
Journal of Algebraic Systems
Vol. 9, No 1, (2021), pp 119-135

ALGORITHMIC ASPECTS OF ROMAN GRAPHS

A. POUREIDI∗

Abstract. Let G = (V,E) be a graph. A set S ⊆ V is called a
dominating set of G if for every v ∈ V \S there is at least one vertex
u ∈ N(v) such that u ∈ S. The domination number of G, denoted
by γ(G), is equal to the minimum cardinality of a dominating set
in G. A Roman dominating function (RDF) on G is a function
f : V → {0, 1, 2} such that every vertex v ∈ V with f(v) = 0 is
adjacent to at least one vertex u with f(u) = 2. The weight of f
is the sum f(V) =

∑
v∈V f(v). The minimum weight of a RDF on

G is the Roman domination number of G, denoted by γR(G). A
graph G is a Roman Graph if γR(G) = 2γ(G).

In this paper, we first study the complexity issue of the problem
posed in [E. J. Cockayane, P. M. Dreyer Jr., S. M. Hedetniemi and
S. T. Hedetniemi, On Roman domination in graphs, Discrete Math.
278 (2004), 11–22], and show that the problem of deciding whether
a given graph is a Roman graph is NP-hard even when restricted
to chordal graphs. Then, we give linear algorithms that compute
the domination number and the Roman domination number of a
given unicyclic graph. Finally, using these algorithms we give a
linear algorithm that decides whether a given unicyclic graph is a
Roman graph.

1. Introduction

For notation and terminology not given here we refer to [7]. Let
G = (V,E) be a graph with the vertex set V and the edge set E. The
open neighborhood of a vertex v ∈ V is N(v) = {u ∈ V : uv ∈ E}. The

DOI: 10.22044/jas.2020.8188.1400.
MSC(2010): Primary: 05C85; Secondary: 05C69.
Keywords: Dominating set, Roman dominating function, 3-SAT Problem, unicyclic graph.
Received: 11 March 2019, Accepted: 16 October 2020.
∗Corresponding author.

119

120 POUREIDI

degree of v is deg(v) = |N(v)|. A vertex of degree one is referred as
a leaf. A path (respectively, cycle) graph of order n is denoted by Pn

(respectively, Cn). A graph is unicyclic if it is connected and contains
precisely one cycle.

For a graph G = (V,E), a set S ⊆ V is called a dominating set (DS)
of G if every v ∈ V \S is adjacent to at least one vertex u ∈ S. Further-
more, if S induces a connected subgraph of G, then S is a connected
dominating set (CDS) of G. The domination number (respectively,
connected domination number) of G, denoted by γ(G) (respectively,
γc(G)), is the minimum cardinality of a dominating set (respectively,
connected dominating set) of G. A DS of G of minimum cardinality is
referred as a γ(G)-set. A connected DS of G of minimum cardinality
is referred as a γc(G)-set.

A function f : V → {0, 1, 2} is a Roman dominating function (RDF)
of G if every vertex u with f(u) = 0 is adjacent to at least one vertex
v with f(v) = 2. The weight of a RDF f , denoted by w(f), is the
sum f(V) =

∑
v∈V f(v). The mathematical concept of Roman domi-

nation, defined and discussed by Stewart [11], and ReVelle and Rosing
[10], and subsequently developed by Cockayne et al. [4]. A hundred
papers published on various aspects of Roman domination in graphs,
for example [1, 2, 3, 5, 12, 13]. A γR(G)-function is a RDF f on G

with w(f) = γR(G). For a RDF f on G, we denote by Vi (or V f
i to

refer to f) the set of all the vertices of G with label i under f . Thus, a
RDF f can be represented by (V0, V1, V2), and we can use the notation
f = (V0, V1, V2). A graph G with γR(G) = 2γ(G) is called a Roman
graph. Cockayne et al. [4] posed the following problem.

Problem 1. Characterize the Roman graphs.

Henning [8] gave a constructive characterization of Roman trees.
Liedloff et. al. [9] gave algorithms for computing the Roman dom-
ination number of interval graphs and cographs. Also, they gave a
linear-time algorithm for recognizing Roman cographs.

In this paper, in Section 3 we prove that the decision problem re-
lated to Problem 1 is NP-hard even when restricted to chordal graphs.
In Section 4, we give linear algorithms that compute the domination
number and Roman domination number of a given unicyclic graph.
Finally, using these algorithms we give a linear algorithm that decides
whether a given unicyclic graph is a Roman graph.

ALGORITHMIC ASPECTS OF ROMAN GRAPHS 121

2. Preliminary

Consider the following family of graphs related to Problem 1:
• Family FR2: the family of all graphs G with γR(G) = 2γ(G).
• Family FR22c: the family of all graphs G with γR(G) = 2γ(G) =
2γc(G).

Note that FR22c is an infinite family even when restricted to chordal
graphs, since for any positive integer n, if Tn is the tree obtained from
Pn by adding three new leaves to any vertex of Pn, then it can be seen
that Tn ∈ FR22c. Also, there are chordal graphs that do not belong to
FR22c. It is clear that γ(Pn) ̸= γc(Pn) and so Pn /∈ FR22c. The following
is obvious.
Corollary 2.1. FR22c ⊆ FR2.

Thus, to prove the NP-hardness of problem of whether a given graph
belongs to FR2 we only need to prove the NP-hardness of problem of
whether a given graph belongs to FR22c. To this end, we introduce a
reduction from 3-SAT Problem. Recall that 3-SAT is the problem of
deciding whether a given Boolean formula in 3-conjunctive normal form
is satisfiable. It is well-know that 3-SAT Problem is NP-complete [6].
Let Φ = {C,X} be an instance in 3-SAT Problem, that is, Φ be Boolean
formula in 3-conjunctive normal form. Let C = {c1, c2, . . . , cl} be a set
of l ≥ 1 clauses over a set X = {x1, . . . , xk} of k ≥ 3 variables. For
each 1 ≤ j ≤ l, the clause cj (consisting of exactly three literals) is of
the form cj = {y1j, y2j, y3j}, where each of y1j, y2j and y3j is either a
variable or the negative of a variable in X .

