## Journal of Algebraic Systems

Vol. 9, No 1, (2021), pp 119-135

# ALGORITHMIC ASPECTS OF ROMAN GRAPHS 

## A. POUREIDI*


#### Abstract

Let $G=(V, E)$ be a graph. A set $S \subseteq V$ is called a dominating set of $G$ if for every $v \in V \backslash S$ there is at least one vertex $u \in N(v)$ such that $u \in S$. The domination number of $G$, denoted by $\gamma(G)$, is equal to the minimum cardinality of a dominating set in $G$. A Roman dominating function ( RDF ) on $G$ is a function $f: V \rightarrow\{0,1,2\}$ such that every vertex $v \in V$ with $f(v)=0$ is adjacent to at least one vertex $u$ with $f(u)=2$. The weight of $f$ is the sum $f(V)=\sum_{v \in V} f(v)$. The minimum weight of a RDF on $G$ is the Roman domination number of $G$, denoted by $\gamma_{R}(G)$. A graph $G$ is a Roman Graph if $\gamma_{R}(G)=2 \gamma(G)$.

In this paper, we first study the complexity issue of the problem posed in [E. J. Cockayane, P. M. Dreyer Jr., S. M. Hedetniemi and S. T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004), 11-22], and show that the problem of deciding whether a given graph is a Roman graph is NP-hard even when restricted to chordal graphs. Then, we give linear algorithms that compute the domination number and the Roman domination number of a given unicyclic graph. Finally, using these algorithms we give a linear algorithm that decides whether a given unicyclic graph is a Roman graph.


## 1. Introduction

For notation and terminology not given here we refer to [7]. Let $G=(V, E)$ be a graph with the vertex set $V$ and the edge set $E$. The open neighborhood of a vertex $v \in V$ is $N(v)=\{u \in V: u v \in E\}$. The

DOI: 10.22044/jas.2020.8188.1400.
MSC(2010): Primary: 05C85; Secondary: 05C69.
Keywords: Dominating set, Roman dominating function, 3-SAT Problem, unicyclic graph. Received: 11 March 2019, Accepted: 16 October 2020.

* Corresponding author.
degree of $v$ is $\operatorname{deg}(v)=|N(v)|$. A vertex of degree one is referred as a leaf. A path (respectively, cycle) graph of order $n$ is denoted by $P_{n}$ (respectively, $C_{n}$ ). A graph is unicyclic if it is connected and contains precisely one cycle.

For a graph $G=(V, E)$, a set $S \subseteq V$ is called a dominating set (DS) of $G$ if every $v \in V \backslash S$ is adjacent to at least one vertex $u \in S$. Furthermore, if $S$ induces a connected subgraph of $G$, then $S$ is a connected dominating set (CDS) of $G$. The domination number (respectively, connected domination number) of $G$, denoted by $\gamma(G)$ (respectively, $\gamma_{c}(G)$ ), is the minimum cardinality of a dominating set (respectively, connected dominating set) of $G$. A DS of $G$ of minimum cardinality is referred as a $\gamma(G)$-set. A connected DS of $G$ of minimum cardinality is referred as a $\gamma_{c}(G)$-set.

A function $f: V \rightarrow\{0,1,2\}$ is a Roman dominating function (RDF) of $G$ if every vertex $u$ with $f(u)=0$ is adjacent to at least one vertex $v$ with $f(v)=2$. The weight of a $\operatorname{RDF} f$, denoted by $w(f)$, is the sum $f(V)=\sum_{v \in V} f(v)$. The mathematical concept of Roman domination, defined and discussed by Stewart [11], and ReVelle and Rosing [10], and subsequently developed by Cockayne et al. [4]. A hundred papers published on various aspects of Roman domination in graphs, for example $[1,2,3,5,12,13]$. A $\gamma_{R}(G)$-function is a $\operatorname{RDF} f$ on $G$ with $w(f)=\gamma_{R}(G)$. For a RDF $f$ on $G$, we denote by $V_{i}$ (or $V_{i}^{f}$ to refer to $f$ ) the set of all the vertices of $G$ with label $i$ under $f$. Thus, a RDF $f$ can be represented by ( $V_{0}, V_{1}, V_{2}$ ), and we can use the notation $f=\left(V_{0}, V_{1}, V_{2}\right)$. A graph $G$ with $\gamma_{R}(G)=2 \gamma(G)$ is called a Roman graph. Cockayne et al. [4] posed the following problem.

Problem 1. Characterize the Roman graphs.
Henning [8] gave a constructive characterization of Roman trees. Liedloff et. al. [9] gave algorithms for computing the Roman domination number of interval graphs and cographs. Also, they gave a linear-time algorithm for recognizing Roman cographs.

In this paper, in Section 3 we prove that the decision problem related to Problem 1 is NP-hard even when restricted to chordal graphs. In Section 4, we give linear algorithms that compute the domination number and Roman domination number of a given unicyclic graph. Finally, using these algorithms we give a linear algorithm that decides whether a given unicyclic graph is a Roman graph.

## 2. Preliminary

Consider the following family of graphs related to Problem 1:

- Family $\mathcal{F}_{R 2}$ : the family of all graphs $G$ with $\gamma_{R}(G)=2 \gamma(G)$.
- Family $\mathcal{F}_{R 22 c}$ : the family of all graphs $G$ with $\gamma_{R}(G)=2 \gamma(G)=$ $2 \gamma_{c}(G)$.
Note that $\mathcal{F}_{R 22 c}$ is an infinite family even when restricted to chordal graphs, since for any positive integer $n$, if $T_{n}$ is the tree obtained from $P_{n}$ by adding three new leaves to any vertex of $P_{n}$, then it can be seen that $T_{n} \in \mathcal{F}_{R 22 c}$. Also, there are chordal graphs that do not belong to $\mathcal{F}_{R 22 c}$. It is clear that $\gamma\left(P_{n}\right) \neq \gamma_{c}\left(P_{n}\right)$ and so $P_{n} \notin \mathcal{F}_{R 22 c}$. The following is obvious.

Corollary 2.1. $\mathcal{F}_{R 22 c} \subseteq \mathcal{F}_{R 2}$.
Thus, to prove the NP-hardness of problem of whether a given graph belongs to $\mathcal{F}_{R 2}$ we only need to prove the NP-hardness of problem of whether a given graph belongs to $\mathcal{F}_{R 22 c}$. To this end, we introduce a reduction from 3-SAT Problem. Recall that 3-SAT is the problem of deciding whether a given Boolean formula in 3-conjunctive normal form is satisfiable. It is well-know that 3-SAT Problem is NP-complete [6]. Let $\Phi=\{\mathcal{C}, \mathcal{X}\}$ be an instance in 3-SAT Problem, that is, $\Phi$ be Boolean formula in 3 -conjunctive normal form. Let $\mathcal{C}=\left\{c_{1}, c_{2}, \ldots, c_{l}\right\}$ be a set of $l \geq 1$ clauses over a set $\mathcal{X}=\left\{x_{1}, \ldots, x_{k}\right\}$ of $k \geq 3$ variables. For each $1 \leq j \leq l$, the clause $c_{j}$ (consisting of exactly three literals) is of the form $c_{j}=\left\{y_{1 j}, y_{2 j}, y_{3 j}\right\}$, where each of $y_{1 j}, y_{2 j}$ and $y_{3 j}$ is either a variable or the negative of a variable in $\mathcal{X}$.

## 3. NP-hardness Results

Consider the following decision problems.

## Roman Graph (RG) Problem:

Instance: A graph $G$.
Question: Is $G \in \mathcal{F}_{R 2}$ ?

