, <)

In this section, we are going to find the largest bounded ideal of
M (X, o/) which is at the same time the largest connected ideal. Using
this find the component of 0 in M,, (X, &7).

Let (X, /) be a measurable space. We set

MY X, o) ={fe MX,o): f(x) >0 forall z € X },
and
M (X, o) ={fe M(X,«): f(x) <0 forallz € X }.

Proposition 4.1. Let (X, 97) be a measurable space. Then the follow-
ing statements hold.
(1) The interior of a proper ideal I of M(X, /) in M,,(X, ) is
the empty set.
(2) The set M*(X, o) is a clopen subset of M,,(X, o).
(3) The set U(X, o) is a dense open subset of M,,(X, o).
(4) If D is the set of all zero divisors of M(X, <), then D =
M(X, )\ U(X, o).
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(5) The set Ut (X, o) is an open subset of M,,(X, o).

(6) The set M*(X, o) coincides with the closure of UT (X, ) in
M, (X, o).

(7) The set M~ (X, ) coincides with the closure of U~ (X, <) in
M, (X, o).

(8) The set M+ (X, o/) UM~ (X, ) is contained in the closure of
U(X, o).

(9) The set M (X, <) is not an open subset of M,(X, o).

Proof. (1). We argue by contradiction. Let us assume that [ is a
proper ideal of M(X,47), and suppose that f € M(X, o) is in the
interior of I. Then there exists an element u in Ut (X, .o7) such that
f+% € B(f,u) C I, which implies that § € I and this is a contradiction
to the fact that [ is a proper ideal of M (X, o).

(2). Since for every f € M*(X,«), f € B(f,1) C M*(X, ),
we conclude that M*(X, <) is an open subset of M,, (X, o). Let
f € M(X, <) be in the closure of M*(X, o). Then there is an element
g in B(f,1) N M*(X, o), which implies that there is an element n in
N such that [f| < |g| +1 < n, and so f € M*(X,.). Therefore,
M*(X, <) is a clopen subset of M, (X, ).

(3). Since for every u € U(X, <), B (u, %) C U(X, ), we con-

clude that U(X, /) is an open subset of M,,(X, </).
Let f € M(X, o) andu € UT(X, /) be given. We define h: X — R
by
uE) >
oy = [T 1) 20
flr) === if fz) <0
Then h € U(X, o) N B(f,u) # (. Therefore, U(X, <) is a dense
subset of M,,(X, o).

(4). Let 0 # f € M(X, )\ U(X, &) be given. Since x, [ =0
and 0 # x,, € M(X, <), we conclude that f € D. Therefore,
D = M(X,JZ%)\U(X,,Q%), because D C M (X, .o/)\ U(X, o).

(5). If w € UT(X, ), then B (u, %) C U*(X, <), which implies

> 2

that Ut (X, &) is an open subset of M,, (X, <7).
(6). If fe MT(X, o) and u € UM (X, o), then
f+5 € US(X, o) N B(f.u)

which implies that M*(X, &) C cl,, UT(X, o). Let g € M(X, o)
and a € X with g(a) < 0 be given. We put r = |g(a)] > 0. If
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h € B(g,r)NUT(X, <), then
lg(a) = h(a)] = [g(a)| = 2r >,
which is a contradiction. Therefore, M (X, .o7) = cl,, U (X, &).
(7). The proof is similar to the proof of part (6).
(8). It is clear.

(9). Let f € MY(X, o)\ UT(X, ) be given. Then B(f,u) ¢
M*(X, o) for every u € UT(X, o). Therefore, MT(X, o) is not an
open subset of M,,(X, 7). O

Recall that a space X is said to be extremally disconnected if every
open set has an open closure.
As an immediate consequence we now have the following proposition.

Proposition 4.2. Let (X, %) be a measurable space. Then M, (X, <)
s not an extremally disconnected space.

Recall that an element c of a lattice L is said to be compact if for
any S C L, ¢ <\/ S implies ¢ < \/ T for some finite 7' C S.