3. NP-hardness results

Consider the following decision problems.

Roman Graph (RG) Problem:
Instance: A graph G.
Question: Is G ∈ FR2?

Roman 2Connected-Domination (R2CD) Problem:
Instance: A graph G.
Question: Is G ∈ FR22c?

Let Φ = {C,X} be an instance in 3-SAT Problem. We construct
graph GΦ corresponding to Φ as follows. For each variable xi, where
1 ≤ i ≤ k, we construct a graph Gi as a variable gadget, where Gi is
obtained from a path graph of order 2 with vertices u1

i , u
2
i such that each

122 POUREIDI

z1 z2

u11 u21

v11
v21
v31

u12 u22

v12
v22
v32

u13 u23

v13
v23
v33

o

Figure 1. Illustrating GΦ corresponding to Φ =
{{c1, c2}, {x1, x2, x3}}, where c1 = {¬x1,¬x2, x3} and
c2 = {x1,¬x2, x3}.

of vertices u1
i , u

2
i is adjacent to a new vertex vsi for each s ∈ {1, 2, 3}.

For each clause cj = {y1j, y2j, y3j}, where 1 ≤ j ≤ l, we add a new
vertex zj such that zj is adjacent to three new leaves. For s = 1, 2, 3, if
ysj = xi, for some 1 ≤ i ≤ k, then we add an edge u2

i zj and if ysj = ¬xi,
for some 1 ≤ i ≤ k, then we add an edge u1

i zj. We add a new vertex
o such that is adjacent to three new leaves and add edges ou1

i and ou2
i

for each 1 ≤ i ≤ k. Finally add all edges ab for each a ∈ {u1
i , u

2
i } and

b ∈ {u1
j , u

2
j} and for all 1 ≤ i < j ≤ k. Let GΦ be the resulting graph.

See Figure 1. It is easy to see that GΦ is a chordal graph.

Lemma 3.1. γ(GΦ) = k + l + 1.

Proof. Let S be a γ(GΦ)-set. Since each of vertices o and zj, where
1 ≤ j ≤ l, is adjacent to three leaves, both o, zj ∈ S. Since all vertices
v1i , v

2
i , v

3
i , where 1 ≤ i ≤ k, are only adjacent to vertices u1

i , u
2
i , at least

one of vertices u1
i , u

2
i belongs to S. So, γ(GΦ) = |S| ≥ k + l + 1.

Let S = {o, zj, u1
i |1 ≤ i ≤ k, 1 ≤ j ≤ l}. Clearly, S is a DS on

GΦ with |S| = k + l + 1. So, γ(GΦ) ≤ k + l + 1. This completes the
proof. □
Lemma 3.2. γR(GΦ) = 2(k + l + 1).

Proof. Let f be a γR(GΦ)-function. Since each of vertices o and zj,
where 1 ≤ j ≤ l, is adjacent to three leaves, we have f(o) = f(zj) =
2. Since all vertices v1i , v

2
i , v

3
i , where 1 ≤ i ≤ k, are only adjacent

to vertices u1
i , u

2
i , we find that

∑2
s=1 f(u

s
i) +

∑3
s=1 f(v

s
i) ≥ 2. So,

γR(GΦ) = w(f) ≥ 2(k + l + 1).

ALGORITHMIC ASPECTS OF ROMAN GRAPHS 123

Let V2 = {o, zj, u1
i |1 ≤ i ≤ k, 1 ≤ j ≤ l}. Clearly, f = (V (GΦ) −

V2, ∅, V2) is a RDF on GΦ with w(f) = 2(k + l + 1). So, γR(GΦ) ≤
2(k + l + 1). This completes the proof. □
Lemma 3.3. The Boolean formula Φ is satisfiable if and only if GΦ ∈
FR22c.
Proof. Assume that Φ is satisfiable. Let T be an assignment of truth
values for the variables of X for which Φ evaluates to true. We construct
a set S on the vertex set of GΦ as follows. Initialize S to be {o, zj :
1 ≤ j ≤ l}. If T assigns the value true (respectively, the value false) to
xi, then we add the vertex u2

i (respectively, the vertex u1
i) to S. It is

easy to see that S is a connected DS on GΦ with |S| = k + l + 1. So,
γc(GΦ) ≤ k+ l+ 1. By Lemma 3.1 we have γ(GΦ) = k+ l+ 1. By the
fact γ(G) ≤ γc(G) for any graph G, it obtains that γc(GΦ) = k+ l+1.
By Lemma 3.2 we have γR(GΦ) = 2(k+l+1). So, γR(GΦ) = 2γc(GΦ) =
2γ(GΦ), that is, GΦ ∈ FR22c.

Let GΦ ∈ FR22c. By Lemma 3.1 we have γ(GΦ) = k + l + 1. Let S
be a connected DS on GΦ. So, |S| = k + l + 1. Clearly, both o and
zj, where 1 ≤ j ≤ l, belong to S. Since S is a connected dominating
set and o belongs to S, at least one of vertices u1

i and u2
i belongs to

S for each 1 ≤ i ≤ k. If both u1
i , u

2
i ∈ S for some 1 ≤ i ≤ k, then

|S| > k + l + 1, a contradiction. So, either both u1
i ∈ S and u2

i /∈ S or
both u1

i /∈ S and u2
i ∈ S for each 1 ≤ i ≤ k.

We fix indices i and j, where 1 ≤ i ≤ k and 1 ≤ j ≤ l. Recall that
either both u1

i ∈ S and u2
i /∈ S or both u1

i /∈ S and u2
i ∈ S. If u1

i /∈ S
and u2

i ∈ S (respectively, u1
i ∈ S and u2

i /∈ S), then we assign the value
true (respectively, the value false) to the variable xi. We claim that
Φ is satisfiable for this assignment.