## Roman 2Connected-Domination (R2CD) Problem:

Instance: A graph $G$.
Question: Is $G \in \mathcal{F}_{R 22 c}$ ?
Let $\Phi=\{\mathcal{C}, \mathcal{X}\}$ be an instance in 3-SAT Problem. We construct graph $G_{\Phi}$ corresponding to $\Phi$ as follows. For each variable $x_{i}$, where $1 \leq i \leq k$, we construct a graph $G_{i}$ as a variable gadget, where $G_{i}$ is obtained from a path graph of order 2 with vertices $u_{i}^{1}, u_{i}^{2}$ such that each


Figure 1. Illustrating $G_{\Phi}$ corresponding to $\Phi=$ $\left\{\left\{c_{1}, c_{2}\right\},\left\{x_{1}, x_{2}, x_{3}\right\}\right\}$, where $c_{1}=\left\{\neg x_{1}, \neg x_{2}, x_{3}\right\}$ and $c_{2}=\left\{x_{1}, \neg x_{2}, x_{3}\right\}$.
of vertices $u_{i}^{1}, u_{i}^{2}$ is adjacent to a new vertex $v_{i}^{s}$ for each $s \in\{1,2,3\}$. For each clause $c_{j}=\left\{y_{1 j}, y_{2 j}, y_{3 j}\right\}$, where $1 \leq j \leq l$, we add a new vertex $z_{j}$ such that $z_{j}$ is adjacent to three new leaves. For $s=1,2,3$, if $y_{s j}=x_{i}$, for some $1 \leq i \leq k$, then we add an edge $u_{i}^{2} z_{j}$ and if $y_{s j}=\neg x_{i}$, for some $1 \leq i \leq k$, then we add an edge $u_{i}^{1} z_{j}$. We add a new vertex $o$ such that is adjacent to three new leaves and add edges $o u_{i}^{1}$ and $o u_{i}^{2}$ for each $1 \leq i \leq k$. Finally add all edges $a b$ for each $a \in\left\{u_{i}^{1}, u_{i}^{2}\right\}$ and $b \in\left\{u_{j}^{1}, u_{j}^{2}\right\}$ and for all $1 \leq i<j \leq k$. Let $G_{\Phi}$ be the resulting graph. See Figure 1. It is easy to see that $G_{\Phi}$ is a chordal graph.

Lemma 3.1. $\gamma\left(G_{\Phi}\right)=k+l+1$.
Proof. Let $S$ be a $\gamma\left(G_{\Phi}\right)$-set. Since each of vertices $o$ and $z_{j}$, where $1 \leq j \leq l$, is adjacent to three leaves, both $o, z_{j} \in S$. Since all vertices $v_{i}^{1}, v_{i}^{2}, v_{i}^{3}$, where $1 \leq i \leq k$, are only adjacent to vertices $u_{i}^{1}, u_{i}^{2}$, at least one of vertices $u_{i}^{1}, u_{i}^{2}$ belongs to $S$. So, $\gamma\left(G_{\Phi}\right)=|S| \geq k+l+1$.

Let $S=\left\{o, z_{j}, u_{i}^{1} \mid 1 \leq i \leq k, 1 \leq j \leq l\right\}$. Clearly, $S$ is a DS on $G_{\Phi}$ with $|S|=k+l+1$. So, $\gamma\left(G_{\Phi}\right) \leq k+l+1$. This completes the proof.

Lemma 3.2. $\gamma_{R}\left(G_{\Phi}\right)=2(k+l+1)$.
Proof. Let $f$ be a $\gamma_{R}\left(G_{\Phi}\right)$-function. Since each of vertices $o$ and $z_{j}$, where $1 \leq j \leq l$, is adjacent to three leaves, we have $f(o)=f\left(z_{j}\right)=$ 2. Since all vertices $v_{i}^{1}, v_{i}^{2}, v_{i}^{3}$, where $1 \leq i \leq k$, are only adjacent to vertices $u_{i}^{1}, u_{i}^{2}$, we find that $\sum_{s=1}^{2} f\left(u_{i}^{s}\right)+\sum_{s=1}^{3} f\left(v_{i}^{s}\right) \geq 2$. So, $\gamma_{R}\left(G_{\Phi}\right)=w(f) \geq 2(k+l+1)$.

Let $V_{2}=\left\{o, z_{j}, u_{i}^{1} \mid 1 \leq i \leq k, 1 \leq j \leq l\right\}$. Clearly, $f=\left(V\left(G_{\Phi}\right)-\right.$ $\left.V_{2}, \emptyset, V_{2}\right)$ is a RDF on $G_{\Phi}$ with $w(f)=2(k+l+1)$. So, $\gamma_{R}\left(G_{\Phi}\right) \leq$ $2(k+l+1)$. This completes the proof.

Lemma 3.3. The Boolean formula $\Phi$ is satisfiable if and only if $G_{\Phi} \in$ $\mathcal{F}_{R 22 c}$.

Proof. Assume that $\Phi$ is satisfiable. Let $T$ be an assignment of truth values for the variables of $\mathcal{X}$ for which $\Phi$ evaluates to true. We construct a set $S$ on the vertex set of $G_{\Phi}$ as follows. Initialize $S$ to be $\left\{o, z_{j}\right.$ : $1 \leq j \leq l\}$. If $T$ assigns the value true (respectively, the value false) to $x_{i}$, then we add the vertex $u_{i}^{2}$ (respectively, the vertex $u_{i}^{1}$ ) to $S$. It is easy to see that $S$ is a connected DS on $G_{\Phi}$ with $|S|=k+l+1$. So, $\gamma_{c}\left(G_{\Phi}\right) \leq k+l+1$. By Lemma 3.1 we have $\gamma\left(G_{\Phi}\right)=k+l+1$. By the fact $\gamma(G) \leq \gamma_{c}(G)$ for any graph $G$, it obtains that $\gamma_{c}\left(G_{\Phi}\right)=k+l+1$. By Lemma 3.2 we have $\gamma_{R}\left(G_{\Phi}\right)=2(k+l+1)$. So, $\gamma_{R}\left(G_{\Phi}\right)=2 \gamma_{c}\left(G_{\Phi}\right)=$ $2 \gamma\left(G_{\Phi}\right)$, that is, $G_{\Phi} \in \mathcal{F}_{R 22 c}$.

Let $G_{\Phi} \in \mathcal{F}_{R 22 c}$. By Lemma 3.1 we have $\gamma\left(G_{\Phi}\right)=k+l+1$. Let $S$ be a connected DS on $G_{\Phi}$. So, $|S|=k+l+1$. Clearly, both $o$ and $z_{j}$, where $1 \leq j \leq l$, belong to $S$. Since $S$ is a connected dominating set and o belongs to $S$, at least one of vertices $u_{i}^{1}$ and $u_{i}^{2}$ belongs to $S$ for each $1 \leq i \leq k$. If both $u_{i}^{1}, u_{i}^{2} \in S$ for some $1 \leq i \leq k$, then $|S|>k+l+1$, a contradiction. So, either both $u_{i}^{1} \in S$ and $u_{i}^{2} \notin S$ or both $u_{i}^{1} \notin S$ and $u_{i}^{2} \in S$ for each $1 \leq i \leq k$.

We fix indices $i$ and $j$, where $1 \leq i \leq k$ and $1 \leq j \leq l$. Recall that either both $u_{i}^{1} \in S$ and $u_{i}^{2} \notin S$ or both $u_{i}^{1} \notin S$ and $u_{i}^{2} \in S$. If $u_{i}^{1} \notin S$ and $u_{i}^{2} \in S$ (respectively, $u_{i}^{1} \in S$ and $u_{i}^{2} \notin S$ ), then we assign the value true (respectively, the value false) to the variable $x_{i}$. We claim that $\Phi$ is satisfiable for this assignment.

Assume without loss of generality that $c_{j}=\left\{x_{1}, \neg x_{2}, x_{6}\right\}$. Since $z_{j} \in S$, we have $u_{1}^{2} \in S, u_{2}^{1} \in S$ or $u_{6}^{2} \in S$. Assume without loss of generality that $u_{1}^{2} \in S$. So, $x_{1}$ has the value true. It causes to satisfy the clause $c_{j}$, that is, the Boolean formula $\Phi$ is satisfiable. This completes the proof.

We can compute $G_{\Phi}$ in polynomial time. By Lemma 3.3 and the fact that $G_{\Phi}$ is a chordal graph we have the following result.

Theorem 3.4. R2CD Problem is NP-hard even when restricted to chordal graphs.

By Corollary 2.1 and Theorem 3.4 we have the following.
Corollary 3.5. $R G$ Problem is NP-hard even when restricted to chordal graphs.

## 4. Computing Roman domination number of unicyclic GRAPHS

In this section, we give a linear algorithm that computes the Roman domination number of unicyclic graphs. Recall that a connected unicyclic graph is a connected graph with an unique cycle. Let $G=(V, E)$ be a graph with $u \in V$ and let $a \in\{0,1,2\}$. We define the following.

$$
\text { - } \gamma_{R}(G, u=a)=\min \{w(f) \mid f \text { is a RDF on } G \text { with } f(u)=a\} .
$$

A $\gamma_{R}(G, u=a)$-function is a $\operatorname{RDF} f$ on $G$ with $w(f)=\gamma_{R}(G, u=a)$ and $f(u)=a$.

