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m-TOPOLOGY ON THE RING OF
REAL-MEASURABLE FUNCTIONS

H. YOUSEFPOUR, A. A. ESTAJI∗, A. MAHMOUDI DARGHADAM AND G.
SADEGHI

Abstract. In this article we consider the m-topology on
M(X,A ), the ring of all real measurable functions on a measur-
able space (X,A ), and we denote it by Mm(X,A ). We show that
Mm(X,A ) is a Hausdorff regular topological ring, moreover we
prove that if (X,A ) is a T -measurable space and X is a finite set
with |X| = n, then Mm(X,A ) ∼= Rn as topological rings. Also,
we show that Mm(X,A ) is never a pseudocompact space and it
is also never a countably compact space. We prove that (X,A )
is a pseudocompact measurable space, if and only if Mm(X,A ) =
Mu(X,A ), if and only if Mm(X,A ) is a first countable topological
space, if and only if Mm(X,A ) is a connected space, if and only if
Mm(X,A ) is a locally connected space, if and only if M∗(X,A )
is a connected subset of Mm(X,A ).

1. Introduction

The reader is presumed to have some background in measure theory,
abstract algebra and general topology. Let RX be the collection of all
real-valued functions on a non-empty set X. It is known that RX with
the (pointwise) addition and multiplication is a reduced commutative
ring with identity. Let (X,A ) be measurable space and let M(X,A )
be the set of all real measurable functions on X. Then M(X,A ) is a

DOI: 10.22044/jas.2020.9557.1470.
MSC(2010): Primary 28A20; Secondary: 54C30.
Keywords: m-topology, measurable space, pseudocompact measurable space, connected
space, first countable topological space.
Received: 10 April 2020, Accepted: 20 August 2020.
∗Corresponding author.

83



84 YOUSEFPOUR, ESTAJI, MAHMOUDI DARGHADAM AND SADEGHI

subring of RX . Many people have studied the rings of real measurable
functions on a measurable space with different aspects. Hager in [12]
shows that M(X,A ) is a regular ring in the sense of Von Neumann
(i.e., for every f ∈ M(X,A ), there is an element g in M(X,A ) with
f 2g = f). In [21], Viertl studied the real maximal ideals and the
fixed maximal ideals of M(X,A ), where A is the set of all Borel sets
of X. In [1], Amini et al. generalized, simultaneously, the ring of
real-valued continuous functions and M(X,A ). In [17], Momtahan
studied the Goldie dimension of M(X,A ). In [2], Azadi et al. proved
that M(X,A ) is an ℵ0-self-injective ring. In [9], Estaji et al. have
given several characterizations of maximal ideals of M(X,A ), mostly
in terms of certain lattice-theoretic properties of A . In [7], Estaji and
Mahmoudi Darghadam investigated rings of real measurable functions
vanishing at infinity on a measurable space and in [8], they introduced
realcompact subrings of M(X,A ), and showed that M(X,A )∗ is a
realcompact subring of M(X,A ), and also M(X,A ) is realcompact if
and only if (X,A ) is a compact measurable space, i.e., A is a compact
lattice.

In this article we are going to define a topology on M(X,A ), namely
the m-topology and to study the space M(X,A ) with this topology.
In [13, pp. 48-51, 73-74], Hewitt defined the m-topology on C(X),
the ring of all real valued continuous functions on a completely regular
space X, by taking the sets of the form

{f ∈ C(X) : |g − f | ≤ u},

as a base for the neighborhood system at g, where u is a positive unit
of C(X), see [10]. He showed that X is pseudocompact if and only if
Cm(X), the space C(X) with the m-topology, is first countable. In [3],
Azarpanah et al. studied compactness in C(X) with the m-topology
and they proved that every compact subset of Cm(X) has an empty
interior. In [5], Azarpanah et al. proved that q(X) with the m-topology
is connected if and only if X is a pseudocompact almost P -space, if and
only if C(X) with r-topology is connected, where q(X) is the classical
ring of quotients of C(X) and the r-topology is defined the same as the
m-topology if we consider positive regular functions instead of positive
units and the inequality holds on the cozero-set of the regular function,
see [6] and [14]. For any ideal I ⊆ Cψ(X), Azarpanah et al. in [4]
defined a topology on C(X) namely the mI-topology, finer than the
m-topology in which the component of 0 is exactly the ideal I and
C(X) with this topology becomes a topological ring. They showed
that compact sets in C(X) with the mI-topology have empty interior
if and only if X \

∩
Z[I] is infinite. For every two subsets A,B ⊆ X
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such that A ∪ B = X, Manshoor in [16] defined a topology on C(X)
namely the m(A,B)-topology, finer than the m-topology and C(X) with
this topology becomes a topological ring. Connectedness in this space
is studied and it is shown that if A and B are closed realcompact
subsets of X, then the component of the zero function in C(X) with
m(A,B)-topology is the ideal CK(X). In [15], Di Maio et al. analyzed
the position of the Krikorian topology with respect to the topology
of uniform convergence, and stated necessary and sufficient conditions
which force inclusions and coincidence. In [20], Douwen et al. and in
[11] Gómez-Pérez and McGovern investigated topological properties of
X via properties of Cm(X).

The paper is organized as follows:
In the second section we provide some necessary preliminaries about

the m-topology on M(X,A ).
In Section 3, we show that Mm(X,A ) is a completely metrizable

space and is a topological ring. We have shown in this section that
no point of Mm(X,A ) is an almost P -point and Mm(X,A ) is never
a pseudocompact and also it is never countably compact. Moreover
we prove that if (X,A ) be a T -measurable space and X is a finite set
with |X| = n, then Mm(X,A ) ∼= Rn as topological rings, and if X is
infinite then every compact subset of Mm(X,A ) has empty interior.

In Section 4, we study important open and closed subsets of
Mm(X,A ), and we prove that an ideal I of M(X,A ) is bounded if
and only if I is connected subset of Mm(X,A ), if and only if I ⊆
Mψ(X,A ). Also we show f ∈ Mψ(X,A ) if and only if φf is contin-
uous, where φf : R −→ Mm(X,A ) is given by φf (r) = rf for every
f ∈ M(X,A ).

Finally, in Section 5 we prove that the space (X,A ) is a pseudo-
compact measurable space if and only if Mm(X,A ) coincides with
Mu(X,A ) and this is equivalent to the first countability, connected-
ness or locally connectedness of Mm(X,A ). Moreover we show that all
of them are equivalent to saying that M∗(X,A ) is a connected subset
of Mm(X,A ).