Assume without loss of generality that cj = {x1,¬x2, x6}. Since
zj ∈ S, we have u2

1 ∈ S, u1
2 ∈ S or u2

6 ∈ S. Assume without loss
of generality that u2

1 ∈ S. So, x1 has the value true. It causes to
satisfy the clause cj, that is, the Boolean formula Φ is satisfiable. This
completes the proof. □

We can compute GΦ in polynomial time. By Lemma 3.3 and the
fact that GΦ is a chordal graph we have the following result.

Theorem 3.4. R2CD Problem is NP-hard even when restricted to
chordal graphs.

By Corollary 2.1 and Theorem 3.4 we have the following.

Corollary 3.5. RG Problem is NP-hard even when restricted to chordal
graphs.

124 POUREIDI

4. Computing Roman domination number of unicyclic
graphs

In this section, we give a linear algorithm that computes the Roman
domination number of unicyclic graphs. Recall that a connected uni-
cyclic graph is a connected graph with an unique cycle. Let G = (V,E)
be a graph with u ∈ V and let a ∈ {0, 1, 2}. We define the following.

• γR(G, u = a) = min{w(f)|f is a RDF on G with f(u) = a}.
A γR(G, u = a)-function is a RDF f on G with w(f) = γR(G, u = a)
and f(u) = a.

Lemma 4.1. Let H1 = (V1, E1) and H2 = (V2, E2) be two graphs with
V1 ∩ V2 = ∅ such that u ∈ V1, v ∈ V2 and a vertex w /∈ V1 ∪ V2. Let
G = (V1 ∪ V2, E1 ∪ E2 ∪ {uv}). Then, we have the following.

(i) γR(G, u = 0) = min{γR(H1, u = 0) + γR(H2, v = 0), γR(H1, u =
0) + γR(H2, v = 1), γR(H1 − u) + γR(H2, v = 2)},

(ii) γR(G, u = 1) = min{γR(H1, u = 1) + γR(H2, v = 0), γR(H1, u =
1) + γR(H2, v = 1), γR(H1, u = 1) + γR(H2, v = 2)},

(iii) γR(G, u = 2) = min{γR(H1, u = 2) + γR(H2 − v), γR(H1, u =
2) + γR(H2, v = 1), γR(H1, u = 2) + γR(H2, v = 2)},

(iv) γR(G − u) = γR(H1 − u) + min{γR(H2, v = 0), γR(H2, v =
1), γR(H2, v = 2)}.

Proof. Let f be a γR(G)-function. Clearly, f(u) = a, where a ∈
{0, 1, 2} if and only if both f(u) = a and f(v) = 0, both f(u) = a
and f(v) = 1 or both f(u) = a and f(v) = 2. Let f1, f2, fu

1 and
f v
2 be restrictions of f to H1, H2, H1 − u and H2 − v, respectively.

Let ga1 , ga2 , gu1 and gv2 be a γR(H1, u = a)-function, γR(H2, v = a)-
function, γR(H1 − u)-function and γR(H2 − v)-function, respectively,
where a ∈ {0, 1, 2} and let gu(u) = gv(v) = 0.

Let f(u) = 0 and γR = min{γR(H1, u = 0)+γR(H2, v = 0), γR(H1, u =
0) + γR(H2, v = 1), γR(H1 − u) + γR(H2, v = 2)}. So, f1 is a RDF on
H1 with f1(u) = 0 and f2 is a RDF on H2 with f2(v) = 0, func-
tion f1 is a RDF on H1 with f1(u) = 0 and f2 is a RDF on H2 with
f2(v) = 1, or fu

1 is a RDF on H1 − u and f2 is a RDF on H2 with
f2(v) = 2. Hence, γR ≤ γR(G, u = 0). Function g1 = g01 ∪ g02 is a
RDF on G with g1(u) = 0, function g2 = g01 ∪ g12 is a RDF on G with
g2(u) = 0 and g3 = gu1 ∪ g22 ∪ gu is a RDF on G with g3(u) = 0. Hence,
γR(G, u = 0) ≤ γR. This completes the proof of part (i).

ALGORITHMIC ASPECTS OF ROMAN GRAPHS 125

Let f(u) = 1 and γR = min{γR(H1, u = 1) + γR(H2, v = 0),
γR(H1, u = 1) + γR(H2, v = 1), γR(H1, u = 1) + γR(H2, v = 2)}. So, f1
is a RDF on H1 with f1(u) = 1 and f2 is a RDF on H2 with f2(v) = 0,
function f1 is a RDF on H1 with f1(u) = 1 and f2 is a RDF on H2 with
f2(v) = 1 or f1 is a RDF on H1 with f1(u) = 1 and f2 is a RDF on
H2 with f2(v) = 2. Hence, γR ≤ γR(G, u = 1). Function g1 = g11 ∪ g02
is a RDF on G with g1(u) = 1, function g2 = g11 ∪ g12 is a RDF on G
with g2(u) = 1 and g3 = g11 ∪ g22 is a RDF on G with g3(u) = 1. Hence,
γR(G, u = 1) ≤ γR. This completes the proof of part (ii).

Let f(u) = 2 and γR = min{γR(H1, u = 2)+ γR(H2 − v), γR(H1, u =
2)+γR(H2, v = 1), γR(H1, u = 2)+γR(H2, v = 2)}. So, f1 is a RDF on
H1 with f1(u) = 2 and f v

2 is a RDF on H2 − v, function f1 is a RDF
on H1 with f1(u) = 2 and f2 is a RDF on H2 with f2(v) = 1 or f1 is
a RDF on H1 with f1(u) = 2 and f2 is a RDF on H2 with f2(v) = 2.
Hence, γR ≤ γR(G, u = 2). Function g1 = g21 ∪ gv2 ∪ gv is a RDF on G
with g1(u) = 2, function g2 = g21 ∪ g12 a RDF on G with g2(u) = 2 and
g3 = g21 ∪ g22 is a RDF on G with g3(u) = 2. Hence, γR(G, u = 2) ≤ γR.
This completes the proof of part (iii).