Lemma 4.1. Let $H_{1}=\left(V_{1}, E_{1}\right)$ and $H_{2}=\left(V_{2}, E_{2}\right)$ be two graphs with $V_{1} \cap V_{2}=\emptyset$ such that $u \in V_{1}, v \in V_{2}$ and a vertex $w \notin V_{1} \cup V_{2}$. Let $G=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup\{u v\}\right)$. Then, we have the following.
(i) $\gamma_{R}(G, u=0)=\min \left\{\gamma_{R}\left(H_{1}, u=0\right)+\gamma_{R}\left(H_{2}, v=0\right), \gamma_{R}\left(H_{1}, u=\right.\right.$ $\left.0)+\gamma_{R}\left(H_{2}, v=1\right), \gamma_{R}\left(H_{1}-u\right)+\gamma_{R}\left(H_{2}, v=2\right)\right\}$,
(ii) $\gamma_{R}(G, u=1)=\min \left\{\gamma_{R}\left(H_{1}, u=1\right)+\gamma_{R}\left(H_{2}, v=0\right), \gamma_{R}\left(H_{1}, u=\right.\right.$ 1) $\left.+\gamma_{R}\left(H_{2}, v=1\right), \gamma_{R}\left(H_{1}, u=1\right)+\gamma_{R}\left(H_{2}, v=2\right)\right\}$,
(iii) $\gamma_{R}(G, u=2)=\min \left\{\gamma_{R}\left(H_{1}, u=2\right)+\gamma_{R}\left(H_{2}-v\right), \gamma_{R}\left(H_{1}, u=\right.\right.$ 2) $\left.+\gamma_{R}\left(H_{2}, v=1\right), \gamma_{R}\left(H_{1}, u=2\right)+\gamma_{R}\left(H_{2}, v=2\right)\right\}$,
(iv) $\gamma_{R}(G-u)=\gamma_{R}\left(H_{1}-u\right)+\min \left\{\gamma_{R}\left(H_{2}, v=0\right), \gamma_{R}\left(H_{2}, v=\right.\right.$ 1), $\left.\gamma_{R}\left(H_{2}, v=2\right)\right\}$.

Proof. Let $f$ be a $\gamma_{R}(G)$-function. Clearly, $f(u)=a$, where $a \in$ $\{0,1,2\}$ if and only if both $f(u)=a$ and $f(v)=0$, both $f(u)=a$ and $f(v)=1$ or both $f(u)=a$ and $f(v)=2$. Let $f_{1}, f_{2}, f_{1}^{u}$ and $f_{2}^{v}$ be restrictions of $f$ to $H_{1}, H_{2}, H_{1}-u$ and $H_{2}-v$, respectively. Let $g_{1}^{a}, g_{2}^{a}, g_{1}^{u}$ and $g_{2}^{v}$ be a $\gamma_{R}\left(H_{1}, u=a\right)$-function, $\gamma_{R}\left(H_{2}, v=a\right)$ function, $\gamma_{R}\left(H_{1}-u\right)$-function and $\gamma_{R}\left(H_{2}-v\right)$-function, respectively, where $a \in\{0,1,2\}$ and let $g_{u}(u)=g_{v}(v)=0$.

Let $f(u)=0$ and $\gamma_{R}=\min \left\{\gamma_{R}\left(H_{1}, u=0\right)+\gamma_{R}\left(H_{2}, v=0\right), \gamma_{R}\left(H_{1}, u=\right.\right.$ $\left.0)+\gamma_{R}\left(H_{2}, v=1\right), \gamma_{R}\left(H_{1}-u\right)+\gamma_{R}\left(H_{2}, v=2\right)\right\}$. So, $f_{1}$ is a RDF on $H_{1}$ with $f_{1}(u)=0$ and $f_{2}$ is a RDF on $H_{2}$ with $f_{2}(v)=0$, function $f_{1}$ is a RDF on $H_{1}$ with $f_{1}(u)=0$ and $f_{2}$ is a RDF on $H_{2}$ with $f_{2}(v)=1$, or $f_{1}^{u}$ is a RDF on $H_{1}-u$ and $f_{2}$ is a RDF on $H_{2}$ with $f_{2}(v)=2$. Hence, $\gamma_{R} \leq \gamma_{R}(G, u=0)$. Function $g_{1}=g_{1}^{0} \cup g_{2}^{0}$ is a RDF on $G$ with $g_{1}(u)=0$, function $g_{2}=g_{1}^{0} \cup g_{2}^{1}$ is a RDF on $G$ with $g_{2}(u)=0$ and $g_{3}=g_{1}^{u} \cup g_{2}^{2} \cup g_{u}$ is a RDF on $G$ with $g_{3}(u)=0$. Hence, $\gamma_{R}(G, u=0) \leq \gamma_{R}$. This completes the proof of part (i).

Let $f(u)=1$ and $\gamma_{R}=\min \left\{\gamma_{R}\left(H_{1}, u=1\right)+\gamma_{R}\left(H_{2}, v=0\right)\right.$, $\left.\gamma_{R}\left(H_{1}, u=1\right)+\gamma_{R}\left(H_{2}, v=1\right), \gamma_{R}\left(H_{1}, u=1\right)+\gamma_{R}\left(H_{2}, v=2\right)\right\}$. So, $f_{1}$ is a $\operatorname{RDF}$ on $H_{1}$ with $f_{1}(u)=1$ and $f_{2}$ is a $\operatorname{RDF}$ on $H_{2}$ with $f_{2}(v)=0$, function $f_{1}$ is a RDF on $H_{1}$ with $f_{1}(u)=1$ and $f_{2}$ is a RDF on $H_{2}$ with $f_{2}(v)=1$ or $f_{1}$ is a RDF on $H_{1}$ with $f_{1}(u)=1$ and $f_{2}$ is a RDF on $H_{2}$ with $f_{2}(v)=2$. Hence, $\gamma_{R} \leq \gamma_{R}(G, u=1)$. Function $g_{1}=g_{1}^{1} \cup g_{2}^{0}$ is a RDF on $G$ with $g_{1}(u)=1$, function $g_{2}=g_{1}^{1} \cup g_{2}^{1}$ is a RDF on $G$ with $g_{2}(u)=1$ and $g_{3}=g_{1}^{1} \cup g_{2}^{2}$ is a $\operatorname{RDF}$ on $G$ with $g_{3}(u)=1$. Hence, $\gamma_{R}(G, u=1) \leq \gamma_{R}$. This completes the proof of part (ii).

Let $f(u)=2$ and $\gamma_{R}=\min \left\{\gamma_{R}\left(H_{1}, u=2\right)+\gamma_{R}\left(H_{2}-v\right), \gamma_{R}\left(H_{1}, u=\right.\right.$ $\left.2)+\gamma_{R}\left(H_{2}, v=1\right), \gamma_{R}\left(H_{1}, u=2\right)+\gamma_{R}\left(H_{2}, v=2\right)\right\}$. So, $f_{1}$ is a RDF on $H_{1}$ with $f_{1}(u)=2$ and $f_{2}^{v}$ is a RDF on $H_{2}-v$, function $f_{1}$ is a RDF on $H_{1}$ with $f_{1}(u)=2$ and $f_{2}$ is a RDF on $H_{2}$ with $f_{2}(v)=1$ or $f_{1}$ is a RDF on $H_{1}$ with $f_{1}(u)=2$ and $f_{2}$ is a RDF on $H_{2}$ with $f_{2}(v)=2$. Hence, $\gamma_{R} \leq \gamma_{R}(G, u=2)$. Function $g_{1}=g_{1}^{2} \cup g_{2}^{v} \cup g_{v}$ is a RDF on $G$ with $g_{1}(u)=2$, function $g_{2}=g_{1}^{2} \cup g_{2}^{1}$ a RDF on $G$ with $g_{2}(u)=2$ and $g_{3}=g_{1}^{2} \cup g_{2}^{2}$ is a RDF on $G$ with $g_{3}(u)=2$. Hence, $\gamma_{R}(G, u=2) \leq \gamma_{R}$. This completes the proof of part (iii).

Since $G-u=\left(H_{1}-u\right) \cup H_{2}$ and graphs $H_{1}-u$ and $H_{2}$ are disjoint, $\gamma_{R}(G-u)=\gamma_{R}\left(H_{1}-u\right)+\gamma_{R}\left(H_{2}\right)=\gamma_{R}\left(H_{1}-u\right)+\min \left\{\gamma_{R}\left(H_{2}, v=\right.\right.$ $\left.0), \gamma_{R}\left(H_{2}, v=2\right), \gamma_{R}\left(H_{2}, v=3\right)\right\}$. This completes the proof of part (iv).

We say that a rooted tree $T$ with the vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ has the Property 1 , if $j<i$, where $v_{j} \in V$ is the parent of $v_{i} \in V$.