Definition 4.3. Let (X,.<7) be a measurable space. We denote by
M (X, /) the family of all functions f € M (X, o) for which the set
{x e X:|f(x)| > %} is a compact element of o7 for every n € N.

Proposition 4.4. Let (X, o7) be a measurable space. Then My (X, o)
is a closed subset of M,,(X,<).

Proof. Let f € cl,, My (X, %) and n € N be given. Then there exists
an element g in B (f, zin) N M. (X, ), which implies that for every
reX,

1

@) > = lg@)] > [F@)] - 5 >

{eexiiraiz b coexiionz 5,

and since g € My (X, &), we conclude that {z € X: |f(z)] > L} is a
compact element of the lattice «7. Therefore, f € M (X, <) and the
proof is now complete. O

1 1
- >
AL

SI'—

that is

To prove the main results of this section, we need the following
lemma.



94 YOUSEFPOUR, ESTAJI, MAHMOUDI DARGHADAM AND SADEGHI
Lemma 4.5. If g is an element of M (X, /), then the set

A, ={feMX,o): fgisa bounded element of M(X, <) }
is a clopen subset of M, (X, o).

Proof. Let f € A, be given. Since for every h € B (f, ﬁlgl)’ |hg| <

1+|g]”
open subset of M,,(X, 7).

Let f € cl,, A, be given. Then there exists an element b in B (f, ﬁlgl) N

|fg| + 19l we conclude that B (f, ﬁ) C A,. Therefore, A, is an

A,, and since |fg| < |hg| + %ﬂgl’ we conclude that f € A,. Therefore,

A, is a clopen subset of M,,(X, </). O

Throughout this article we assume that

Uy = {u e UT(X, &) lim u(z,) =0}

n—o0

and
Ay ={feM(X,4): |f| <ufor some u € Up,,y }

for every sequence {z,} ., C X. It is obvious that for every f,g €
U{mn}7 f +g € U{xn} and fg € U{rn}
To prove Proposition 4.13, we need the following lemma.

Lemma 4.6. For every sequence {x,},_, C X, A1 is a clopen subset
of M,,(X, ).

Proof. Let f € A,y be given. Then there exists an element u in Uy,
such that |f| < u, which implies that for every v € Uy,,},

h e B(f,v)=|h| <|fl|+v<u4v €Uy, =heAy,.

Hence Ay, is an open subset of M,,(X, o).

Let f € clypAg,y and v € Uy,y be given. Then there exists an
element % in B(f,v) N Ag,,y, which implies that there exists an element
u € Ugg,y such that |h| <wu, and so |f| < |h|+v <u+v € Up,), ie.,
[ € Ag,y. Therefore, Ag, 3 is a clopen subset of M,, (X, o). O]

Remark 4.7. Let (X, .o/) be a measurable space. Since M,,(X, <) is a
topological ring, then:

(1) If A is an open subset of M,,(X, <), then f + A is an open
subset of M,,(X, ) for every f € M(X, o).

(2) If Ais a connected subset of M,,(X, o/) with 0 € A, then f+ A
is a connected subset of M,,(X, o) for every f € M(X, o).
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Proposition 4.8. Let (X, %) be a measurable space. If f € M(X, o)
is an unbounded measurable function, then there is a sequence {x,}, ., C
X such that for every function g: {x,}, ., — R, there exists an element
g in M(X, ) with g(z,,) = g(x,) and f(x,) > n for every n € N.

Proof. By induction, define a sequence {z,}, ., € X and a family
{An}, o € & such that

A2A4242 24

and
k—1
mr € A\ |J A4
j=1

for every k € N as follows. By hypothesis, there exists an element
in X such that [f(z1)| > 1. We set Ay := f~'((—o0, —1) U (1,00)). If
n > 1, then, by hypothesis, there exists an element z,, in X such that
|f(x,)| > max{n, |f(z,—1)|}. We set

An = [ (=00, —=max{n, | f(2,-1)[}) U (max{n, | f(z,-1)|}, 00)).
Let g: {zn}, oy — R be a function. We set B, := A, \ UjZ,,, A; for

every n € N. It is clear that A; = J -, B, and B, N By, = () for every
n,m € N with m # n. We define g: X — R by

_ g(x,) ifz € B, for somen € N

g(x) =
1 reX \ Al

Then g € M (X, <) and g(z,) = g(z,) for every n € N. O

For a measurable space (X, .o7), the subset M*(X, /) of M(X, &),
consisting of all bounded functions in M (X, .«7), is also closed under
the algebraic and order operations on M (X, .o/). A measurable space
(X, ) is said to be pseudocompact if every function in M (X, &) is
bounded, i.e., M*(X, o) = M (X, o).