Since G−u = (H1−u)∪H2 and graphs H1−u and H2 are disjoint,
γR(G − u) = γR(H1 − u) + γR(H2) = γR(H1 − u) + min{γR(H2, v =
0), γR(H2, v = 2), γR(H2, v = 3)}. This completes the proof of part
(iv). □

We say that a rooted tree T with the vertex set V = {v1, v2, . . . , vn}
has the Property 1, if j < i, where vj ∈ V is the parent of vi ∈ V .

Lemma 4.2. Let T be a tree with u ∈ V . Algorithm 4.1 computes
values γR(T −u) and γR(T, u = a) for each a ∈ {0, 1, 2} in linear time.

Proof. We can compute a rooted tree Tu with the root u and Property 1
for T in linear time. Clearly, γR(T−u) = γR(Tu−u) and γR(T, u = a) =
γR(Tu, u = a) for each a ∈ {0, 1, 2}. By Lemma 4.1, Algorithm RD(Tu)
returns (γR(Tu, u = 0), γR(Tu, u = 1), γR(Tu, u = 2), γR(Tu − u)). The
running time of each iteration of for loops of Algorithm RD(Tu) is
O(1), that is, the running time of Algorithm 4.1 is linear. □

Let a, b ∈ {0, 1, 2}, let G = (V,E) be a graph with u, v ∈ V and a
vertex w /∈ V . We define the following.

• γR(G, u = a, v = b) = min{w(f)|f is a RDF on G with f(u) = a
and f(v) = b},

• γR(G, u, w, v = a) = min{w(f)|f is a RDF on G + uw with
f(u) = 0, f(w) = 2 and f(v) = b}.

126 POUREIDI

Algorithm 4.1: RD(T)

Input: A connected rooted tree T = (V,E) with
V = {v1, . . . , vn}, Property 1 and a vertex w /∈ V .

Output: (γR(T, v1 = 0), γR(T, v1 = 1), γR(T, v1 = 2), γR(T − v1)).
1 for i = 1 to n do
2 γR(vi = 0) = ∞;
3 γR(vi = 1) = 1;
4 γR(vi = 2) = 2;
5 γR(vi) = 0;
6 for i = n to 2 do
7 Let vj be the parent of vi;
8 γR(vj = 0) = min{γR(vj = 0) + γR(vi = 0), γR(vj =

0) + γR(vi = 1), γR(vj) + γR(vi = 2)};
9 γR(vj = 1) = γR(vj = 1) + min{γR(vi = 0), γR(vi = 1), γR(vi =

2)};
10 γR(vj = 2) = γR(vj = 2) + min{γR(vi), γR(vi = 1), γR(vi = 2)};
11 γR(vj) = γR(vj) + min{γR(vi = 0) + γR(vi = 1) + γR(vi = 2)};
12 return (γR(v1 = 0), γR(v1 = 1), γR(v1 = 2), γR(v1));

Let U be a connected unicyclic graph with the unique cycle C =
v0, . . . , vk−1, v0, where k ≥ 3. Let T (v0, R) = U−v0v1. Clearly, T (v0, R)
is a tree with the vertex set V (U).

Lemma 4.3. Let U be a connected unicyclic graph with the unique
cycle v0, . . . , vk−1, v0 (k > 2). Then, γR(U) = min{γR(T (v0, R), v0 =
a, v1 = b), γR(T (v0, R) − v0, v1 = 2), γR(T (v0, R) − v1, v0 = 2)}, where
(a, b) ∈ {0, 1, 2} × {0, 1, 2} − {(0, 2), (2, 0)}.

Proof. Let (a, b) ∈ {0, 1, 2}×{0, 1, 2}\{(0, 2), (2, 0)}. Assume that γ =
min{γR(T (v0, R), v0 = a, v1 = b), γR(T (v0, R)−v0, v1 = 2), γR(T (v0, R)−
v1, v0 = 2)}.

Let f be a RDF on T (v0, R) with w(f) = γR(T (v0, R), v0 = a, v1 =
b) and (f(v0), f(v1)) = (a, b). Function f is a RDF on U and so
γR(U) ≤ γR(T (v0, R), v0 = a, v1 = b), where (a, b) ∈ {0, 1, 2} ×
{0, 1, 2} \ {(0, 2), (2, 0)}.

Let f be a RDF on T (v0, R) − v0 with f(v1) = 2 and w(f) =
γR(T (v0, R) − v0, v1 = 2) and let g(v0) = 0. Function f ∪ g is a
RDF on U and so γR(U) ≤ γR(T (v0, R) − v0, v1 = 2). Similarly,
γR(U) ≤ γR(T (v0, R)− v1, v0 = 2). So, γR(U) ≤ γ.

ALGORITHMIC ASPECTS OF ROMAN GRAPHS 127

Let f be a γR(U)-function. We have (f(v0), f(v1)) ∈ {0, 1, 2} ×
{0, 1, 2} \ {(0, 2), (2, 0)} or (f(v0), f(v1)) ∈ {(0, 2), (2, 0)}. In the fol-
lowing we consider these cases.

• Let (f(v0), f(v1)) = (a, b), where (a, b) ∈ {0, 1, 2} × {0, 1, 2} \
{(0, 2), (2, 0)}. Function f is a RDF on T (v0, R) with f(v0) = a
and f(v1) = b and so γR(T (v0, R), v0 = a, v1 = b) ≤ γR(U).

• Let (f(v0), f(v1)) = (2, 0). The restriction of f to V (U) \ {v1}
is a RDF on U − v1 = T (v0, R) − v1 with f(v0) = 2 and so
γR(T (v0, R)− v1, v0 = 2) ≤ γR(U).