Lemma 4.2. Let $T$ be a tree with $u \in V$. Algorithm 4.1 computes values $\gamma_{R}(T-u)$ and $\gamma_{R}(T, u=a)$ for each $a \in\{0,1,2\}$ in linear time.

Proof. We can compute a rooted tree $T_{u}$ with the root $u$ and Property 1 for $T$ in linear time. Clearly, $\gamma_{R}(T-u)=\gamma_{R}\left(T_{u}-u\right)$ and $\gamma_{R}(T, u=a)=$ $\gamma_{R}\left(T_{u}, u=a\right)$ for each $a \in\{0,1,2\}$. By Lemma 4.1, Algorithm RD $\left(T_{u}\right)$ returns $\left(\gamma_{R}\left(T_{u}, u=0\right), \gamma_{R}\left(T_{u}, u=1\right), \gamma_{R}\left(T_{u}, u=2\right), \gamma_{R}\left(T_{u}-u\right)\right)$. The running time of each iteration of for loops of Algorithm $\mathbf{R D}\left(T_{u}\right)$ is $\mathcal{O}(1)$, that is, the running time of Algorithm 4.1 is linear.

Let $a, b \in\{0,1,2\}$, let $G=(V, E)$ be a graph with $u, v \in V$ and a vertex $w \notin V$. We define the following.

- $\gamma_{R}(G, u=a, v=b)=\min \{w(f) \mid f$ is a RDF on $G$ with $f(u)=a$ and $f(v)=b\}$,
- $\gamma_{R}(G, u, w, v=a)=\min \{w(f) \mid f$ is a $\operatorname{RDF}$ on $G+u w$ with $f(u)=0, f(w)=2$ and $f(v)=b\}$.

```
Algorithm 4.1: RD \((T)\)
    Input: A connected rooted tree \(T=(V, E)\) with
                \(V=\left\{v_{1}, \ldots, v_{n}\right\}\), Property 1 and a vertex \(w \notin V\).
    Output: \(\quad\left(\gamma_{R}\left(T, v_{1}=0\right), \gamma_{R}\left(T, v_{1}=1\right), \gamma_{R}\left(T, v_{1}=2\right), \gamma_{R}\left(T-v_{1}\right)\right)\).
    for \(i=1\) to \(n\) do
        \(\gamma_{R}\left(v_{i}=0\right)=\infty ;\)
        \(\gamma_{R}\left(v_{i}=1\right)=1 ;\)
        \(\gamma_{R}\left(v_{i}=2\right)=2 ;\)
        \(\gamma_{R}\left(v_{i}\right)=0 ;\)
    for \(i=n\) to 2 do
        Let \(v_{j}\) be the parent of \(v_{i}\);
        \(\gamma_{R}\left(v_{j}=0\right)=\min \left\{\gamma_{R}\left(v_{j}=0\right)+\gamma_{R}\left(v_{i}=0\right), \gamma_{R}\left(v_{j}=\right.\right.\)
            \(\left.0)+\gamma_{R}\left(v_{i}=1\right), \gamma_{R}\left(v_{j}\right)+\gamma_{R}\left(v_{i}=2\right)\right\}\);
        \(\gamma_{R}\left(v_{j}=1\right)=\gamma_{R}\left(v_{j}=1\right)+\min \left\{\gamma_{R}\left(v_{i}=0\right), \gamma_{R}\left(v_{i}=1\right), \gamma_{R}\left(v_{i}=\right.\right.\)
            2) \(\}\);
        \(\gamma_{R}\left(v_{j}=2\right)=\gamma_{R}\left(v_{j}=2\right)+\min \left\{\gamma_{R}\left(v_{i}\right), \gamma_{R}\left(v_{i}=1\right), \gamma_{R}\left(v_{i}=2\right)\right\}\);
        \(\gamma_{R}\left(v_{j}\right)=\gamma_{R}\left(v_{j}\right)+\min \left\{\gamma_{R}\left(v_{i}=0\right)+\gamma_{R}\left(v_{i}=1\right)+\gamma_{R}\left(v_{i}=2\right)\right\} ;\)
    return \(\left(\gamma_{R}\left(v_{1}=0\right), \gamma_{R}\left(v_{1}=1\right), \gamma_{R}\left(v_{1}=2\right), \gamma_{R}\left(v_{1}\right)\right)\);
```

Let $U$ be a connected unicyclic graph with the unique cycle $C=$ $v_{0}, \ldots, v_{k-1}, v_{0}$, where $k \geq 3$. Let $T\left(v_{0}, R\right)=U-v_{0} v_{1}$. Clearly, $T\left(v_{0}, R\right)$ is a tree with the vertex set $V(U)$.

Lemma 4.3. Let $U$ be a connected unicyclic graph with the unique cycle $v_{0}, \ldots, v_{k-1}, v_{0}(k>2)$. Then, $\gamma_{R}(U)=\min \left\{\gamma_{R}\left(T\left(v_{0}, R\right), v_{0}=\right.\right.$ $\left.\left.a, v_{1}=b\right), \gamma_{R}\left(T\left(v_{0}, R\right)-v_{0}, v_{1}=2\right), \gamma_{R}\left(T\left(v_{0}, R\right)-v_{1}, v_{0}=2\right)\right\}$, where $(a, b) \in\{0,1,2\} \times\{0,1,2\}-\{(0,2),(2,0)\}$.

Proof. Let $(a, b) \in\{0,1,2\} \times\{0,1,2\} \backslash\{(0,2),(2,0)\}$. Assume that $\gamma=$ $\min \left\{\gamma_{R}\left(T\left(v_{0}, R\right), v_{0}=a, v_{1}=b\right), \gamma_{R}\left(T\left(v_{0}, R\right)-v_{0}, v_{1}=2\right), \gamma_{R}\left(T\left(v_{0}, R\right)-\right.\right.$ $\left.\left.v_{1}, v_{0}=2\right)\right\}$.

Let $f$ be a RDF on $T\left(v_{0}, R\right)$ with $w(f)=\gamma_{R}\left(T\left(v_{0}, R\right), v_{0}=a, v_{1}=\right.$ $b$ ) and $\left(f\left(v_{0}\right), f\left(v_{1}\right)\right)=(a, b)$. Function $f$ is a RDF on $U$ and so $\gamma_{R}(U) \leq \gamma_{R}\left(T\left(v_{0}, R\right), v_{0}=a, v_{1}=b\right)$, where $(a, b) \in\{0,1,2\} \times$ $\{0,1,2\} \backslash\{(0,2),(2,0)\}$.

Let $f$ be a RDF on $T\left(v_{0}, R\right)-v_{0}$ with $f\left(v_{1}\right)=2$ and $w(f)=$ $\gamma_{R}\left(T\left(v_{0}, R\right)-v_{0}, v_{1}=2\right)$ and let $g\left(v_{0}\right)=0$. Function $f \cup g$ is a RDF on $U$ and so $\gamma_{R}(U) \leq \gamma_{R}\left(T\left(v_{0}, R\right)-v_{0}, v_{1}=2\right)$. Similarly, $\gamma_{R}(U) \leq \gamma_{R}\left(T\left(v_{0}, R\right)-v_{1}, v_{0}=2\right)$. So, $\gamma_{R}(U) \leq \gamma$.

Let $f$ be a $\gamma_{R}(U)$-function. We have $\left(f\left(v_{0}\right), f\left(v_{1}\right)\right) \in\{0,1,2\} \times$ $\{0,1,2\} \backslash\{(0,2),(2,0)\}$ or $\left(f\left(v_{0}\right), f\left(v_{1}\right)\right) \in\{(0,2),(2,0)\}$. In the following we consider these cases.

- Let $\left(f\left(v_{0}\right), f\left(v_{1}\right)\right)=(a, b)$, where $(a, b) \in\{0,1,2\} \times\{0,1,2\} \backslash$ $\{(0,2),(2,0)\}$. Function $f$ is a RDF on $T\left(v_{0}, R\right)$ with $f\left(v_{0}\right)=a$ and $f\left(v_{1}\right)=b$ and so $\gamma_{R}\left(T\left(v_{0}, R\right), v_{0}=a, v_{1}=b\right) \leq \gamma_{R}(U)$.
- Let $\left(f\left(v_{0}\right), f\left(v_{1}\right)\right)=(2,0)$. The restriction of $f$ to $V(U) \backslash\left\{v_{1}\right\}$ is a RDF on $U-v_{1}=T\left(v_{0}, R\right)-v_{1}$ with $f\left(v_{0}\right)=2$ and so $\gamma_{R}\left(T\left(v_{0}, R\right)-v_{1}, v_{0}=2\right) \leq \gamma_{R}(U)$.
- Similar to the previous case, if $\left(f\left(v_{0}\right), f\left(v_{1}\right)\right)=(0,2)$, then $\gamma_{R}\left(T\left(v_{0}, R\right)-v_{0}, v_{1}=2\right) \leq \gamma_{R}(U)$. So, $\gamma \leq \gamma_{R}(U)$.
This completes the proof.
By Lemma 4.3 for computing the Roman domination number of a given unicyclic graph we need to compute the value $\gamma_{R}(T, u=a, v=b)$, where $T$ is a tree with $u, v \in V(T)$ and $(a, b) \in\{0,1,2\} \times\{0,1,2\} \backslash$ $\{(0,2),(2,0)\}$. We claim that Algorithms 4.2, 4.3 and 4.4 compute these values.