2. Preliminaries

The m-topology on C(X) is defined by taking the sets of the form

B(f, u) = {g ∈ C(X) : |f − g| < u}

as a base for the neighborhood system at f , for each f ∈ C(X), where
u runs through the set of all positive units of C(X). Also, for every
f ∈ RX , Z(f) := {x ∈ X : f(x) = 0} is called the zero-set of f .
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Let us recall some general notation from [19]. A collection A of
subsets of a nonempty set X is said to be a measurable sets in X if A
has the following three properties:

(1) X ∈ A .
( 2) If A ∈ A , then Ac ∈ A , where Ac is the complement of A

relative to X.
(3) If {An}n∈N ⊆ A , then

∪
n∈NAn ∈ A .

Also, (X,A ) is called a measurable space. If X is a measurable space,
Y is a topological space, and f is a mapping of X into Y , then f is
said to be measurable provided that f−1(V ) is a measurable set in X
for every open set V in Y . If X is a measurable space, then the set
of all measurable maps from X into R is denoted M(X,A ), and the
members of M(X,A ) are called the real measurable functions on X,
where R denotes the set of all real numbers with the ordinary topology.

Remark 2.1. Let (X,A ) be a measurable space, we set
U(X,A ) := {g : g is a unit element of M(X,A )},

and
U+(X,A ) := {g ∈ U(X,A ) : g is a positive element of M(X,A )}.

Suppose that
B(f, u) := {g ∈ M(X,A ) : |f − g| < u}

and
Bf := {B(f, u) : u ∈ U+(X,A )}

for every f ∈ M(X,A ) and every u ∈ U+(X,A ). Then the following
statements hold for every f, g ∈ M(X,A )} and every u, v ∈ U+(X,A ).

(1) f ∈ B(f, u).
(2) B(f, u ∧ v) ⊆ B(f, u) ∩B(f, v).
(3) If g ∈ B(f, u) and v := u− |f − g|, then B(f, v) ⊆ B(f, u).
(4) For every g ∈ B(f, u), there exists an element ν in U+(X,A )

such that B(g, ν) ⊆ B(f, u).
(5) If U ∈ Bf , then f ∈ U .
(6) If U, V ∈ Bf , then U ∩ V ∈ Bf .
(7) If U ∈ Bf , then there is a V ∈ Bf such that U ∈ Bg for each

g ∈ V .
(8) If U ∈ Bf and U ⊆ V ⊆ M(X,A ), then V ∈ Bf .

If
τm := {G ⊆ M(X,A ) : ∀f ∈ G ∃U ∈ Bf ; U ⊆ G },

then, by [23, Theorem 4.2], τm is a topology on M(X,A ) such that
the neighborhood system at each f ∈ M(X,A ) is precisely Bf . The
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topology τm on M(X,A ) is in fact the m-topology on M(X,A ), and
the notation Mm(X,A ) will be used when referring to M(X,A ) under
the m-topology. Also, if

τu := {G ⊆ M(X,A ) : ∀f ∈ G ∃ε ∈ R; ε > 0 and B(f, ε) ⊆ G },
then, by [23, Theorem 4.2], τu is a topology on M(X,A ) which is called
the uniform topology (or the u-topology) on M(X,A ). Throughout
this article, the notation Mu(X,A ) will be used when referring to
M(X,A ) under the u-topology. M∗

m(X,A ) and M∗
u(X,A ) are defined

similarly.

3. Topological properties of space Mm(X,A )

If (X; ρ) is a metric space, then by the ball (or spheroid) centered at
x ∈ X and having radius δ we mean the set

Sρ(x, δ) := {y ∈ X : ρ(x, y) < δ}.
The constant function, on any set, whose constant value is the real
number r, is denoted by r.

Proposition 3.1. Let (X,A ) be a measurable space. Then the follow-
ing statements hold.

(1) Mu(X,A ) is a completely metrizable space.
(2) M∗

u(X,A ) is a completely metrizable space.
(3) M∗

u(X,A ) is a Banach space.
Proof. (1). Clearly ρ : M(X,A )×M(X,A ) → [0,+∞) defined by

ρ(f, g) = sup
x∈X

|f(x)− g(x)|
1 + |f(x)− g(x)|

is a metric on M(X,A ).
Let f ∈ M(X,A ) and ε ∈ (0,+∞) be given. Then

Sρ

(
f,

ε

1+ ε

)
⊆ B(f, ε),

and there exists an element ε0 in (0, 1) with ε0 < ε such that

B

(
f,

ε0
1− ε0

)
⊆ Sρ(f, ε0) ⊆ Sρ(f, ε).

Therefore, if τ is the metric topology induced by ρ, then τu = τ .
Suppose {fn}n∈N ⊆ M(X,A ) be a cauchy sequence, so that for every

ε > 0, there exists an element N in N such that

ρ(fn, fm) = sup
x∈X

|fn(x)− fm(x)|
1 + |fn(x)− fm(x)|

<
ε

1 + ε
,
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for every m,n > N , which implies that |fm(x) − fn(x)| < ε for every
x ∈ X whenever m,n > N . Then, by [18, Theorem 7.8], the sequence
of functions {fn}n∈N, defined on X, converges uniformly on X. We
define f : X → R by f(x) = limn→∞ fn(x). Then f ∈ M(X,A ) and
also, |fn−f | < ε whenever n > N , which implies that ρ(fn, f) <

ε

1+ ε
for every n > N . Therefore, {fn}n∈N converges to f.

(2). If we define ρ : M∗(X,A )×M∗(X,A ) → [0,+∞) given by
ρ(f, g) = sup

x∈X
|f(x)− g(x)|,

then ρ is a metric on M∗(X,A ). The rest is similar to the proof of the
first statement.

(3). Let {fn} ⊆ M∗
u(X,A ) be a cauchy sequence.Then for every

ε > 0, there exists an element k in N such that supx∈X |fn(x)−fm(x)| <
ε, for every m,n ≥ k and every x ∈ X. Hence {fn(x)}n∈N is a
cauchy sequence in R, and so limn−→∞ fn(x) = f(x) ∈ R for ev-
ery x ∈ X. Consider n be fixed and m −→ ∞. Then we have
supx∈X |fn(x)− f(x)| ≤ ε. Since f is a bounded measurable function,
we conclude that M∗

u(X,A ) is a Banach space. □

Recall that a topological ring is a ring R which is also a Hausdorff
topological space such that both the addition and the multiplication
operations are continuous.

Proposition 3.2. Let (X,A ) be a measurable space. Then the ring
M(X,A ) with the m-topology is a topological ring.

Proof. Let f, g ∈ M(X,A ) and G ∈ τm with f+g ∈ G be given. Then
there exists an element u in U+(X,A ) such that B(f + g, u) ⊆ G. It
is clear that for every (t, k) ∈ B

(
f,

u

3

)
×B

(
g,

u

3

)
,

|f + g − (t+ k)| ≤ |f − t|+ |g − k| < u

3
+

u

3
< u.