For a measurable space (X, .2/) and a non-empty subset Y of X, we
set

JZ%Y = {VﬂY VGJZ{},

and (Y, 2% ) is a measurable space.

Proposition 4.9. If a measurable space (X, <7) is not pseudocompact,
then there exists an infinite countable subset A of X such that

(1) for every function f: A — R, there exists an element f in
M(X, o) such that f(z) = f(x) for every x € A, and

(2) if f: A — R is a function with Z(f) = 0, then there exists an
element f in U(X,.o7) such that f(z)f(z) =1 for every x € A.
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Proof. The proof is similar to the proof of Proposition 4.8. OJ

Definition 4.10. Let (X, .o/) be a measurable space. We denote
by My(X, o) the family of all functions f € M(X, ) for which
(coz (f), Peon(s)) is a pseudocompact measurable space. It is clear
that My (X, /) C M*(X, o).

As in Proposition 3.11 in [3], we define pr: R — M,, (X, &7) given

by @¢(r) =rf for every f € M(X, o).
The following lemma is the counterpart of Proposition 3.11 in [3].

Lemma 4.11. Let (X, &) be a measurable space. Then f € My(X, o)
if and only if @y is continuous.

Proof. Necessity. Let u € UT(X, o) be given. By hypothesis, there
exists an element « in R such that u(z) > a > 0 for every z € coz(f),
and also, there exists an element ¢ in N such that |f| < t. We claim
that

(r=F.r+ ) C o7 (Blrf.w)
Let s € (r — <, + %) be given. If z € coz(f), then

rf —@r(s)l(@) = [rf = sfl(x) =r—s||f(z)| < %If(x)l <a <u(r),
and if z € Z(f), then

rf —pr(s)(@) =rf —sfl(z) =0 < u(z).
This proves the claim. Therefore, ¢, is continuous.

Sufficiency. We argue by contradiction. Let us assume that ¢y
is continuous and f ¢ M, (X, o) for some f € M(X, ). Then, by
Proposition 4.9, there is a sequence {z,},_, € coz (f) such that for ev-
ery function f: {z,},., — R, there exists an element f in
M (coz (f), e (s)) such that f(z,) = f(x,) for every n € N. To
get a contradiction, we need to consider two cases:

Case 1: Suppose that there exists a positive real number o such that
|f(zn)| > o for every n € N. We define g: {z,},., = R by g(z,) =
n. Then there exists an element g in M (coz(f), Zcos(s)) such that
g(x,) = g(x,) = n, by Proposition 4.8.

Now, we define h: X — R by

g(x) ifz € coz(f)
h(x) =
0 if v € Z(f).
Then h € M(X, <) and h(z,) = n for every n € N. Let s

S
(0,+00) such that ¢ ((—s,s)) C B(0, ﬁ) Then |tla < [tf(z,)] S
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1 _ 1
1+|h(zn)] — 14n
that lim,,_, 1%” =0 > [t|a > 0 and this is a contradiction.

for every t € (—s,s) and every n € N, which implies

Case 2: Suppose that for every i € N, there is x,, € {z,} such that
|f(zn,)] < 77, then lim; o f(2y,) = 0. We define g: {z,} — R by
2z, i
g(zn) = 1f5<x(n>) if 7 € {ni}icn
! 0 if n ¢ {n;},.,

Then there exists an element g in M (coz (f), @co, (r)) such that g(z,) =
g(z,). Now, we define h: X — R by

{g(x) if x € coz(f)

hle) = 0 if z € 2(f).