• Similar to the previous case, if (f(v0), f(v1)) = (0, 2), then
γR(T (v0, R)− v0, v1 = 2) ≤ γR(U). So, γ ≤ γR(U).

This completes the proof. □

By Lemma 4.3 for computing the Roman domination number of a
given unicyclic graph we need to compute the value γR(T, u = a, v = b),
where T is a tree with u, v ∈ V (T) and (a, b) ∈ {0, 1, 2} × {0, 1, 2} \
{(0, 2), (2, 0)}. We claim that Algorithms 4.2, 4.3 and 4.4 compute
these values.

Lemma 4.4. Let T be a rooted tree with the root u, v ∈ V (T) and a
vertex w /∈ V (T) and let (γ00, γ

′
00, γ01, γ02) be the output of Algorithm

RD0(T, u, v). Then,
• γ00 = γR(T, u = 0, v = 0),
• γ′

00 = γR(T, u, w, v = 0),
• γ01 = γR(T, u = 1, v = 0),
• γ02 = γR(T, u = 2, v = 0).

Proof. Let P (T, v, u) = w0(= v), . . . , wk(= u) (k > 0) be the short-
est path between v and u in T . The proof is by induction on k =
|P (T, v, u)|. Let k = 1. So, u is the parent of v. Let T ′ = Tu − Tv. So,
• γR(T, u = 0, v = 0) = γR(Tv, v = 0) + γR(T

′, u = 0),
• γR(T, u, w, v = 0) = γR(Tv, v = 0) + γR(T

′ − u) + 2,
• γR(T, u = 1, v = 0) = γR(Tv, v = 0) + γR(T

′, u = 1),
• γR(T, u = 2, v = 0) = γR(Tv − v) + γR(T

′, u = 2).
Since k = 1, the for loop of Algorithm RD0(T, u, v) does not exe-
cute. This proves the base case of the induction. Assume that the
result is true for any rooted tree T ′ with the root u, v ∈ V (T ′), a
vertex w /∈ V (T) and |P (T ′, v, u)| ≤ m, where m ≥ 1. Let T be
a rooted tree with the root u, v ∈ V (T), a vertex w /∈ V (T) and
P (T, v, u) = w0(= v), . . . , wm, wm+1(= u). Let (γi

0, γ
i
1, γ

i
2, γ

i
3) be values

of variables (γ00, γ
′
00, γ01, γ02) of Algorithm RD0(T, u, v), respectively,

after the iteration of the for loop for each 2 ≤ i ≤ m + 1. Let Twm

128 POUREIDI

Algorithm 4.2: RD0(T, u, v)
Input: A connected rooted tree T with the root u, v ∈ V (T) and

a vertex w /∈ V (T).
Output: (γR(T, u = 0, v = 0), γR(T, u, w, v = 0), γR(T, u = 1, v =

0), γR(T, u = 2, v = 0)).
1 Let P (T, v, u) = w0(= v), . . . , wk(= u) (k > 0) be the shortest

path between u and v in T .
2 T ′ = Tw1 − Tw0 ;
3 γ00 = γR(Tw0 , w0 = 0) + γR(T

′, w1 = 0);
4 γ′

00 = γR(Tw0 , w0 = 0) + γR(T
′ − w1) + 2;

5 γ01 = γR(Tw0 , w0 = 0) + γR(T
′, w1 = 1);

6 γ02 = γR(Tw0 − w0) + γR(T
′, w1 = 2);

7 for i = 2 to k do
8 T ′ = Twi

− Twi−1
;

9 α0 = min{γR(T ′, wi = 0) + γ00, γR(T
′, wi =

0) + γ01, γR(T
′ − wi) + γ02};

10 α1 = γR(T
′ − wi) + min{γ00, γ01, γ02}+ 2;

11 α2 = γR(T
′, wi = 1) + min{γ00, γ01, γ02};

12 γ02 = γR(T
′, wi = 2) + min{γ′

00 − 2, γ01, γ02};
13 γ00 = α0;
14 γ′

00 = α1;
15 γ01 = α2;
16 return (γ00, γ

′
00, γ01, γ02);

be the rooted subtree of T with the root wm. Let (α00, α
′
00, α01, α02) and

(β00, β
′
00, β01, β02) be outputs of Algorithms RD0(T, u, v) and

RD0(Twm , wm, v), respectively. Clearly, (α00, α
′′
00, α01, α02) =

(γm+1
0 , γm+1

1 , γm+1
2 , γm+1

3) and (β00, β
′
00, β01, β02) = (γm

0 , γm
1 , γm

2 , γm
3). By

the induction hypothesis, we have (β00, β
′
00, β

′′
00, β02, β03) = (γR(Twm ,

wm = 0, v = 0), γR(Twm , wm, w, v = 0), γR(Twm , wm = 1, v = 0), γR(Twm ,
wm = 2, v = 0)).
Let T ′ = T − Twm . Since u is the parent of wm(̸= v) (i.e., u is adjacent
to wm) in T , we have

• γR(T, u = 0, v = 0) = min{γR(T ′, u = 0) + β00, γR(T
′, u =

0) + β01, γR(T
′ − u) + β02}

• γR(T, u, w, v = 0) = min{γR(T ′−u)+β00+2, γR(T
′−u)+β01+

2, γR(T
′ − u) + β02 + 2}

• γR(T, u = 1, v = 0) = min{γR(T ′, u = 1) + β00, γR(T
′, u =

1) + β01, γR(T
′, u = 1) + β02}

ALGORITHMIC ASPECTS OF ROMAN GRAPHS 129

Algorithm 4.3: RD1(T, u, v)
Input: A connected rooted tree T with the root u, v ∈ V (T) and

a vertex w /∈ V (T).
Output: (γR(T, u = 0, v = 1), γR(T, u, w, v = 1), γR(T, u = 1, v =