Therefore, the addition operation is continuous .
Let f, g ∈ M(X,A ) and u ∈ U+(X,A ) with fg ∈ B(f + g, u) be

given. We set v :=
u

2(1+ |g|+ |f |+ u)
. Then v ∈ U+(X,A ) and for

every (t, k) ∈ B(f, v)×B(g, v),
|fg − tk| ≤ |f − t||g|+ |f − t||g − k|+ |f ||g − k|

< (1+ |g|+ |f |+ u)v

< u.
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Hence, the multiplication operation is continuous. The proof is now
complete. □
Remark 3.3. Let (X,A ) be a measurable space. Then{

1

n
∈ M(X,A ) : n ∈ N

}
is a discrete subspace of Mm(X,A ).

It is well known that for every T1-space X, X is a regular space if
and only if for every x ∈ X and every neighbourhood U of x there
exists a neighbourhood V of x such that clXV ⊆ U .
Proposition 3.4. Mm(X,A ) is a Hausdorff regular space.
Proof. let f, g ∈ M(X,A ) with f ̸= g be given. Then there exists an
element x0 in X such that f(x0) ̸= g(x0). Consider u :=

1

2
|f(x0) −

g(x0)|. If h ∈ B(f, u) ∩B(g, u), then
|f(x0)− g(x0)| ≤ |f(x0)− h(x0)|+ |h(x0)− g(x0)| < 2u

= |f(x0)− g(x0)|,
which is a contradiction. Therefore, Mm(X,A ) is a Hausdorff space.

Let f ∈ M(X,A ) and a neighbourhood G of f in Mm(X,A ) be
given. Then there exists an element u ∈ U+(X,A ) such that
B(f, u) ⊆ G. If g ∈ clmB

(
f,

u

2

)
, then there exists an element h

in B
(
g,

u

2

)
∩B

(
f,

u

2

)
, which implies that

|f − g| ≤ |f − h|+ |h− g| < u

2
+

u

2
= u.

Therefore, f ∈ B
(
f,

u

2

)
⊆ clmB

(
f,

u

2

)
⊆ G, and the proof is now

complete. □
Recall that a point x of a topological space X is called an almost

P -point of X if, whenever x ∈ Z(f) for some f ∈ C(X), it follows that
x ∈ clX intXZ(f). Equivalently, x ∈ X is an almost P -point if and only
if every Gδ-set containing x has nonempty interior.
Proposition 3.5. Let (X,A ) be a measurable space. Mm(X,A ) does
not contain any almost P -point.
Proof. Let f ∈ M(X,A ) be given. Then

∩
n∈N B

(
f, 1

n

)
= {f} is a

Gδ-set in Mm(X,A ). Since u

2
+ f ∈ B(f, u) for every u ∈ U+(X,A ),

we conclude that {f} is not open, which implies that intm{f} = ∅.
Therefore, f is not an almost P -point, and this completes the proof. □
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Recall that a topological space X is said to be pseudocompact if
every function in C(X) is bounded and X is countably compact if and
only if each countable open cover of X has a finite subcover.

Proposition 3.6. Let (X,A ) be a measurable space. Then the follow-
ing statements hold.

(1) Mm(X,A ) is never a pseudocompact space.
(2) Mm(X,A ) is never a countably compact space.

Proof. (1). Let a ∈ X be given. We define ηa : Mm(X,A ) → R by
ηa(f) = f(a). Since ηa(g) = g(a) ∈

(
f(a) − ε, f(a) + ε

)
for every

ε ∈ (0,∞) and every g ∈ B(f, ε), we conclude that ηa is a continuous
function. Now using ηa(n) = n for every n ∈ N, we obtain that ηa
is an unbounded continuous function. Therefore, Mm(X,A ) is not a
pseudocompact space.

(2). Since every countably compact space is pseudocompact,
Mm(X,A ) is not countably compact. □

Remark 3.7. Let (X,A ) be a measurable space. For every
f ∈ M(X,A ), there is a unit real-measurable function u in M(X,A )
such that (−1 ∨ f) ∧ 1 = uf .

We recall from [22, Theorem 4.5] that the connected component
C of zero in a topological ring A is a closed ideal, and a + C is the
connected component of a for each a ∈ A. Also, we recall from [9] that
a measurable space (X,A ) is said to be T -measurable if whenever x
and y are distinct points in X, there is a measurable set containing one
and not the other.

Proposition 3.8. Let (X,A ) be a T -measurable space. If X is a finite
set with |X| = n, then Mm(X,A ) ∼= Rn as topological rings.

Proof. Since A = P(X), Mm(X,A ) = C(X) ∼= Rn as topological
rings. □

The following example shows that T -measurable in proposition 3.8
can not be removed. More generally, whenever (X,A ) is not even T -
measurable and X is finite, then again we have Mm(X,A ) ∼= Rk as
topological rings, where k ≤ |X|.

Example 3.9. Let X = {1, 2, 3, 4, 5} and

χ{1} =

{
1 if x = 1

0 if x ∈ {2, 3, 4, 5}.
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be given. Hence, A = {∅, {1}, {2, 3, 4, 5}, X} is the smallest σ−algebra
on X such that χ{1} is a measurable function and consequently

M(X,A ) = {aχ{1} + bχ{2,3,4,5} : a, b ∈ R} ∼= R2.

For the proof of the following proposition we apply the same tech-
nique which is used in that of Theorem 4.1 in [3].
Proposition 3.10. Let (X,A ) be a measurable space, and let X be an
infinite set. If F is a compact subset of Mm(X,A ), then intmF = ∅.
Proof. We argue by contradiction. Let us assume that f ∈ intmF .
Then there exists a positive unit function u ∈ M(X,A ) such that
B(f, u) ⊆ F . By hypothesis, there exist g1, g2, ..., gm ∈ F such that
F ⊆

∪n
m=1 B

(
gm,

u
4

)
. Let A := {x1, x2, ..., xn, xn+1} ⊆ X with xi ̸= xj

for every 1 ≤ i ̸= j ≤ n + 1, be given. We set ti := u
2
χ{xi}

and
hi := f + ti for every 1 ≤ i ≤ n + 1, then hi ∈ B(f, u) ⊆ intmF , and
so, by the “pigeon-hole” principle, there exist 1 ≤ i ̸= j ≤ n + 1 and
1 ≤ s ≤ n such that hi, hj ∈ B(gs,

u
4
), which implies that

|ti − tj| = |hi − hj| ≤ |hi − gs|+ |hj − gs| <
u

4
+

u

4
=

u

2
.

Therefore,
u(xi)

2
= |ti(xi)− tj(xi)| <

u

2
(xi)

and this is a contradiction. □

4. Open and closed subsets of Mm(X,A )

In this section, we are going to find the largest bounded ideal of
M(X,A ) which is at the same time the largest connected ideal. Using
this find the component of 0 in Mm(X,A ).