Then h € M(X, /) and

L ! _ (@) e
L fa(en)l 14 5200 f ) + (1= f2(en) = /(@)

for every i € N. Let s € (0, +00) such that ¢ ((—s,s)) C B (0, ﬁ),
then [tf(zn,)| < m = f*(z,,) for every t € (—s,s) and every

i € N, which implies that |¢t| < lim;_e | f(20,)] =0, i.e., (—s,s) = {0},
which is a contradiction. OJ

Definition 4.12. Let (X, .o/) be a measurable space. An ideal I of
M (X, o7) is called bounded if every element of I is bounded, i.e., I C
M*(X, o).

By the following result, M (X, /) is the largest bounded and con-
nected ideal of M (X, .o/).

Proposition 4.13. Let I be an ideal of M (X, o). Then the following
statements are equivalent.

(1) I is a connected subset of M,,(X,.of).
(2) I is bounded.
(3) I C My(X, ).

Proof. (1) = (2). We argue by contradiction. Let us assume that f € [
is an unbounded function, then there is a sequence {x,} _, C coz(f)
such that lim,_, f(2,) = 0o, which implies that f € I\ Ag,,;. Since
0 € I N Ag,), we conclude from Lemma 4.6 that I is a disconnected
subset of M, (X, <), which is a contradiction.

(2) = (3). By way of contradiction assume that f € I\ My (X, <),
then, by Proposition 4.9, there is a sequence {z,}, ., C coz(f) such
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that lim, . f(z,) = oo and there exists an element g in M (X, o)
such that g(x,)f(z,) = 1 for every n € N. It is clear that gf? is an
unbounded function and gf? € I, which is a contradiction.

(3) = (1). Since the continuous image of a connected space is con-
nected, we conclude from Lemma 4.11 that ¢¢(R) is a connected subset
of M, (X, /) for every f € I. It is clear that 0 € (¢, ¢f(R) and
I'=Ujcrps(R), then I is a connected subset of M,,(X, ). O

As an immediate consequence from Proposition 4.13 we now have
the following corollary.

Corollary 4.14. Let (X, <) be a measurable space. Then My (X, o)
is the largest bounded ideal in M (X, o).

Proposition 4.15. Let (X, .o/) be a measurable space, and f € M (X, o).
Then f € My(X, o) if and only if fg is a bounded function for every
geM(X, o).

Proof. If f € My(X, <), then fg € My(X, o) forall f € M(X,.o/), so
fg is bounded. Conversely f = f.1 is bounded, hence f € My (X, <7).
O

Corollary 4.16. A measurable space (X, .of) is pseudocompact if and
only if every ideal of M (X, o) is a connected subset of M,,(X, o).

Proof. By Proposition 4.13, it is clear. OJ

Also, the following proposition that was proved in [7] is needed in
this paper.

Proposition 4.17. The following statements are equivalent.

(1) The measurable space (X, o) is compact .
(2) The set X is a finite set and of = P(X).
(3) The measurable space (X, o) is pseudocompact .

As an immediate consequence from Proposition 4.17 we now have
the following corollary.

Corollary 4.18. For measurable space (X, o), f € My(X, <) if and
only if coz (f) is a compact element of o for every f € M(X, o).

We recall from [9] that an ideal I of M (X, o) is called fixed if the
set (Ve; Z([f) is nonempty; otherwise, I is called free.
The follwing results which is the counterpart of Corollary 3.9 in

[3] show the connection between free maximal ideals of M (X, <) and
connected ideals of M,, (X, 7).
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Proposition 4.19. Let (X, ) be not a pseudocompact measurable
space, and assume that I is a proper ideal of M(X, 7). Then I is
a connected subset of M,,(X, <) if and only if I C M for every free
mazximal ideal M of M (X, o).