1), γR(T, u = 2, v = 1)).
1 Let P (T, v, u) = w0(= v), . . . , wk(= u) (k > 0) be the shortest

path between u and v in T .
2 T ′ = Tw1 − Tw0 ;
3 γ10 = γR(Tw0 , w0 = 1) + γR(T

′, w1 = 0);
4 γ′

10 = γR(Tw0 , w0 = 1) + γR(T
′ − w1) + 2;

5 γ11 = γR(Tw0 , w0 = 1) + γR(T
′, w1 = 1);

6 γ12 = γR(Tw0 , w0 = 1) + γR(T
′, w1 = 2);

7 for i = 2 to k do
8 T ′ = Twi

− Twi−1
;

9 α0 = min{γR(T ′, wi = 0) + γ10, γR(T
′, wi =

0) + γ11, γR(T
′ − wi) + γ12};

10 α1 = γR(T
′ − wi) + min{γ10, γ11, γ12}+ 2;

11 α2 = γR(T
′, wi = 1) + min{γ10, γ11, γ12};

12 γ12 = γR(T
′, wi = 2) + min{γ′

10 − 2, γ11, γ12};
13 γ10 = α0;
14 γ′

10 = α1;
15 γ11 = α2;
16 return (γ10, γ

′
10, γ11, γ12);

• γR(T, u = 2, v = 0) = min{γR(T ′, u = 2) + β′
00 − 2, γR(T

′, u =
2) + β01, γR(T

′, u = 2) + β02}.
This completes the proof. □

Similar to Lemma 4.4 we have the following results.

Lemma 4.5. Let T be a rooted tree with the root u, v ∈ V (T) and a
vertex w /∈ V (T) and let (γ10, γ

′
10, γ11, γ12) be the output of Algorithm

RD1(T, u, v). Then,
• γ10 = γR(T, u = 0, v = 1),
• γ′

10 = γR(T, u, w, v = 1),
• γ11 = γR(T, u = 1, v = 1),
• γ12 = γR(T, u = 2, v = 1).

Lemma 4.6. Let T be a rooted tree with the root u, v ∈ V (T) and a
vertex w /∈ V (T) and let (γ20, γ

′
20, γ21, γ22) be the output of Algorithm

RD2(T, u, v). Then,

130 POUREIDI

Algorithm 4.4: RD2(T, u, v)
Input: A connected rooted tree T with the root u, v ∈ V (T) and

a vertex w /∈ V (T).
Output: (γR(T, u = 0, v = 2), γR(T, u, w, v = 2), γR(T, u = 1, v =

2), γR(T, u = 2, v = 2)).
1 Let P (T, v, u) = w0(= v), . . . , wk(= u) (k > 0) be the shortest

path between u and v in T .
2 T ′ = Tw1 − Tw0 ;
3 γ20 = γR(Tw0 , w0 = 2) + γR(T

′ − w1);
4 γ′

20 = γR(Tw0 , w0 = 2) + γR(T
′ − w1) + 2;

5 γ21 = γR(Tw0 , w0 = 2) + γR(T
′, w1 = 1);

6 γ22 = γR(Tw0 , w0 = 2) + γR(T
′, w1 = 2);

7 for i = 2 to k do
8 T ′ = Twi

− Twi−1
;

9 α0 = min{γR(T ′, wi = 0) + γ20, γR(T
′, wi =

0) + γ21, γR(T
′ − wi) + γ22};

10 α1 = γR(T
′ − wi) + min{γ20, γ21, γ22}+ 2;

11 α2 = γR(T
′, wi = 1) + min{γ20, γ21, γ22};

12 γ22 = γR(T
′, wi = 2) + min{γ′

20 − 2, γ21, γ22};
13 γ20 = α0;
14 γ′

20 = α1;
15 γ21 = α2;
16 return (γ20, γ

′
20, γ21, γ22);

• γ20 = γR(T, u = 0, v = 2),
• γ′

20 = γR(T, u, w, v = 2),
• γ21 = γR(T, u = 1, v = 2),
• γ22 = γR(T, u = 2, v = 2).

Theorem 4.7. There is a linear algorithm that computes the Roman
domination number of a given unicyclic graph.
Proof. Let U be a connected unicyclic graph with the unique cycle
v0, . . . , vk−1, v0. By Lemma 4.3, γR(U) = min{γR(T (v0, R), v0 = a, v1 =
b), γR(T (v0, R)− v0, v1 = 2), γR(T (v0, R)− v1, v0 = 2)}, where (a, b) ∈
{0, 1, 2}×{0, 1, 2}\{(0, 2), (2, 0)}. It follows from Lemmas 4.2, 4.4, 4.5
and 4.6 that we can compute γR(U) using the outputs of Algorithms
4.1, 4.2, 4.3 and 4.4.

By Lemma 4.2 the running of Algorithm 4.1 is linear. It remains to
compute running times of Algorithms 4.2, 4.3 and 4.4. Let T be a tree
with u, v ∈ V (T) and let P (T, v, u) = w0(= v), . . . , wk(= u) (k > 0) be

ALGORITHMIC ASPECTS OF ROMAN GRAPHS 131

Algorithm 5.1: D(T)

Input: A connected rooted tree T = (V,E) with
V = {v1, . . . , vn} and Property 1.