Let (X,A ) be a measurable space. We set
M+(X,A ) := {f ∈ M(X,A ) : f(x) ≥ 0 for all x ∈ X },

and
M−(X,A ) := {f ∈ M(X,A ) : f(x) ≤ 0 for all x ∈ X }.

Proposition 4.1. Let (X,A ) be a measurable space. Then the follow-
ing statements hold.

(1) The interior of a proper ideal I of M(X,A ) in Mm(X,A ) is
the empty set.

(2) The set M∗(X,A ) is a clopen subset of Mm(X,A ).
(3) The set U(X,A ) is a dense open subset of Mm(X,A ).
(4) If D is the set of all zero divisors of M(X,A ), then D =

M(X,A ) \ U(X,A ).
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(5) The set U+(X,A ) is an open subset of Mm(X,A ).
(6) The set M+(X,A ) coincides with the closure of U+(X,A ) in

Mm(X,A ).
(7) The set M−(X,A ) coincides with the closure of U−(X,A ) in

Mm(X,A ).
(8) The set M+(X,A ) ∪M−(X,A ) is contained in the closure of

U(X,A ).
(9) The set M+(X,A ) is not an open subset of Mm(X,A ).

Proof. (1). We argue by contradiction. Let us assume that I is a
proper ideal of M(X,A ), and suppose that f ∈ M(X,A ) is in the
interior of I. Then there exists an element u in U+(X,A ) such that
f+u

2
∈ B(f, u) ⊆ I, which implies that u

2
∈ I and this is a contradiction

to the fact that I is a proper ideal of M(X,A ).
(2). Since for every f ∈ M∗(X,A ), f ∈ B(f,1) ⊆ M∗(X,A ),

we conclude that M∗(X,A ) is an open subset of Mm(X,A ). Let
f ∈ M(X,A ) be in the closure of M∗(X,A ). Then there is an element
g in B(f, 1) ∩M∗(X,A ), which implies that there is an element n in
N such that |f | ≤ |g| + 1 ≤ n, and so f ∈ M∗(X,A ). Therefore,
M∗(X,A ) is a clopen subset of Mm(X,A ).

(3). Since for every u ∈ U(X,A ), B
(
u,

|u|
2

)
⊆ U(X,A ), we con-

clude that U(X,A ) is an open subset of Mm(X,A ).
Let f ∈ M(X,A ) and u ∈ U+(X,A ) be given. We define h : X → R

by

h(x) :=

{
f(x) + u(x)

2
if f(x) ≥ 0

f(x)− u(x)
2

if f(x) < 0.

Then h ∈ U(X,A ) ∩ B(f, u) ̸= ∅. Therefore, U(X,A ) is a dense
subset of Mm(X,A ).

(4). Let 0 ̸= f ∈ M(X,A ) \ U(X,A ) be given. Since χ
Z(f)

f = 0

and 0 ̸= χ
Z(f)

∈ M(X,A ), we conclude that f ∈ D. Therefore,
D = M(X,A ) \ U(X,A ), because D ⊆ M(X,A ) \ U(X,A ).

(5). If u ∈ U+(X,A ), then B
(
u, u

2

)
⊆ U+(X,A ), which implies

that U+(X,A ) is an open subset of Mm(X,A ).
(6). If f ∈ M+(X,A ) and u ∈ U+(X,A ), then

f +
u

2
∈ U+(X,A ) ∩B(f, u),

which implies that M+(X,A ) ⊆ clmU
+(X,A ). Let g ∈ M(X,A )

and a ∈ X with g(a) < 0 be given. We put r = 1
2
|g(a)| > 0. If
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h ∈ B(g, r) ∩ U+(X,A ), then
|g(a)− h(a)| ≥ |g(a)| = 2r > r,

which is a contradiction. Therefore, M+(X,A ) = clmU
+(X,A ).

(7). The proof is similar to the proof of part (6).

(8). It is clear.

(9). Let f ∈ M+(X,A ) \ U+(X,A ) be given. Then B(f, u) ⊈
M+(X,A ) for every u ∈ U+(X,A ). Therefore, M+(X,A ) is not an
open subset of Mm(X,A ). □

Recall that a space X is said to be extremally disconnected if every
open set has an open closure.

As an immediate consequence we now have the following proposition.

Proposition 4.2. Let (X,A ) be a measurable space. Then Mm(X,A )
is not an extremally disconnected space.

Recall that an element c of a lattice L is said to be compact if for
any S ⊆ L, c ≤

∨
S implies c ≤

∨
T for some finite T ⊆ S.

Definition 4.3. Let (X,A ) be a measurable space. We denote by
M∞(X,A ) the family of all functions f ∈ M(X,A ) for which the set{
x ∈ X : |f(x)| ≥ 1

n

}
is a compact element of A for every n ∈ N.

Proposition 4.4. Let (X,A ) be a measurable space. Then M∞(X,A )
is a closed subset of Mm(X,A ).

Proof. Let f ∈ clmM∞(X,A ) and n ∈ N be given. Then there exists
an element g in B

(
f, 1

2n

)
∩ M∞(X,A ), which implies that for every

x ∈ X,

|f(x)| ≥ 1

n
⇒ |g(x)| ≥ |f(x)| − 1

2n
≥ 1

n
− 1

2n
≥ 1

2n
,

that is {
x ∈ X : |f(x)| ≥ 1

n

}
⊆
{
x ∈ X : |g(x)| ≥ 1

2n

}
,

and since g ∈ M∞(X,A ), we conclude that {x ∈ X : |f(x)| ≥ 1
n
} is a

compact element of the lattice A . Therefore, f ∈ M∞(X,A ) and the
proof is now complete. □

To prove the main results of this section, we need the following
lemma.
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Lemma 4.5. If g is an element of M(X,A ), then the set
Ag := {f ∈ M(X,A ) : fg is a bounded element of M(X,A ) }

is a clopen subset of Mm(X,A ).

Proof. Let f ∈ Ag be given. Since for every h ∈ B
(
f, 1

1+|g|

)
, |hg| <

|fg| + |g|
1+|g| , we conclude that B

(
f, 1

1+|g|

)
⊆ Ag. Therefore, Ag is an

open subset of Mm(X,A ).
Let f ∈ clmAg be given. Then there exists an element h in B

(
f, 1

1+|g|

)
∩

Ag, and since |fg| < |hg|+ |g|
1+|g| , we conclude that f ∈ Ag. Therefore,

Ag is a clopen subset of Mm(X,A ). □

Throughout this article we assume that
U{xn} := {u ∈ U+(X,A ) : lim

n→∞
u(xn) = 0}

and
A{xn} := {f ∈ M(X,A ) : |f | < u for some u ∈ U{xn} }

for every sequence {xn}n∈N ⊆ X. It is obvious that for every f, g ∈
U{xn}, f + g ∈ U{xn} and fg ∈ U{xn}.

To prove Proposition 4.13, we need the following lemma.