Proof. Necessity. Let J be a free ideal of M (X, /), and let f € I be
given. Then for every x € coz(f), there exists an element f, in J such
that x € coz(f;), which implies that coz(f) € U,ecou(p) €02 (f2)-
Since, by Proposition 4.13 and Corollary 4.18, coz (f) is a compact
element of o7, there are x1,...,2, € coz(f) such that

coz ( O 7 (fz;) = coz (Z sz> ,

and so there exists an element h in M (X, .o7) such that

f=h (Z f) €J
1=1

Sufficiency. Let f € I be given. Hence, by Proposition 4.13 and
Corollary 4.18, it suffices to prove that coz (f) is a compact element of
</ . If not, then there exists an element g in M (coz (f), @cos(s)) such
that g € M*(coz (f), %cor(p)), and so the map h: X — R by

l9(x)+1 if v e con(f)
h(33>:{0 if z. € X\ coz(f)

belongs to M (X, o/)\ M*(X, /). We put V,, := {z € X: |h(z)| > n}
for every n € N. Since {V,,: n € N} C &/ has the finite intersection
property, we conclude that there exists a free ultrafilter F of &7 such
that {V,,: n € N} C F, which implies from [9, Proposition 3.6] that

M ={feMX,o): Z(f) € F}

is a free maximal ideal of M (X, /), and by our hypothesis, we infer
that f € M. Therefore, ) = Z(f) N coz(f) = Z(f) NV} € F and this
is a contradiction to the fact that ) € F. OJ

Proposition 4.20. Let (X, o) be a measurable space, and let I be an
ideal of M (X, o). Then the following statements hold.

(1) If I is a Lindeldf subspace of M, (X, o), then I C My(X, /).
(2) If I # {0}, then I is not a compact subset of M, (X, ).
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Proof. (1). By hypothesis, there exists a family {B(f,,un)}nen such
that

1< B(farun).
n=1
We argue by contradiction. Let us assume that there exists an element
fin I such that f & M, (X, o), which implies from Lemma 4.8 that
there is a sequence A := {z,},., € X such that for every function
g: {zn}, .y — R, there exists an element g in M(X,.o/) such that
g(z,) = g(z,) and f(z,) > n for every n € N. We define g: {z,},_, —
R by g(z,) = |fa(zn)| + un(z,), and so there exists a g € M (X, o)
such that g4 = g. We can assume that there exists an element m in N
such that gf € B(fn, um), which implies that |gf| < | f| 4+ tm, and so

| frn(Zm)| + i (2m) = [§(@m)| < |f(@m)gl(@m) < [frm(Tm)| + tm(Tm),
which is a contradiction.

(2). We proceed by contradiction. Assume that there exist

f1, fay ooy f € M(X, o)
and u € UT(X, &) such that I C U, B(fi,u). Let a & N;c; Z(f)
and g € I with g(a) # 0 be given. We set b := max{|fi(a)| +
u(a),..., fola)| + u(a)} and f = b(g(a))_lg, then there is a natu-
ral number k such that f € B(fi,u), which implies that b = |f(a)| <
| fr(a)| + u(a), and this is a contradiction with choose b. O

Example 4.21. The following statements hold.

(1) The ideal {f € M,,(N,P(N)): f(1) = 0} of M (N, P(N)) is not
a Lindelof subspace of M,, (N, P(N)).

(2) The set {f € M(N,P(N)): N\ {n} C Z(f)} is a Lindelof ideal
of M,,(N,P(N)).

(3) If I, == {f € M(N,P(N)): N\ {n} C Z(f)} for every natural
number n, then I,,, +- - -+1,, is a Lindelof ideal of M,, (N, P(N))
for every natural number k.

(4) My(N,P(N)) is a Lindelof ideal of M,,(N, P(N)).

We recall from [23, 26B] that the quasicomponent of x in a space X
is the intersection of all clopen subsets of X which contain x, and the
component of x is contained in the quasicomponent of x.