Lemma 4.4. Let $T$ be a rooted tree with the root $u, v \in V(T)$ and a vertex $w \notin V(T)$ and let $\left(\gamma_{00}, \gamma_{00}^{\prime}, \gamma_{01}, \gamma_{02}\right)$ be the output of Algorithm RD0 $(T, u, v)$. Then,

- $\gamma_{00}=\gamma_{R}(T, u=0, v=0)$,
- $\gamma_{00}^{\prime}=\gamma_{R}(T, u, w, v=0)$,
- $\gamma_{01}=\gamma_{R}(T, u=1, v=0)$,
- $\gamma_{02}=\gamma_{R}(T, u=2, v=0)$.

Proof. Let $P(T, v, u)=w_{0}(=v), \ldots, w_{k}(=u)(k>0)$ be the shortest path between $v$ and $u$ in $T$. The proof is by induction on $k=$ $|P(T, v, u)|$. Let $k=1$. So, $u$ is the parent of $v$. Let $T^{\prime}=T_{u}-T_{v}$. So,

- $\gamma_{R}(T, u=0, v=0)=\gamma_{R}\left(T_{v}, v=0\right)+\gamma_{R}\left(T^{\prime}, u=0\right)$,
- $\gamma_{R}(T, u, w, v=0)=\gamma_{R}\left(T_{v}, v=0\right)+\gamma_{R}\left(T^{\prime}-u\right)+2$,
- $\gamma_{R}(T, u=1, v=0)=\gamma_{R}\left(T_{v}, v=0\right)+\gamma_{R}\left(T^{\prime}, u=1\right)$,
- $\gamma_{R}(T, u=2, v=0)=\gamma_{R}\left(T_{v}-v\right)+\gamma_{R}\left(T^{\prime}, u=2\right)$.

Since $k=1$, the for loop of $\operatorname{Algorithm~} \operatorname{RD0}(T, u, v)$ does not execute. This proves the base case of the induction. Assume that the result is true for any rooted tree $T^{\prime}$ with the root $u, v \in V\left(T^{\prime}\right)$, a vertex $w \notin V(T)$ and $\left|P\left(T^{\prime}, v, u\right)\right| \leq m$, where $m \geq 1$. Let $T$ be a rooted tree with the root $u, v \in V(T)$, a vertex $w \notin V(T)$ and $P(T, v, u)=w_{0}(=v), \ldots, w_{m}, w_{m+1}(=u)$. Let $\left(\gamma_{0}^{i}, \gamma_{1}^{i}, \gamma_{2}^{i}, \gamma_{3}^{i}\right)$ be values of variables $\left(\gamma_{00}, \gamma_{00}^{\prime}, \gamma_{01}, \gamma_{02}\right)$ of $\operatorname{Algorithm} \operatorname{RD0}(T, u, v)$, respectively, after the iteration of the for loop for each $2 \leq i \leq m+1$. Let $T_{w_{m}}$

```
Algorithm 4.2: RD0 \((T, u, v)\)
    Input: A connected rooted tree \(T\) with the root \(u, v \in V(T)\) and
                a vertex \(w \notin V(T)\).
    Output: \(\left(\gamma_{R}(T, u=0, v=0), \gamma_{R}(T, u, w, v=0), \gamma_{R}(T, u=1, v=\right.\)
                    \(\left.0), \gamma_{R}(T, u=2, v=0)\right)\).
1 Let \(P(T, v, u)=w_{0}(=v), \ldots, w_{k}(=u)(k>0)\) be the shortest
    path between \(u\) and \(v\) in \(T\).
    \(T^{\prime}=T_{w_{1}}-T_{w_{0}} ;\)
    \(\gamma_{00}=\gamma_{R}\left(T_{w_{0}}, w_{0}=0\right)+\gamma_{R}\left(T^{\prime}, w_{1}=0\right) ;\)
    \(\gamma_{00}^{\prime}=\gamma_{R}\left(T_{w_{0}}, w_{0}=0\right)+\gamma_{R}\left(T^{\prime}-w_{1}\right)+2 ;\)
    \(\gamma_{01}=\gamma_{R}\left(T_{w_{0}}, w_{0}=0\right)+\gamma_{R}\left(T^{\prime}, w_{1}=1\right) ;\)
    \(\gamma_{02}=\gamma_{R}\left(T_{w_{0}}-w_{0}\right)+\gamma_{R}\left(T^{\prime}, w_{1}=2\right) ;\)
    for \(i=2\) to \(k\) do
        \(T^{\prime}=T_{w_{i}}-T_{w_{i-1}} ;\)
        \(\alpha_{0}=\min \left\{\gamma_{R}\left(T^{\prime}, w_{i}=0\right)+\gamma_{00}, \gamma_{R}\left(T^{\prime}, w_{i}=\right.\right.\)
            \(\left.0)+\gamma_{01}, \gamma_{R}\left(T^{\prime}-w_{i}\right)+\gamma_{02}\right\}\);
        \(\alpha_{1}=\gamma_{R}\left(T^{\prime}-w_{i}\right)+\min \left\{\gamma_{00}, \gamma_{01}, \gamma_{02}\right\}+2\);
        \(\alpha_{2}=\gamma_{R}\left(T^{\prime}, w_{i}=1\right)+\min \left\{\gamma_{00}, \gamma_{01}, \gamma_{02}\right\} ;\)
        \(\gamma_{02}=\gamma_{R}\left(T^{\prime}, w_{i}=2\right)+\min \left\{\gamma_{00}^{\prime}-2, \gamma_{01}, \gamma_{02}\right\} ;\)
        \(\gamma_{00}=\alpha_{0} ;\)
        \(\gamma_{00}^{\prime}=\alpha_{1} ;\)
        \(\gamma_{01}=\alpha_{2}\);
    return \(\left(\gamma_{00}, \gamma_{00}^{\prime}, \gamma_{01}, \gamma_{02}\right)\);
```

be the rooted subtree of $T$ with the root $w_{m}$. Let ( $\alpha_{00}, \alpha_{00}^{\prime}, \alpha_{01}, \alpha_{02}$ ) and $\left(\beta_{00}, \beta_{00}^{\prime}, \beta_{01}, \beta_{02}\right)$ be outputs of Algorithms $\mathbf{R D 0}(T, u, v)$ and $\mathbf{R D 0}\left(T_{w_{m}}, w_{m}, v\right)$, respectively. Clearly, $\left(\alpha_{00}, \alpha_{00}^{\prime \prime}, \alpha_{01}, \alpha_{02}\right)=$ $\left(\gamma_{0}^{m+1}, \gamma_{1}^{m+1}, \gamma_{2}^{m+1}, \gamma_{3}^{m+1}\right)$ and $\left(\beta_{00}, \beta_{00}^{\prime}, \beta_{01}, \beta_{02}\right)=\left(\gamma_{0}^{m}, \gamma_{1}^{m}, \gamma_{2}^{m}, \gamma_{3}^{m}\right)$. By the induction hypothesis, we have $\left(\beta_{00}, \beta_{00}^{\prime}, \beta_{00}^{\prime \prime}, \beta_{02}, \beta_{03}\right)=\left(\gamma_{R}\left(T_{w_{m}}\right.\right.$, $\left.w_{m}=0, v=0\right), \gamma_{R}\left(T_{w_{m}}, w_{m}, w, v=0\right), \gamma_{R}\left(T_{w_{m}}, w_{m}=1, v=0\right), \gamma_{R}\left(T_{w_{m}}\right.$, $\left.w_{m}=2, v=0\right)$ ).
Let $T^{\prime}=T-T_{w_{m}}$. Since $u$ is the parent of $w_{m}(\neq v)$ (i.e., $u$ is adjacent to $w_{m}$ ) in $T$, we have