Lemma 4.6. For every sequence {xn}n∈N ⊆ X, A{xn} is a clopen subset
of Mm(X,A ).

Proof. Let f ∈ A{xn} be given. Then there exists an element u in U{xn}
such that |f | < u, which implies that for every v ∈ U{xn},

h ∈ B(f, v) ⇒ |h| < |f |+ v < u+ v ∈ U{xn} ⇒ h ∈ A{xn}.

Hence A{xn} is an open subset of Mm(X,A ).
Let f ∈ clmA{xn} and v ∈ U{xn} be given. Then there exists an

element h in B(f, v)∩A{xn}, which implies that there exists an element
u ∈ U{xn} such that |h| < u, and so |f | < |h|+ v < u+ v ∈ U{xn}, i.e.,
f ∈ A{xn}. Therefore, A{xn} is a clopen subset of Mm(X,A ). □

Remark 4.7. Let (X,A ) be a measurable space. Since Mm(X,A ) is a
topological ring, then:

(1) If A is an open subset of Mm(X,A ), then f + A is an open
subset of Mm(X,A ) for every f ∈ M(X,A ).

(2) If A is a connected subset of Mm(X,A ) with 0 ∈ A, then f+A
is a connected subset of Mm(X,A ) for every f ∈ M(X,A ).
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Proposition 4.8. Let (X,A ) be a measurable space. If f ∈ M(X,A )
is an unbounded measurable function, then there is a sequence {xn}n∈N ⊆
X such that for every function g : {xn}n∈N → R, there exists an element
ḡ in M(X,A ) with ḡ(xn) = g(xn) and f(xn) > n for every n ∈ N.

Proof. By induction, define a sequence {xn}n∈N ⊆ X and a family
{An}n∈N ∈ A such that

A1 ⫌ A2 ⫌ A3 ⫌ · · · ⫌ Ak

and

xk ∈ Ak \
k−1∪
j=1

Aj

for every k ∈ N as follows. By hypothesis, there exists an element x1

in X such that |f(x1)| > 1. We set A1 := f−1
(
(−∞,−1) ∪ (1,∞)

)
. If

n > 1, then, by hypothesis, there exists an element xn in X such that
|f(xn)| > max{n, |f(xn−1)|}. We set
An := f−1

(
(−∞,−max{n, |f(xn−1)|}) ∪ (max{n, |f(xn−1)|},∞)

)
.

Let g : {xn}n∈N → R be a function. We set Bn := An \
∪∞
j=n+1Aj for

every n ∈ N. It is clear that A1 =
∪∞
n=0 Bn and Bn ∩Bm = ∅ for every

n,m ∈ N with m ̸= n. We define ḡ : X −→ R by

ḡ(x) =

{
g(xn) if x ∈ Bn for some n ∈ N
1 x ∈ X \ A1

Then ḡ ∈ M(X,A ) and ḡ(xn) = g(xn) for every n ∈ N. □
For a measurable space (X,A ), the subset M∗(X,A ) of M(X,A ),

consisting of all bounded functions in M(X,A ), is also closed under
the algebraic and order operations on M(X,A ). A measurable space
(X,A ) is said to be pseudocompact if every function in M(X,A ) is
bounded, i.e., M∗(X,A ) = M(X,A ).

For a measurable space (X,A ) and a non-empty subset Y of X, we
set

AY := {V ∩ Y : V ∈ A },
and (Y,AY ) is a measurable space.

Proposition 4.9. If a measurable space (X,A ) is not pseudocompact,
then there exists an infinite countable subset A of X such that

(1) for every function f : A → R, there exists an element f̄ in
M(X,A ) such that f̄(x) = f(x) for every x ∈ A, and

(2) if f : A → R is a function with Z(f) = ∅, then there exists an
element f̄ in U(X,A ) such that f̄(x)f(x) = 1 for every x ∈ A.
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Proof. The proof is similar to the proof of Proposition 4.8. □
Definition 4.10. Let (X,A ) be a measurable space. We denote
by Mψ(X,A ) the family of all functions f ∈ M(X,A ) for which
( coz (f),A coz (f)) is a pseudocompact measurable space. It is clear
that Mψ(X,A ) ⊆ M∗(X,A ).

As in Proposition 3.11 in [3], we define φf : R −→ Mm(X,A ) given
by φf (r) = rf for every f ∈ M(X,A ).

The following lemma is the counterpart of Proposition 3.11 in [3].

Lemma 4.11. Let (X,A ) be a measurable space. Then f ∈ Mψ(X,A )
if and only if φf is continuous.
Proof. Necessity. Let u ∈ U+(X,A ) be given. By hypothesis, there
exists an element α in R such that u(x) > α > 0 for every x ∈ coz (f),
and also, there exists an element t in N such that |f | < t. We claim
that

(r − α

t
, r +

α

t
) ⊆ φ−1

f

(
B(rf, u)

)
Let s ∈ (r − α

t
, r + α

t
) be given. If x ∈ coz (f), then

|rf − φf (s)|(x) = |rf − sf |(x) = |r − s||f(x)| < α

t
|f(x)| < α < u(x),

and if x ∈ Z(f), then
|rf − φf (s)|(x) = |rf − sf |(x) = 0 < u(x).

This proves the claim. Therefore, φf is continuous.
Sufficiency. We argue by contradiction. Let us assume that φf

is continuous and f ̸∈ Mψ(X,A ) for some f ∈ M(X,A ). Then, by
Proposition 4.9, there is a sequence {xn}n∈N ⊆ coz (f) such that for ev-
ery function f : {xn}n∈N → R, there exists an element f̄ in
M( coz (f),A coz (f)) such that f̄(xn) = f(xn) for every n ∈ N. To
get a contradiction, we need to consider two cases:
Case 1: Suppose that there exists a positive real number α such that
|f(xn)| > α for every n ∈ N. We define g : {xn}n∈N → R by g(xn) =
n. Then there exists an element ḡ in M( coz (f),A coz (f)) such that
ḡ(xn) = g(xn) = n, by Proposition 4.8.

Now, we define h : X → R by

h(x) =

{
ḡ(x) if x ∈ coz (f)

0 if x ∈ Z(f).

Then h ∈ M(X,A ) and h(xn) = n for every n ∈ N. Let s ∈
(0,+∞) such that φf

(
(−s, s)

)
⊆ B(0, 1

1+|h|). Then |t|α < |tf(xn)| ≨



m-TOPOLOGY 97

1
1+|h(xn)| =

1
1+n

for every t ∈ (−s, s) and every n ∈ N, which implies
that limn→∞

1
1+n

= 0 ≥ |t|α > 0 and this is a contradiction.
Case 2: Suppose that for every i ∈ N, there is xni

∈ {xn} such that
|f(xni

)| < 1
i+1

, then limi→∞ f(xni
) = 0. We define g : {xn} → R by

g(xn) =

{
1−f2(xn)
f2(xn)

if n ∈ {ni}i∈N

0 if n ̸∈ {ni}i∈N

Then there exists an element ḡ in M( coz (f),A coz (f)) such that ḡ(xn) =
g(xn). Now, we define h : X → R by

h(x) =

{
ḡ(x) if x ∈ coz (f)

0 if x ∈ z(f).