Proposition 4.22. If K is the quasicomponent of zero in M, (X, /),
then K is a subideal of My(X, o), especially,

My X, o)=K= () A4,
geEM (X, o)
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Proof. Let C be the component of zero in M,,(X, 7). Then by Lemma
4.5 and Proposition 4.13,

C C My(X, o) C K C A,

geEM (X, o)

One can easily confirm that () cy;x.) Ay i a bounded ideal of
M(X,a7), then, Proposition 4.13, My(X, &) = K = ﬂgeM(Xﬂ) A,
O

5. PSEUDOCOMPACTNESS OF (X, ./) VERSUS TOPOLOGICAL
PROPERTIES OF M,,(X, /)

In this section, we shall establish some properties of a pseudocom-
pact measurable space (X, /) which are equivalent to properties of the
topological space M,, (X, ).

Proposition 5.1. A measurable space (X, <) is pseudocompact if and
only if My (X, o) = My(X, )

Proof. Necessity. By Remark 2.1, 7, € 7,. Let G € 7, and [ €
G be given. Then there exists an element w in UT(X) such that
B(f,u) € G. Since (X, o) is pseudocompact, we conclude that ¢ :=
inf{U(X,«): x € X} is a non-zero real number, which implies that
u(f,e) € B(f,u) C G, and so G € 7,. Therefore, 7, C 7y,,.

Sufficiency. We argue by contradiction. Let us assume that f is an
unbounded function in M (X, 7). Then there exists an element € > 0

1 1
in R such that B(0,¢) C B(0, —— IVIRVER,
(0.6) < 50. 17757 Vi

2
and so |f|V1 < —, that is f is bounded, and this is a contradiction. [
€

€
, which implies that ) <

Proposition 5.2. If M,,(X, ) is a Lindeldf space, then (X, /) is a
pseudocompact measurable space.

Proof. By hypothesis, there exist {f,}n € M(X, o) and {u,}n C
Ut (X, ) such that M(X, o) = U~ B(fn,un). By way of contra-
diction assume that .o7 is not a pseudocompact measurable space. Then
there exists a subset A := {z,,: n € N} of X such that for every f € R4,
there exists an element f € M(X, o) such that f|, = f. We define
g: A — Rby g(x) = u,(z) + fu(z), then there exist g € M (X, o) and
n € N such that g|, = ¢g and g € B(f,, u,), which implies that

Un(Tn) = [9(Tn) = ful(Tn)] < un(zn),

and this is a contradiction. O
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We recall that a topological space X is called semi-compact if there
exists a family of compact subsets {K,},en of X such that for every
compact subset K of X, there exists an element n in N such that
K CK,.

The following corollary which follows from Proposition 3.10 is the
counterpart of Corollary 4.3 in [3].

Corollary 5.3. Let (X, o) be a T-measurable space. Then the follow-
ing statements are equivalent.

(1) M,,(X, &) is locally compact.

(2) M,,(X, o) is o- compact.

(3) M,,(X, <) is semi-compact.

(4) M, (X o) is a second category space.
(5) X is finite.

Proof. 1f X is a finite set, then, by Proposition 3.8, M,, (X, &) is locally
compact, o- compact and semi-compact.

(1) = (5). By Proposition 3.10, it is clear.

(2) = (4). By hypothesis, there exists a family of compact sub-
sets {F), }nen of M, (X, o) such that M,,(X,o/) = |J ~, F,. Then
M, (X, <) is a Lindelof space, which implies from Proposition 5.2 that
(X, /) is a pseudocompact space, and so, by Propositions 5.1, 3.1 and
Theorem 16.25 in [10], M,,(X, o) is a second category space.

(4) = (5). Suppose on the contrary, that X is an infinite set. Then,
by Proposition 3.10, M (X, <)\ F}, is a dense open subset of M,, (X, .o7)
for every n € N. But

(| (M(X, )\ F,) = M(X, o)\ | ] F. =0,

which contradics the fact that M,,(X, <) is a second category space.

(3) = (5). It is well known that every semi-compact is o- compact.
0

We say that a space X satisfies the first axiom of countability or is
first-countable; this means that at every point z of X there exists a
countable base.

Proposition 5.4. M,, (X, o) is a first countable topological space if
and only if (X, /) is a pseudocompact measurable space.