- $\gamma_{R}(T, u=0, v=0)=\min \left\{\gamma_{R}\left(T^{\prime}, u=0\right)+\beta_{00}, \gamma_{R}\left(T^{\prime}, u=\right.\right.$ $\left.0)+\beta_{01}, \gamma_{R}\left(T^{\prime}-u\right)+\beta_{02}\right\}$
- $\gamma_{R}(T, u, w, v=0)=\min \left\{\gamma_{R}\left(T^{\prime}-u\right)+\beta_{00}+2, \gamma_{R}\left(T^{\prime}-u\right)+\beta_{01}+\right.$ $\left.2, \gamma_{R}\left(T^{\prime}-u\right)+\beta_{02}+2\right\}$
- $\gamma_{R}(T, u=1, v=0)=\min \left\{\gamma_{R}\left(T^{\prime}, u=1\right)+\beta_{00}, \gamma_{R}\left(T^{\prime}, u=\right.\right.$ $\left.1)+\beta_{01}, \gamma_{R}\left(T^{\prime}, u=1\right)+\beta_{02}\right\}$

```
Algorithm 4.3: RD1( \(T, u, v\) )
    Input: A connected rooted tree \(T\) with the root \(u, v \in V(T)\) and
                a vertex \(w \notin V(T)\).
    Output: \(\left(\gamma_{R}(T, u=0, v=1), \gamma_{R}(T, u, w, v=1), \gamma_{R}(T, u=1, v=\right.\)
\[
\text { 1), } \left.\gamma_{R}(T, u=2, v=1)\right) \text {. }
\]
1 Let \(P(T, v, u)=w_{0}(=v), \ldots, w_{k}(=u)(k>0)\) be the shortest
path between \(u\) and \(v\) in \(T\).
\(T^{\prime}=T_{w_{1}}-T_{w_{0}} ;\)
\(\gamma_{10}=\gamma_{R}\left(T_{w_{0}}, w_{0}=1\right)+\gamma_{R}\left(T^{\prime}, w_{1}=0\right) ;\)
\(\gamma_{10}^{\prime}=\gamma_{R}\left(T_{w_{0}}, w_{0}=1\right)+\gamma_{R}\left(T^{\prime}-w_{1}\right)+2 ;\)
\(\gamma_{11}=\gamma_{R}\left(T_{w_{0}}, w_{0}=1\right)+\gamma_{R}\left(T^{\prime}, w_{1}=1\right) ;\)
\(6 \gamma_{12}=\gamma_{R}\left(T_{w_{0}}, w_{0}=1\right)+\gamma_{R}\left(T^{\prime}, w_{1}=2\right)\);
for \(i=2\) to \(k\) do
\(T^{\prime}=T_{w_{i}}-T_{w_{i-1}} ;\) \(\alpha_{0}=\min \left\{\gamma_{R}\left(T^{\prime}, w_{i}=0\right)+\gamma_{10}, \gamma_{R}\left(T^{\prime}, w_{i}=\right.\right.\)
\(\left.0)+\gamma_{11}, \gamma_{R}\left(T^{\prime}-w_{i}\right)+\gamma_{12}\right\}\);
\(\alpha_{1}=\gamma_{R}\left(T^{\prime}-w_{i}\right)+\min \left\{\gamma_{10}, \gamma_{11}, \gamma_{12}\right\}+2\);
\(\alpha_{2}=\gamma_{R}\left(T^{\prime}, w_{i}=1\right)+\min \left\{\gamma_{10}, \gamma_{11}, \gamma_{12}\right\} ;\)
\(\gamma_{12}=\gamma_{R}\left(T^{\prime}, w_{i}=2\right)+\min \left\{\gamma_{10}^{\prime}-2, \gamma_{11}, \gamma_{12}\right\} ;\)
\(\gamma_{10}=\alpha_{0}\);
\(\gamma_{10}^{\prime}=\alpha_{1} ;\)
\(\gamma_{11}=\alpha_{2} ;\)
return \(\left(\gamma_{10}, \gamma_{10}^{\prime}, \gamma_{11}, \gamma_{12}\right)\);
```

- $\gamma_{R}(T, u=2, v=0)=\min \left\{\gamma_{R}\left(T^{\prime}, u=2\right)+\beta_{00}^{\prime}-2, \gamma_{R}\left(T^{\prime}, u=\right.\right.$ $\left.2)+\beta_{01}, \gamma_{R}\left(T^{\prime}, u=2\right)+\beta_{02}\right\}$.
This completes the proof.
Similar to Lemma 4.4 we have the following results.
Lemma 4.5. Let $T$ be a rooted tree with the root $u, v \in V(T)$ and a vertex $w \notin V(T)$ and let $\left(\gamma_{10}, \gamma_{10}^{\prime}, \gamma_{11}, \gamma_{12}\right)$ be the output of Algorithm $\operatorname{RD1}(T, u, v)$. Then,
- $\gamma_{10}=\gamma_{R}(T, u=0, v=1)$,
- $\gamma_{10}^{\prime}=\gamma_{R}(T, u, w, v=1)$,
- $\gamma_{11}=\gamma_{R}(T, u=1, v=1)$,
- $\gamma_{12}=\gamma_{R}(T, u=2, v=1)$.

Lemma 4.6. Let $T$ be a rooted tree with the root $u, v \in V(T)$ and a vertex $w \notin V(T)$ and let $\left(\gamma_{20}, \gamma_{20}^{\prime}, \gamma_{21}, \gamma_{22}\right)$ be the output of Algorithm RD2 $(T, u, v)$. Then,

```
Algorithm 4.4: RD2( \(T, u, v\) )
    Input: A connected rooted tree \(T\) with the root \(u, v \in V(T)\) and
                a vertex \(w \notin V(T)\).
    Output: \(\left(\gamma_{R}(T, u=0, v=2), \gamma_{R}(T, u, w, v=2), \gamma_{R}(T, u=1, v=\right.\)
            2), \(\left.\gamma_{R}(T, u=2, v=2)\right)\).
    Let \(P(T, v, u)=w_{0}(=v), \ldots, w_{k}(=u)(k>0)\) be the shortest
    path between \(u\) and \(v\) in \(T\).
    \(T^{\prime}=T_{w_{1}}-T_{w_{0}} ;\)
    \(\gamma_{20}=\gamma_{R}\left(T_{w_{0}}, w_{0}=2\right)+\gamma_{R}\left(T^{\prime}-w_{1}\right) ;\)
    \(\gamma_{20}^{\prime}=\gamma_{R}\left(T_{w_{0}}, w_{0}=2\right)+\gamma_{R}\left(T^{\prime}-w_{1}\right)+2\);
    \(\gamma_{21}=\gamma_{R}\left(T_{w_{0}}, w_{0}=2\right)+\gamma_{R}\left(T^{\prime}, w_{1}=1\right) ;\)
    \(\gamma_{22}=\gamma_{R}\left(T_{w_{0}}, w_{0}=2\right)+\gamma_{R}\left(T^{\prime}, w_{1}=2\right) ;\)
    for \(i=2\) to \(k\) do
        \(T^{\prime}=T_{w_{i}}-T_{w_{i-1}} ;\)
        \(\alpha_{0}=\min \left\{\gamma_{R}\left(T^{\prime}, w_{i}=0\right)+\gamma_{20}, \gamma_{R}\left(T^{\prime}, w_{i}=\right.\right.\)
            \(\left.0)+\gamma_{21}, \gamma_{R}\left(T^{\prime}-w_{i}\right)+\gamma_{22}\right\}\);
        \(\alpha_{1}=\gamma_{R}\left(T^{\prime}-w_{i}\right)+\min \left\{\gamma_{20}, \gamma_{21}, \gamma_{22}\right\}+2\);
        \(\alpha_{2}=\gamma_{R}\left(T^{\prime}, w_{i}=1\right)+\min \left\{\gamma_{20}, \gamma_{21}, \gamma_{22}\right\} ;\)
        \(\gamma_{22}=\gamma_{R}\left(T^{\prime}, w_{i}=2\right)+\min \left\{\gamma_{20}^{\prime}-2, \gamma_{21}, \gamma_{22}\right\} ;\)
        \(\gamma_{20}=\alpha_{0} ;\)
        \(\gamma_{20}^{\prime}=\alpha_{1}\);
        \(\gamma_{21}=\alpha_{2} ;\)
    return \(\left(\gamma_{20}, \gamma_{20}^{\prime}, \gamma_{21}, \gamma_{22}\right)\);
```

- $\gamma_{20}=\gamma_{R}(T, u=0, v=2)$,
- $\gamma_{20}^{\prime}=\gamma_{R}(T, u, w, v=2)$,
- $\gamma_{21}=\gamma_{R}(T, u=1, v=2)$,
- $\gamma_{22}=\gamma_{R}(T, u=2, v=2)$.