Then h ∈ M(X,A ) and
1

1 + |h(xni
)|

=
1

1 + |1−f
2(xni )

f2(xni )
|
=

f 2(xni
)

f 2(xni
) + (1− f 2(xni

))
= f 2(xni

)

for every i ∈ N. Let s ∈ (0,+∞) such that φf
(
(−s, s)

)
⊆ B

(
0, 1

1+|h|

)
,

then |tf(xni
)| ≨ 1

1+|h(xni )|
= f 2(xni

) for every t ∈ (−s, s) and every
i ∈ N, which implies that |t| ≤ limi→∞ |f(xni

)| = 0, i.e., (−s, s) = {0},
which is a contradiction. □
Definition 4.12. Let (X,A ) be a measurable space. An ideal I of
M(X,A ) is called bounded if every element of I is bounded, i.e., I ⊆
M∗(X,A ).

By the following result, M(X,A ) is the largest bounded and con-
nected ideal of M(X,A ).
Proposition 4.13. Let I be an ideal of M(X,A ). Then the following
statements are equivalent.

(1) I is a connected subset of Mm(X,A ).
(2) I is bounded.
(3) I ⊆ Mψ(X,A ).

Proof. (1) ⇒ (2). We argue by contradiction. Let us assume that f ∈ I
is an unbounded function, then there is a sequence {xn}n∈N ⊆ coz (f)
such that limn→∞ f(xn) = ∞, which implies that f ∈ I \ A{xn}. Since
0 ∈ I ∩ A{xn}, we conclude from Lemma 4.6 that I is a disconnected
subset of Mm(X,A ), which is a contradiction.

(2) ⇒ (3). By way of contradiction assume that f ∈ I \Mψ(X,A ),
then, by Proposition 4.9, there is a sequence {xn}n∈N ⊆ coz (f) such
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that limn→∞ f(xn) = ∞ and there exists an element ḡ in M(X,A )
such that ḡ(xn)f(xn) = 1 for every n ∈ N. It is clear that ḡf 2 is an
unbounded function and ḡf 2 ∈ I, which is a contradiction.
(3) ⇒ (1). Since the continuous image of a connected space is con-

nected, we conclude from Lemma 4.11 that φf (R) is a connected subset
of Mm(X,A ) for every f ∈ I. It is clear that 0 ∈

∩
f∈I φf (R) and

I =
∪
f∈I φf (R), then I is a connected subset of Mm(X,A ). □

As an immediate consequence from Proposition 4.13 we now have
the following corollary.

Corollary 4.14. Let (X,A ) be a measurable space. Then Mψ(X,A )
is the largest bounded ideal in M(X,A ).

Proposition 4.15. Let (X,A ) be a measurable space, and f ∈ M(X,A ).
Then f ∈ Mψ(X,A ) if and only if fg is a bounded function for every
g ∈ M(X,A ).

Proof. If f ∈ Mψ(X,A ), then fg ∈ Mψ(X,A ) for all f ∈ M(X,A ), so
fg is bounded. Conversely f = f.1 is bounded, hence f ∈ Mψ(X,A ).

□
Corollary 4.16. A measurable space (X,A ) is pseudocompact if and
only if every ideal of M(X,A ) is a connected subset of Mm(X,A ).

Proof. By Proposition 4.13, it is clear. □
Also, the following proposition that was proved in [7] is needed in

this paper.

Proposition 4.17. The following statements are equivalent.
(1) The measurable space (X,A ) is compact .
(2) The set X is a finite set and A = P(X).
(3) The measurable space (X,A ) is pseudocompact .

As an immediate consequence from Proposition 4.17 we now have
the following corollary.

Corollary 4.18. For measurable space (X,A ), f ∈ Mψ(X,A ) if and
only if coz (f) is a compact element of A for every f ∈ M(X,A ).

We recall from [9] that an ideal I of M(X,A ) is called fixed if the
set
∩
f∈I Z(f) is nonempty; otherwise, I is called free.

The follwing results which is the counterpart of Corollary 3.9 in
[3] show the connection between free maximal ideals of M(X,A ) and
connected ideals of Mm(X,A ).
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Proposition 4.19. Let (X,A ) be not a pseudocompact measurable
space, and assume that I is a proper ideal of M(X,A ). Then I is
a connected subset of Mm(X,A ) if and only if I ⊆ M for every free
maximal ideal M of M(X,A ).

Proof. Necessity. Let J be a free ideal of M(X,A ), and let f ∈ I be
given. Then for every x ∈ coz (f), there exists an element fx in J such
that x ∈ coz (fx), which implies that coz (f) ⊆

∪
x∈ coz (f) coz (fx).

Since, by Proposition 4.13 and Corollary 4.18, coz (f) is a compact
element of A , there are x1, . . . , xn ∈ coz (f) such that

coz (f) ⊆
n∪
i=1

coz (fxi) = coz

(
n∑
i=1

f 2
xi

)
,

and so there exists an element h in M(X,A ) such that

f = h

(
n∑
i=1

f 2
xi

)
∈ J.

Sufficiency. Let f ∈ I be given. Hence, by Proposition 4.13 and
Corollary 4.18, it suffices to prove that coz (f) is a compact element of
A . If not, then there exists an element g in M( coz (f),A coz (f)) such
that g ̸∈ M∗( coz (f),A coz (f)), and so the map h : X → R by

h(x) =

{
|g(x)|+ 1 if x ∈ coz (f)

0 if x ∈ X \ coz (f)

belongs to M(X,A ) \M∗(X,A ). We put Vn := {x ∈ X : |h(x)| ≥ n}
for every n ∈ N. Since {Vn : n ∈ N} ⊆ A has the finite intersection
property, we conclude that there exists a free ultrafilter F of A such
that {Vn : n ∈ N} ⊆ F , which implies from [9, Proposition 3.6] that

M := {f ∈ M(X,A ) : Z(f) ∈ F}

is a free maximal ideal of M(X,A ), and by our hypothesis, we infer
that f ∈ M . Therefore, ∅ = Z(f) ∩ coz (f) = Z(f) ∩ V1 ∈ F and this
is a contradiction to the fact that ∅ ̸∈ F . □

Proposition 4.20. Let (X,A ) be a measurable space, and let I be an
ideal of M(X,A ). Then the following statements hold.

(1) If I is a Lindelöf subspace of Mm(X,A ), then I ⊆ Mψ(X,A ).
(2) If I ̸= {0}, then I is not a compact subset of Mm(X,A ).
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Proof. (1). By hypothesis, there exists a family {B(fn, un)}n∈N such
that

I ⊆
∞∪
n=1

B(fn, un).