Proof. Necessity. We argue by contradiction. Let us assume that
(X, /) is not pseudocompact.
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We consider constant function 0 and we demonstrate for every count-
able collection of open neighborhood for 0. Then there exists any neigh-
borhood of this function such that is not contained any element of this
collection. Since X is not a pseudocompact measurable space; there
exists an element f in M (X, o)\ M*(X, o). Weset g := f>+1. Then
g € UT(X, o) is unbounded. Thus there exist a family {a, }neny € R
and a family {z,},eny € X such that {a,}.en is a ascending sequence
with lim,, ., a, = oo and ¢(z,) = a, for every n € N. Now, let
{B(0,u,)}, € N be a countable collection of open neighborhood of 0.

We put b, = §un(:cn) for every n € N. Then there exists a positive

1
element ¢ in C(R) such that o(a,) = b for every n € N. Consider
1 1
V= og Then v € UT(X, o) and v(z,) = b, < zun(asn) for every
o

n € N, which implies that B(0,u,) € B(0,v) for every n € N, and
this is a contradiction to the fact that M,,(X, /) is a first countable
topological space.

Sufficiency. By Proposition 5.1, M,,(X, o) = M,(X, ). Then
by Proposition 3.1, M,,(X, <) is a metric space, which implies that
M, (X, o) is a first countable space. O

Proposition 5.5. If (X, &) is not a pseudocompact measurable space,
then the following statements hold.
(1) The set of all constant functions in M(X, <) is a discrete sub-
space of My, (X, ).
(2) M(X, <) has an unbounded unit element.

Proof. (1). By hypothesis, M (X, <) must contain an unbounded func-
tion f. Consider € € (0,4+00). Then u := |f| Ve € UT(X, ) is an
unbounded function, which implies that v ~! is also a positive unit such
that 0 € cly(u™![X]). Hence, there exist a family {a,}n,ey € RT and
a family {x, },en € X such that {a,}nen is a ascending sequence with
lim,, o a, = 0o and u(x,) = a, for every n € N. Let r,t € R be given.
If t € B(r,u™!), then

_ — i _ < i —1 —
=t = lim |r(z,) = t(z,)| < lim v (2,) =0,
which implies that t = r. Therefore, the set of all constant functions
in M(X,./) is a discrete subspace of M,,(X,.<7).
(2). It is evident. O

Proposition 5.6. Let (X, /) be a measurable space. Then the follow-
ing statements are equivalent.
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(1) (X, <) is a pseudocompact measurable space.
(2) M,,,(X, %) is a connected space.

(3) M,,(X, ) is a locally connected space.

(4) M*(X, ) is a connected subset of M,(X, ).

Proof. (1) = (2). By Proposition 4.13, it is clear.
(2) = (3). By Proposition 4.13,
M(X, o) =M (X, o) = My(X, o).

Let 0 < € € R be given. By Lemma 4.11, for every f € M(X, o)
with |f| < e, ps([—1,1]) is a connected subset of M,,(X, %) and since
0 € (1< ¢s([—1,1]), we conclude that B(0,¢) = U ;.. ps([—1,1]) is
a connected subset of M,,(X, o). Therefore, by Remark 4.7, f+B(0,¢)
is a connected open subset of M,,(X, &) for every f € M (X, o). The
proof is now complete.

(3) = (1). It is evident that M,,(X, o) C My(X, &) implies every
function is bounded.

(3) = (4). Let X is not a pseudocompact. Then there exists an
element f in M(X,.o/) such that f ¢ My(X, o). Let C be the
connected component of zero in M,,(X,.o/). Then by Lemma 4.13,
C C My(X, ). By hypothesis, there exists an open connected sub-
set G such that 0 € G. Then there exists an element u in U™ (X, .o/)

such that B(0,u) C G C C. Since %mu € B(0,u), we conclude that

f= %mu(l + |fl)ut € C C My(X, /), which is a contradiction.

(4) = (1). By Proposition 4.13, 1 € M*(X, o/) = My(X, o). Then

: is a pseudocompact measurable space, because coz (1) = X.
X, ) i d bl b 1 X
0
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