Theorem 4.7. There is a linear algorithm that computes the Roman domination number of a given unicyclic graph.
Proof. Let $U$ be a connected unicyclic graph with the unique cycle $v_{0}, \ldots, v_{k-1}, v_{0}$. By Lemma 4.3, $\gamma_{R}(U)=\min \left\{\gamma_{R}\left(T\left(v_{0}, R\right), v_{0}=a, v_{1}=\right.\right.$ $\left.b), \gamma_{R}\left(T\left(v_{0}, R\right)-v_{0}, v_{1}=2\right), \gamma_{R}\left(T\left(v_{0}, R\right)-v_{1}, v_{0}=2\right)\right\}$, where $(a, b) \in$ $\{0,1,2\} \times\{0,1,2\} \backslash\{(0,2),(2,0)\}$. It follows from Lemmas 4.2, 4.4, 4.5 and 4.6 that we can compute $\gamma_{R}(U)$ using the outputs of Algorithms 4.1, 4.2, 4.3 and 4.4.

By Lemma 4.2 the running of Algorithm 4.1 is linear. It remains to compute running times of Algorithms 4.2, 4.3 and 4.4. Let $T$ be a tree with $u, v \in V(T)$ and let $P(T, v, u)=w_{0}(=v), \ldots, w_{k}(=u)(k>0)$ be

```
Algorithm 5.1: D \((T)\)
    Input: A connected rooted tree \(T=(V, E)\) with
                \(V=\left\{v_{1}, \ldots, v_{n}\right\}\) and Property 1.
    Output: \(\quad\left(\gamma\left(T, v_{1}=0\right), \gamma\left(T, v_{1}=1\right), \gamma\left(T-v_{1}\right)\right)\).
    for \(i=1\) to \(n\) do
        \(\gamma\left(v_{i}=0\right)=\infty ;\)
        \(\gamma\left(v_{i}=1\right)=1 ;\)
        \(\gamma\left(v_{i}\right)=0 ;\)
    for \(i=n\) to 2 do
        Let \(v_{j}\) be the parent of \(v_{i}\);
        \(\gamma\left(v_{j}=0\right)=\min \left\{\gamma\left(v_{j}=0\right)+\gamma\left(v_{i}=0\right), \gamma\left(v_{j}\right)+\gamma\left(v_{i}=1\right)\right\}\);
        \(\gamma\left(v_{j}=1\right)=\gamma\left(v_{j}=1\right)+\min \left\{\gamma\left(v_{i}\right), \gamma\left(v_{i}=1\right)\right\}\);
        \(\gamma\left(v_{j}\right)=\gamma\left(v_{j}\right)+\min \left\{\gamma\left(v_{i}=0\right)+\gamma\left(v_{i}=1\right)\right\} ;\)
    return \(\left(\gamma\left(v_{1}=0\right), \gamma\left(v_{1}=1\right), \gamma\left(v_{1}\right)\right)\);
```

the shortest path between $u$ and $v$ in $T$. Clearly, we can compute the rooted tree $T_{u}$ with the root $u$ for $T$ and $P(T, v, u)$ in linear time. Let $T_{m}$ be the value of the variable $T^{\prime}$ of $\operatorname{Algorithm} \operatorname{RD0}(T, u, v)$ after the iteration of the for loop for each $2 \leq m \leq k$. Since the running time of Algorithm 4.1 is linear, the running time of lines 2-6 of Algorithm $\mathbf{R D 0}(T, u, v)$ is $\mathcal{O}\left(V\left(T_{1}\right)\right)$ and the running time of the iteration of the for loop of $\operatorname{Algorithm} \operatorname{RD0}(T, u, v)$ for $2 \leq m \leq k$ is $\mathcal{O}\left(V\left(T_{m}\right)\right)$. Clearly, $V\left(T_{i}\right) \cap V\left(T_{j}\right)=\emptyset$ for each $2 \leq i<j \leq k$. So, the running time of Algorithm $\operatorname{RD0}(T, u, v)$ is equal to $\sum_{i=2}^{k} \mathcal{O}\left(V\left(T_{m}\right)\right)=\mathcal{O}(V(T))$. Similarly, running times of Algorithms RD1( $T, u, v)$ and RD2( $T, u, v)$ are linear. This completes the proof.

## 5. Computing domination number of unicyclic graphs

In this section, we give a linear algorithm that computes the domination number of unicyclic graphs. Let $G=(V, E)$ be a graph such that $u \in V$ and let $a \in\{0,1\}$. We define the following.

- $\gamma(G, u=0)=\min \{|S|: S$ is a DS on $G$ such that $u \notin S\}$,
- $\gamma(G, u=1)=\min \{|S|: S$ is a DS on $G$ such that $u \in S\}$.

Similar to Lemma 4.1 we have the following.
Lemma 5.1. Let $H_{1}=\left(V_{1}, E_{1}\right)$ and $H_{2}=\left(V_{2}, E_{2}\right)$ be two graphs with $V_{1} \cap V_{2}=\emptyset$ such that $u \in V_{1}$ and $v \in V_{2}$. Let $G=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup\right.$ $\{u v\})$. Then, we have the following.

```
Algorithm 5.2: D0( \(T, u, v\) )
    Input: A connected rooted tree \(T\) with the root \(u, v \in V(T)\) and a vertex \(w \notin V(T)\).
Output: \(\left(\gamma(T, u=0, v=0), \gamma^{\prime}(T, u, v=0, w), \gamma(T, u=1, v=0)\right)\).
    Let \(P(T, v, u)=w_{0}(=v), \ldots, w_{k}(=u)(k>0)\) be the shortest
    path between \(u\) and \(v\) in \(T\).
    \(T^{\prime}=T_{w_{1}}-T_{w_{0}} ;\)
    \(\gamma_{00}=\gamma\left(T_{w_{0}}, w_{0}=0\right)+\gamma\left(T^{\prime}, w_{1}=0\right) ;\)
    \(\gamma_{00}^{\prime}=\gamma\left(T_{w_{0}}, w_{0}=0\right)+\gamma\left(T^{\prime}-w_{1}\right)+1 ;\)
    \(\gamma_{01}=\gamma\left(T_{w_{0}}-w_{0}\right)+\gamma\left(T^{\prime}, w_{1}=1\right) ;\)
    for \(i=2\) to \(k\) do
        \(T^{\prime}=T_{w_{i}}-T_{w_{i-1}} ;\)
        \(\alpha_{0}=\min \left\{\gamma\left(T^{\prime}, w_{i}=0\right)+\gamma_{00}, \gamma\left(T^{\prime}-w_{i}\right)+\gamma_{01}\right\} ;\)
        \(\alpha_{1}=\gamma\left(T^{\prime}-w_{i}\right)+\min \left\{\gamma_{00}, \gamma_{01}\right\}+1\);
        \(\gamma_{01}=\gamma\left(T^{\prime}, w_{i}=1\right)+\min \left\{\gamma_{00}^{\prime}-1, \gamma_{01}\right\} ;\)
        \(\gamma_{00}=\alpha_{0} ;\)
        \(\gamma_{00}^{\prime}=\alpha_{1} ;\)
    return \(\left(\gamma_{00}, \gamma_{00}^{\prime}, \gamma_{01}\right)\);
```

(i) $\gamma(G, u=0)=\min \left\{\gamma\left(H_{1}, u=0\right)+\gamma\left(H_{2}, v=0\right), \gamma\left(H_{1}-u\right)+\right.$ $\left.\gamma\left(H_{2}, v=1\right)\right\}$,
(ii) $\gamma(G, u=1)=\min \left\{\gamma\left(H_{1}, u=1\right)+\gamma\left(H_{2}-v\right), \gamma\left(H_{1}, u=1\right)+\right.$ $\left.\gamma\left(H_{2}, v=1\right)\right\}$,
(iii) $\gamma(G-u)=\gamma\left(H_{1}-u\right)+\min \left\{\gamma\left(H_{2}, v=0\right), \gamma\left(H_{2}, v=1\right)\right\}$.

Similar to Lemma 4.2, we have the following.
Lemma 5.2. Let $T$ be a tree with $u \in V$. Algorithm 5.1 computes values $\gamma(T, u=0), \gamma(T, u=1)$ and $\gamma(T-u)$ in linear time.

Let $G=(V, E)$ be a graph with $u, v \in V$ and a vertex $w \notin V$. We define the following.