Output: (γ(T, v1 = 0), γ(T, v1 = 1), γ(T − v1)).
1 for i = 1 to n do
2 γ(vi = 0) = ∞;
3 γ(vi = 1) = 1;
4 γ(vi) = 0;
5 for i = n to 2 do
6 Let vj be the parent of vi;
7 γ(vj = 0) = min{γ(vj = 0) + γ(vi = 0), γ(vj) + γ(vi = 1)};
8 γ(vj = 1) = γ(vj = 1) + min{γ(vi), γ(vi = 1)};
9 γ(vj) = γ(vj) + min{γ(vi = 0) + γ(vi = 1)};

10 return (γ(v1 = 0), γ(v1 = 1), γ(v1));

the shortest path between u and v in T . Clearly, we can compute the
rooted tree Tu with the root u for T and P (T, v, u) in linear time. Let
Tm be the value of the variable T ′ of Algorithm RD0(T, u, v) after the
iteration of the for loop for each 2 ≤ m ≤ k. Since the running time
of Algorithm 4.1 is linear, the running time of lines 2-6 of Algorithm
RD0(T, u, v) is O(V (T1)) and the running time of the iteration of
the for loop of Algorithm RD0(T, u, v) for 2 ≤ m ≤ k is O(V (Tm)).
Clearly, V (Ti)∩V (Tj) = ∅ for each 2 ≤ i < j ≤ k. So, the running time
of Algorithm RD0(T, u, v) is equal to

∑k
i=2 O(V (Tm)) = O(V (T)).

Similarly, running times of Algorithms RD1(T, u, v) and RD2(T, u, v)
are linear. This completes the proof. □

5. Computing domination number of unicyclic graphs

In this section, we give a linear algorithm that computes the dom-
ination number of unicyclic graphs. Let G = (V,E) be a graph such
that u ∈ V and let a ∈ {0, 1}. We define the following.

• γ(G, u = 0) = min{|S| : S is a DS on G such that u /∈ S},
• γ(G, u = 1) = min{|S| : S is a DS on G such that u ∈ S}.

Similar to Lemma 4.1 we have the following.

Lemma 5.1. Let H1 = (V1, E1) and H2 = (V2, E2) be two graphs with
V1 ∩ V2 = ∅ such that u ∈ V1 and v ∈ V2. Let G = (V1 ∪ V2, E1 ∪ E2 ∪
{uv}). Then, we have the following.

132 POUREIDI

Algorithm 5.2: D0(T, u, v)
Input: A connected rooted tree T with the root u, v ∈ V (T) and

a vertex w /∈ V (T).
Output: (γ(T, u = 0, v = 0), γ′(T, u, v = 0, w), γ(T, u = 1, v = 0)).

1 Let P (T, v, u) = w0(= v), . . . , wk(= u) (k > 0) be the shortest
path between u and v in T .

2 T ′ = Tw1 − Tw0 ;
3 γ00 = γ(Tw0 , w0 = 0) + γ(T ′, w1 = 0);
4 γ′

00 = γ(Tw0 , w0 = 0) + γ(T ′ − w1) + 1;
5 γ01 = γ(Tw0 − w0) + γ(T ′, w1 = 1);
6 for i = 2 to k do
7 T ′ = Twi

− Twi−1
;

8 α0 = min{γ(T ′, wi = 0) + γ00, γ(T
′ − wi) + γ01};

9 α1 = γ(T ′ − wi) + min{γ00, γ01}+ 1;
10 γ01 = γ(T ′, wi = 1) + min{γ′

00 − 1, γ01};
11 γ00 = α0;
12 γ′

00 = α1;
13 return (γ00, γ

′
00, γ01);

(i) γ(G, u = 0) = min{γ(H1, u = 0) + γ(H2, v = 0), γ(H1 − u) +
γ(H2, v = 1)},

(ii) γ(G, u = 1) = min{γ(H1, u = 1) + γ(H2 − v), γ(H1, u = 1) +
γ(H2, v = 1)},

(iii) γ(G− u) = γ(H1 − u) + min{γ(H2, v = 0), γ(H2, v = 1)}.

Similar to Lemma 4.2, we have the following.

Lemma 5.2. Let T be a tree with u ∈ V . Algorithm 5.1 computes
values γ(T, u = 0), γ(T, u = 1) and γ(T − u) in linear time.

Let G = (V,E) be a graph with u, v ∈ V and a vertex w /∈ V . We
define the following.

• γ(G, u = 0, v = 0) = min{|S| : S is a DS on G such that u /∈ S
and v /∈ S},

• γ(G, u = 0, v = 1) = min{|S| : S is a DS on G such that u /∈ S
and v ∈ S},

• γ(G, u = 1, v = 0) = min{|S| : S is a DS on G such that u ∈ S
and v /∈ S},

ALGORITHMIC ASPECTS OF ROMAN GRAPHS 133

Algorithm 5.3: D1(T, u, v)
Input: A connected rooted tree T with the root u, v ∈ V (T) and

a vertex w /∈ V (T).
Output: (γ(T, u = 0, v = 1), γ′(T, u, v = 1, w), γ(T, u = 1, v = 1)).

1 Let P (T, v, u) = w0(= v), . . . , wk(= u) (k > 0) be the shortest
path between u and v in T .

2 T ′ = Tw1 − Tw0 ;
3 γ10 = γ(Tw0 , w0 = 1) + γ(T ′ − w1);
4 γ′

10 = γ(Tw0 , w0 = 1) + γ(T ′ − w1) + 1;
5 γ11 = γ(Tw0 , w0 = 1) + γ(T ′, w1 = 1);
6 for i = 2 to k do
7 T ′ = Twi

− Twi−1
;

8 α0 = min{γ(T ′, wi = 0) + γ10, γ(T
′ − wi) + γ11};

9 α1 = γ(T ′ − wi) + min{γ10, γ11}+ 1;
10 γ11 = γ(T ′, wi = 1) + min{γ′

10 − 1, γ11};
11 γ10 = α0;
12 γ′

10 = α1;
13 return (γ10, γ

′
10, γ11);

• γ(G, u = 1, v = 1) = min{|S| : S is a DS on G such that u ∈ S
and v ∈ S},

• γ(G, u, w, v = 0) = min{|S| : S is a DS on G + uw such that
w ∈ S and u, v /∈ S},

• γ(G, u, w, v = 1) = min{|S| : S is a DS on G + uw such that
v, w ∈ S and u /∈ S}.