We argue by contradiction. Let us assume that there exists an element
f in I such that f ̸∈ Mψ(X,A ), which implies from Lemma 4.8 that
there is a sequence A := {xn}n∈N ⊆ X such that for every function
g : {xn}n∈N → R, there exists an element ḡ in M(X,A ) such that
ḡ(xn) = g(xn) and f(xn) > n for every n ∈ N. We define g : {xn}n∈N →
R by g(xn) = |fn(xn)| + un(xn), and so there exists a ḡ ∈ M(X,A )
such that ḡ|A = g. We can assume that there exists an element m in N
such that ḡf ∈ B(fm, um), which implies that |ḡf | < |fm|+um, and so
|fm(xm)|+ um(xm) = |ḡ(xm)| < |f(xm)ḡ|(xm) < |fm(xm)|+ um(xm),

which is a contradiction.
(2). We proceed by contradiction. Assume that there exist

f1, f2, ..., fn ∈ M(X,A )

and u ∈ U+(X,A ) such that I ⊆
∪n
i=1B(fi, u). Let a /∈

∩
f∈I Z(f)

and g ∈ I with g(a) ̸= 0 be given. We set b := max{|f1(a)| +
u(a), . . . , fn(a)| + u(a)} and f := b

(
g(a)

)−1
g, then there is a natu-

ral number k such that f ∈ B(fk, u), which implies that b = |f(a)| <
|fk(a)|+ u(a), and this is a contradiction with choose b. □
Example 4.21. The following statements hold.

(1) The ideal {f ∈ Mm

(
N,P(N)

)
: f(1) = 0} of M

(
N,P(N)

)
is not

a Lindelöf subspace of Mm

(
N,P(N)

)
.

(2) The set {f ∈ M
(
N,P(N)

)
: N \ {n} ⊆ Z(f)} is a Lindelöf ideal

of Mm

(
N,P(N)

)
.

(3) If In := {f ∈ M
(
N,P(N)

)
: N \ {n} ⊆ Z(f)} for every natural

number n, then In1+· · ·+Ink
is a Lindelöf ideal of Mm

(
N,P(N)

)
for every natural number k.

(4) Mψ

(
N,P(N)

)
is a Lindelöf ideal of Mm

(
N,P(N)

)
.

We recall from [23, 26B] that the quasicomponent of x in a space X
is the intersection of all clopen subsets of X which contain x, and the
component of x is contained in the quasicomponent of x.
Proposition 4.22. If K is the quasicomponent of zero in Mm(X,A ),
then K is a subideal of Mψ(X,A ), especially,

Mψ(X,A ) = K =
∩

g∈M(X,A )

Ag.
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Proof. Let C be the component of zero in Mm(X,A ). Then by Lemma
4.5 and Proposition 4.13,

C ⊆ Mψ(X,A ) ⊆ K ⊆
∩

g∈M(X,A )

Ag

One can easily confirm that
∩
g∈M(X,A ) Ag is a bounded ideal of

M(X,A ), then, Proposition 4.13, Mψ(X,A ) = K =
∩
g∈M(X,A ) Ag.

□

5. Pseudocompactness of (X,A ) versus topological
properties of Mm(X,A )

In this section, we shall establish some properties of a pseudocom-
pact measurable space (X,A ) which are equivalent to properties of the
topological space Mm(X,A ).

Proposition 5.1. A measurable space (X,A ) is pseudocompact if and
only if Mm(X,A ) = Mu(X,A )

Proof. Necessity. By Remark 2.1, τm ⊆ τu. Let G ∈ τm and f ∈
G be given. Then there exists an element u in U+(X) such that
B(f, u) ⊆ G. Since (X,A ) is pseudocompact, we conclude that ε :=
inf{U(X,A ) : x ∈ X} is a non-zero real number, which implies that
u(f, ε) ⊆ B(f, u) ⊆ G, and so G ∈ τu. Therefore, τu ⊆ τm.

Sufficiency. We argue by contradiction. Let us assume that f is an
unbounded function in M(X,A ). Then there exists an element ε > 0

in R such that B(0, ε) ⊆ B
(
0,

1

|f | ∨ 1

)
, which implies that ε

2
<

1

|f | ∨ 1
,

and so |f |∨1 <
2

ε
, that is f is bounded, and this is a contradiction. □

Proposition 5.2. If Mm(X,A ) is a Lindelöf space, then (X,A ) is a
pseudocompact measurable space.

Proof. By hypothesis, there exist {fn}N ⊆ M(X,A ) and {un}N ⊆
U+(X,A ) such that M(X,A ) =

∪∞
n=1B(fn, un). By way of contra-

diction assume that A is not a pseudocompact measurable space. Then
there exists a subset A := {xn : n ∈ N} of X such that for every f ∈ RA,
there exists an element f̄ ∈ M(X,A ) such that f̄ |

A
= f . We define

g : A → R by g(x) = un(x)+ fn(x), then there exist ḡ ∈ M(X,A ) and
n ∈ N such that ḡ|

A
= g and ḡ ∈ B(fn, un), which implies that

un(xn) = |g(xn)− fn(xn)| < un(xn),

and this is a contradiction. □
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We recall that a topological space X is called semi-compact if there
exists a family of compact subsets {Kn}n∈N of X such that for every
compact subset K of X, there exists an element n in N such that
K ⊆ Kn.

The following corollary which follows from Proposition 3.10 is the
counterpart of Corollary 4.3 in [3].

Corollary 5.3. Let (X,A ) be a T -measurable space. Then the follow-
ing statements are equivalent.

(1) Mm(X,A ) is locally compact.
(2) Mm(X,A ) is σ- compact.
(3) Mm(X,A ) is semi-compact.
(4) Mm(X,A ) is a second category space.
(5) X is finite.

Proof. If X is a finite set, then, by Proposition 3.8, Mm(X,A ) is locally
compact, σ- compact and semi-compact.

(1) ⇒ (5). By Proposition 3.10, it is clear.
(2) ⇒ (4). By hypothesis, there exists a family of compact sub-

sets {Fn}n∈N of Mm(X,A ) such that Mm(X,A ) =
∪∞
n=1 Fn. Then

Mm(X,A ) is a Lindelöf space, which implies from Proposition 5.2 that
(X,A ) is a pseudocompact space, and so, by Propositions 5.1, 3.1 and
Theorem 16.25 in [10], Mm(X,A ) is a second category space.

(4) ⇒ (5). Suppose on the contrary, that X is an infinite set. Then,
by Proposition 3.10, M(X,A )\Fn is a dense open subset of Mm(X,A )
for every n ∈ N. But

∞∩
n=1

(
M(X,A ) \ Fn

)
= M(X,A ) \

∞∪
n=1

Fn = ∅,

which contradics the fact that Mm(X,A ) is a second category space.
(3) ⇒ (5). It is well known that every semi-compact is σ- compact.