- $\gamma(G, u=0, v=0)=\min \{|S|: S$ is a DS on $G$ such that $u \notin S$ and $v \notin S\}$,
- $\gamma(G, u=0, v=1)=\min \{|S|: S$ is a DS on $G$ such that $u \notin S$ and $v \in S\}$,
- $\gamma(G, u=1, v=0)=\min \{|S|: S$ is a DS on $G$ such that $u \in S$ and $v \notin S\}$,

```
Algorithm 5.3: D1( \(T, u, v\) )
    Input: A connected rooted tree \(T\) with the root \(u, v \in V(T)\) and
                a vertex \(w \notin V(T)\).
    Output: \(\left(\gamma(T, u=0, v=1), \gamma^{\prime}(T, u, v=1, w), \gamma(T, u=1, v=1)\right)\).
1 Let \(P(T, v, u)=w_{0}(=v), \ldots, w_{k}(=u)(k>0)\) be the shortest
    path between \(u\) and \(v\) in \(T\).
    \(T^{\prime}=T_{w_{1}}-T_{w_{0}} ;\)
    \(\gamma_{10}=\gamma\left(T_{w_{0}}, w_{0}=1\right)+\gamma\left(T^{\prime}-w_{1}\right) ;\)
    \(\gamma_{10}^{\prime}=\gamma\left(T_{w_{0}}, w_{0}=1\right)+\gamma\left(T^{\prime}-w_{1}\right)+1 ;\)
    \(\gamma_{11}=\gamma\left(T_{w_{0}}, w_{0}=1\right)+\gamma\left(T^{\prime}, w_{1}=1\right) ;\)
    for \(i=2\) to \(k\) do
        \(T^{\prime}=T_{w_{i}}-T_{w_{i-1}} ;\)
        \(\alpha_{0}=\min \left\{\gamma\left(T^{\prime}, w_{i}=0\right)+\gamma_{10}, \gamma\left(T^{\prime}-w_{i}\right)+\gamma_{11}\right\} ;\)
        \(\alpha_{1}=\gamma\left(T^{\prime}-w_{i}\right)+\min \left\{\gamma_{10}, \gamma_{11}\right\}+1\);
        \(\gamma_{11}=\gamma\left(T^{\prime}, w_{i}=1\right)+\min \left\{\gamma_{10}^{\prime}-1, \gamma_{11}\right\} ;\)
        \(\gamma_{10}=\alpha_{0}\);
        \(\gamma_{10}^{\prime}=\alpha_{1} ;\)
    return \(\left(\gamma_{10}, \gamma_{10}^{\prime}, \gamma_{11}\right)\);
```

- $\gamma(G, u=1, v=1)=\min \{|S|: S$ is a DS on $G$ such that $u \in S$ and $v \in S\}$,
- $\gamma(G, u, w, v=0)=\min \{|S|: S$ is a DS on $G+u w$ such that $w \in S$ and $u, v \notin S\}$,
- $\gamma(G, u, w, v=1)=\min \{|S|: S$ is a DS on $G+u w$ such that $v, w \in S$ and $u \notin S\}$.
Let $U$ be a connected unicyclic graph with the unique cycle $C=$ $v_{0}, \ldots, v_{k-1}, v_{0}$, where $k \geq 3$. Recall that $T\left(v_{0}, R\right)=U-v_{0} v_{1}$. Similar to Lemma 4.3 we have the following.

Lemma 5.3. Let $U$ be a connected unicyclic graph with the unique cycle $v_{0}, \ldots, v_{k-1}, v_{0}(k>2)$. Then, $\gamma(U)=\min \left\{\gamma\left(T\left(v_{0}, R\right), v_{0}=0, v_{1}=\right.\right.$ 0), $\gamma\left(T\left(v_{0}, R\right), v_{0}=1, v_{1}=1\right), \gamma\left(T\left(v_{0}, R\right)-v_{1}, v_{0}=1\right), \gamma\left(T\left(v_{0}, R\right)-\right.$ $\left.\left.v_{0}, v_{1}=1\right)\right\}$.

By Lemma 5.3 for computing the domination number of a given unicyclic graph we need to compute values $\gamma(T, u=0, v=0)$ and $\gamma(T, u=1, v=1)$, where $T$ is a tree with $u, v \in V(T)$. We claim that Algorithms 5.2 and 5.3 compute these values. Similar to Lemma 4.4 we have the following results.

Lemma 5.4. Let $T$ be a rooted tree with the root $u, v \in V(T)$ and $w \notin V(T)$ and let $\left(\gamma_{00}, \gamma_{00}^{\prime}, \gamma_{01}\right)$ be the output of Algorithm $\mathbf{D 0}(T, u, v)$. Then,

- $\gamma_{00}=\gamma(T, u=0, v=0)$,
- $\gamma_{00}^{\prime}=\gamma(T, u, w, v=0)$,
- $\gamma_{01}=\gamma(T, u=1, v=0)$.

Lemma 5.5. Let $T$ be a rooted tree with the root $u$, let $v \in V(T)$ and $w \notin V(T)$ and let $\left(\gamma_{10}, \gamma_{10}^{\prime}, \gamma_{11}\right)$ be the output of Algorithm $\mathbf{D} 1(T, u, v)$. Then,

- $\gamma_{10}=\gamma(T, u=0, v=1)$,
- $\gamma_{10}^{\prime}=\gamma(T, u, w, v=1)$,
- $\gamma_{11}=\gamma(T, u=1, v=1)$.

Similar to Theorem 4.7 we have the following.
Theorem 5.6. There is a linear algorithm that computes the domination number of a given unicyclic graph.

By Theorems 4.7 and 5.6 we obtain the following.
Theorem 5.7. There is a linear algorithm that decides whether a given unicyclic graph is a Roman graph.

## References

1. H. Abdollahzadeh Ahangar, M. Chellali, S. M. Sheikholeslami, On the Roman domination in graphs, Discrete Appl. Math., 232 (2017), 1-7.
2. R. A. Beeler, T. W. Haynesa and S. T. Hedetniemi, Double Roman domination, Discrete Appl. Math., 211 (2016), 23-29.
3. M. Chellali, T. W. Haynes, S. T. Hedetniemi, A. MacRae, Roman \{2\}domination, Discrete Appl. Math., 204 (2016), 22-28.
4. E. J. Cockayane, P. M. Dreyer Jr., S. M. Hedetniemi and S. T. Hedetniemi, On Roman domination in graphs, Discrete Math., 278 (2004), 11-22.
5. N. Jafari Rad and H. Rahbani, Some progress on the Roman domination in graphs, Discuss. Math. Graph Theory, 39 (2019), 41-53.
6. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, New York, 1979.
7. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, In c., New York, 1998.
8. M. A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory, 22 (2002), 325-334.
9. M. Liedloff, T. Kloks, J. Liu and S.-L. Pen, Efficient algorithms for Roman domination on some classes of graphs, Discrete Appl. Math., 156 (2008), 34003415.
10. C. S. Revelle and K. E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), 585-594.
11. I. Stewart, Defend the roman empire!, Sci. Amer., 281 (1999), 136-139.
12. J. Yue, M. Wei, M. Li and G. Liu, On the Roman domination of graphs, Appl. Math. Comput., 338 (2018), 669-675.
13. X. Zhang, Z. Li, H. Jiang and Z. Shao, Double Roman domination in trees, Inform. Process. Lett., 134 (2018), 31-34.

## Abolfazl Poureidi

Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran.
Email: a.poureidi@shahroodut.ac.ir

# Journal of Algebraic Systems 

## ALGORITHMIC ASPECTS OF ROMAN GRAPHS

## A. POUREIDI

$$
\begin{aligned}
& \text { صورتهاى الگوريتمى گرافهاى رومن } \\
& \text { ابوالفضل پورعيدى } \\
& \text { دانشكده علوم رياضى، دانشكاه صنعتى شاهرود، شاهرود، ايران }
\end{aligned}
$$

فرض كنيد $G=(V, E)$ يك گراف است. مجموعهى $S \subseteq V$ را يكى مجموعه احاطهكر $G$ میناميم
 يك مجموعه احاطةگ, $G$ است كه آنزا با

 براى G را عدد احاطهكرى رومن $G$ میناميم و آنرا با

$$
\text { رومن مىناميم اگر ( } \gamma_{R}(G)=\lceil\gamma(G)
$$

در اين مقاله ابتدا نشان مىدهيم كه مسئله تصميمگيرى در مورد اينكه يك گراف رومي رومن است يك

كلمات كليدى: مجموعه احاطهگر، تابع احاطهكر رومن، الگوريتم.