Let U be a connected unicyclic graph with the unique cycle C =
v0, . . . , vk−1, v0, where k ≥ 3. Recall that T (v0, R) = U − v0v1. Similar
to Lemma 4.3 we have the following.

Lemma 5.3. Let U be a connected unicyclic graph with the unique cycle
v0, . . . , vk−1, v0 (k > 2). Then, γ(U) = min{γ(T (v0, R), v0 = 0, v1 =
0), γ(T (v0, R), v0 = 1, v1 = 1), γ(T (v0, R) − v1, v0 = 1), γ(T (v0, R) −
v0, v1 = 1)}.

By Lemma 5.3 for computing the domination number of a given
unicyclic graph we need to compute values γ(T, u = 0, v = 0) and
γ(T, u = 1, v = 1), where T is a tree with u, v ∈ V (T). We claim that
Algorithms 5.2 and 5.3 compute these values. Similar to Lemma 4.4
we have the following results.

134 POUREIDI

Lemma 5.4. Let T be a rooted tree with the root u, v ∈ V (T) and
w /∈ V (T) and let (γ00, γ′

00, γ01) be the output of Algorithm D0(T, u, v).
Then,

• γ00 = γ(T, u = 0, v = 0),
• γ′

00 = γ(T, u, w, v = 0),
• γ01 = γ(T, u = 1, v = 0).

Lemma 5.5. Let T be a rooted tree with the root u, let v ∈ V (T) and
w /∈ V (T) and let (γ10, γ′

10, γ11) be the output of Algorithm D1(T, u, v).
Then,

• γ10 = γ(T, u = 0, v = 1),
• γ′

10 = γ(T, u, w, v = 1),
• γ11 = γ(T, u = 1, v = 1).
Similar to Theorem 4.7 we have the following.

Theorem 5.6. There is a linear algorithm that computes the domina-
tion number of a given unicyclic graph.

By Theorems 4.7 and 5.6 we obtain the following.
Theorem 5.7. There is a linear algorithm that decides whether a given
unicyclic graph is a Roman graph.

References
1. H. Abdollahzadeh Ahangar, M. Chellali, S. M. Sheikholeslami, On the Roman

domination in graphs, Discrete Appl. Math., 232 (2017), 1–7.
2. R. A. Beeler, T. W. Haynesa and S. T. Hedetniemi, Double Roman domination,

Discrete Appl. Math., 211 (2016), 23–29.
3. M. Chellali, T. W. Haynes, S. T. Hedetniemi, A. MacRae, Roman {2}-

domination, Discrete Appl. Math., 204 (2016), 22–28.
4. E. J. Cockayane, P. M. Dreyer Jr., S. M. Hedetniemi and S. T. Hedetniemi, On

Roman domination in graphs, Discrete Math., 278 (2004), 11–22.
5. N. Jafari Rad and H. Rahbani, Some progress on the Roman domination in

graphs, Discuss. Math. Graph Theory, 39 (2019), 41–53.
6. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman, New York, 1979.
7. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination

in Graphs, Marcel Dekker, In c., New York, 1998.
8. M. A. Henning, A characterization of Roman trees, Discuss. Math. Graph The-

ory, 22 (2002), 325–334.
9. M. Liedloff, T. Kloks, J. Liu and S.-L. Pen, Efficient algorithms for Roman

domination on some classes of graphs, Discrete Appl. Math., 156 (2008), 3400–
3415.

10. C. S. Revelle and K. E. Rosing, Defendens imperium romanum: a classical
problem in military strategy, Amer. Math. Monthly 107 (2000), 585–594.

ALGORITHMIC ASPECTS OF ROMAN GRAPHS 135

11. I. Stewart, Defend the roman empire!, Sci. Amer., 281 (1999), 136–139.
12. J. Yue, M. Wei, M. Li and G. Liu, On the Roman domination of graphs, Appl.

Math. Comput., 338 (2018), 669–675.
13. X. Zhang, Z. Li, H. Jiang and Z. Shao, Double Roman domination in trees,

Inform. Process. Lett., 134 (2018), 31–34.

Abolfazl Poureidi
Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood,
Iran.
Email: a.poureidi@shahroodut.ac.ir

Journal of Algebraic Systems

ALGORITHMIC ASPECTS OF ROMAN GRAPHS

A. POUREIDI

رومن گراف های الگوریتمی صورت های

پورعیدی ابوالفضل

ایران شاهرود، شاهرود، صنعتی دانشگاه ریاضی، علوم دانشکده

می نامیم G احاطه گر مجموعه یک را S ⊆ V مجموعه ی است. گراف یک G = (V,E) کنید فرض
اندازه کمترین با برابر G احاطه گر عدد است. S در راس یک حداقل به مجاور V \ S در راس هر اگر
(RDF) رومن احاطه گر تابع یک می دهیم. نمایش γ(G) با آن را که است G احاطه گر مجموعه یک
یک به مجاور f(v) = ٠ با v ∈ V راس هر که طوری به است f : V → {٠, ١, ٢} تابع G برای
RDF یک وزن کمترین است. f(V) =

∑
v∈V f(v) با برابر f وزن است. f(u) = ٢ با u راس

گراف یک را G گراف می دهیم. نمایش γR(G) با آن را و می نامیم G رومن احاطه گری عدد را G برای
.γR(G) = ٢γ(G) اگر می نامیم رومن

یک است رومن گراف یک اینکه مورد در تصمیم گیری مسئله که می دهیم نشان ابتدا مقاله این در
گراف یک می گیرد تصمیم که می کنیم ارائه خطی زمان الگوریتم یک سپس است. NP-hard مسئله

است. رومن گراف یک تک دور

الگوریتم. رومن، احاطه گر تابع احاطه گر، مجموعه کلیدی: کلمات

	1. Introduction
	2. Preliminary
	3. NP-hardness results
	4. Computing Roman domination number of unicyclic graphs
	5. Computing domination number of unicyclic graphs
	References