□
We say that a space X satisfies the first axiom of countability or is

first-countable; this means that at every point z of X there exists a
countable base.

Proposition 5.4. Mm(X,A ) is a first countable topological space if
and only if (X,A ) is a pseudocompact measurable space.

Proof. Necessity. We argue by contradiction. Let us assume that
(X,A ) is not pseudocompact.
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We consider constant function 0 and we demonstrate for every count-
able collection of open neighborhood for 0. Then there exists any neigh-
borhood of this function such that is not contained any element of this
collection. Since X is not a pseudocompact measurable space; there
exists an element f in M(X,A )\M∗(X,A ). We set g := f 2+1. Then
g ∈ U+(X,A ) is unbounded. Thus there exist a family {an}n∈N ⊆ R+

and a family {xn}n∈N ⊆ X such that {an}n∈N is a ascending sequence
with limn→∞ an = ∞ and g(xn) = an for every n ∈ N. Now, let
{B(0, un)}n ∈ N be a countable collection of open neighborhood of 0.
We put bn =

1

2
un(xn) for every n ∈ N. Then there exists a positive

element σ in C(R) such that σ(an) =
1

bn
for every n ∈ N. Consider

v :=
1

σ ◦ g
. Then v ∈ U+(X,A ) and ν(xn) = bn ≤ 1

2
un(xn) for every

n ∈ N, which implies that B(0, un) ̸⊆ B(0, v) for every n ∈ N, and
this is a contradiction to the fact that Mm(X,A ) is a first countable
topological space.

Sufficiency. By Proposition 5.1, Mm(X,A ) = Mu(X,A ). Then
by Proposition 3.1, Mm(X,A ) is a metric space, which implies that
Mm(X,A ) is a first countable space. □
Proposition 5.5. If (X,A ) is not a pseudocompact measurable space,
then the following statements hold.

(1) The set of all constant functions in M(X,A ) is a discrete sub-
space of Mm(X,A ).

(2) M(X,A ) has an unbounded unit element.
Proof. (1). By hypothesis, M(X,A ) must contain an unbounded func-
tion f . Consider ε ∈ (0,+∞). Then u := |f | ∨ ε ∈ U+(X,A ) is an
unbounded function, which implies that u−1 is also a positive unit such
that 0 ∈ clN(u

−1[X]). Hence, there exist a family {an}n∈N ⊆ R+ and
a family {xn}n∈N ⊆ X such that {an}n∈N is a ascending sequence with
limn→∞ an = ∞ and u(xn) = an for every n ∈ N. Let r, t ∈ R be given.
If t ∈ B(r, u−1), then

|r − t| = lim
n→∞

|r(xn)− t(xn)| ≤ lim
n→∞

u−1(xn) = 0,

which implies that t = r. Therefore, the set of all constant functions
in M(X,A ) is a discrete subspace of Mm(X,A ).

(2). It is evident. □
Proposition 5.6. Let (X,A ) be a measurable space. Then the follow-
ing statements are equivalent.
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(1) (X,A ) is a pseudocompact measurable space.
(2) Mm(X,A ) is a connected space.
(3) Mm(X,A ) is a locally connected space.
(4) M∗(X,A ) is a connected subset of Mm(X,A ).

Proof. (1) ⇒ (2). By Proposition 4.13, it is clear.

(2) ⇒ (3). By Proposition 4.13,
M(X,A ) = M∗(X,A ) = Mψ(X,A ).

Let 0 < ε ∈ R be given. By Lemma 4.11, for every f ∈ M(X,A )
with |f | < ε, φf ([−1, 1]) is a connected subset of Mm(X,A ) and since
0 ∈

∩
|f |<ε φf ([−1, 1]), we conclude that B(0, ε) =

∪
|f |<ε φf ([−1, 1]) is

a connected subset of Mm(X,A ). Therefore, by Remark 4.7, f+B(0, ε)
is a connected open subset of Mm(X,A ) for every f ∈ M(X,A ). The
proof is now complete.

(3) ⇒ (1). It is evident that Mm(X,A ) ⊆ Mψ(X,A ) implies every
function is bounded.

(3) ⇒ (4). Let X is not a pseudocompact. Then there exists an
element f in M(X,A ) such that f /∈ Mψ(X,A ). Let C be the
connected component of zero in Mm(X,A ). Then by Lemma 4.13,
C ⊆ Mψ(X,A ). By hypothesis, there exists an open connected sub-
set G such that 0 ∈ G. Then there exists an element u in U+(X,A )
such that B(0, u) ⊆ G ⊆ C. Since f

1+|f |u ∈ B(0, u), we conclude that
f = f

1+|f |u(1+ |f |)u−1 ∈ C ⊆ Mψ(X,A ), which is a contradiction.

(4) ⇒ (1). By Proposition 4.13, 1 ∈ M∗(X,A ) = Mψ(X,A ). Then
(X,A ) is a pseudocompact measurable space, because coz (1) = X.

□
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حقیقی پذیر اندازه توابع حلقه روی توپولوژی -m

صادقی ۴قدیر و درقدم محمودی ٣احمد استاجی، اكبر ٢علی پور، یوسف ١حسن

ایران. سبزوار، سبزواری، حکیم دانشگاه کامپیوتر، علوم و ریاضی ١,٢,٣,۴دانشکده

اندازه پذیر فضای روی حقیقی پذیر اندازه توابع حلقه که ،M(X,A ) روی را m-توپولوژی ما مقاله این در
كه می کنیم ثابت می دهیم. نشان Mm(X,A ) نماد با را آن و می گیریم نظر در است، (X,A )

-T فضای (X,A ) اگر این، بر علاوه و است هاسدورف و منظم توپولوژیك حلقه Mm(X,A )

.Mm(X,A ) ∼= Rn توپولوژیكی حلقه های عنوان به آن گاه باشد، |X| = n با X و اندازه پذیر
داده ایم نشان نیست. شمارا فشرده و فشرده شبه فضای هرگز Mm(X,A ) كه كرده ایم ثابت همچنین
و اگر Mm(X,A ) = Mu(X,A ) اگر تنها و اگر است شبه فشرده اندازه پذیر فضای (X,A ) که
اگر باشد همبند فضای Mm(X,A ) اگر تنها و اگر باشد اول شمارای فضای Mm(X,A ) اگر تنها
همبند زیر مجموعه ی Mm(X,A ) اگر تنها و اگر باشد موضعی همبند فضای Mm(X,A ) اگر تنها و

باشد. Mm(X,A )

فضای همبند، فضای شبه فشرده، اندازه پذیر فضای پذیر، اندازه فضای m-توپولوژی، کلیدی: کلمات
اول. شمارای
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