Journal of Algebraic Systems Vol. 9, No 1, (2021), pp 137-149

LEFT ABSORBING HYPER K-ALGEBRAS

S. MADADI AND M. A. NASR-AZADANI*

ABSTRACT. In the present manuscript, we introduce a type of hyper K-algebra which is called left absorbing hyper K-algebra and investigate some of the related properties. We also show that set of all types of positive implicative and commutative hyper K-ideal form a distributive lattice and study their diagrams when positive implicative and commutative hyper K-ideal are a hyper K-ideal and the hyper K-algebra is left absorbing.

1. INTRODUCTION

The concept of BCK-algebra that is a generalization of set difference and propositional calculi was established by Imai and Iséki [4] in 1966. In [5], Jun et al. applied the hyper structures BCK-algebra. In 1934, Marty [7] introduced for the first time the hyper structure theory in the 8th congress of Scandinavian Mathematicians proceedings. In [3], Borzooei et al. introduced the generalization of BCK-algebra and hyper BCK-algebra, called hyper K-algebra. They studied properties of hyper K-algebra. In [9], Roodbari et al. defined 27 different types of positive implicative and 9 different types of commutative hyper K-ideal. In [2], Borzooei et al. studied lattices structures on ideals of a BCK-algebras. In this article, we introduce left absorbing hyper K-algebra and investigate some related properties. Moreover, We show that all types of positive implicative and commutative hyper K-ideals

DOI: 10.22044/jas.2020.8717.1423.

MSC(2010): 06F35.

Keywords: Hyper K-algebra, Hyper K-ideal, Positive implicative hyper K-ideal, Commutative hyper K-ideal.

Received: 21 July 2019, Accepted: 30 October 2020.

^{*}Corresponding author.

that defined in [9], form a distributive lattice and study their diagrams when the hyper K-agebra is left absorbing. Section 2, concerns definitions and theorems that are needed in the sequel. Section 3, we give definition of left absorbing hyper K-algebras and then we investigate some properties of them.

2. Preliminaries

In this section, we give concerns definitions and theorems that are needed in the sequel.

Definition 2.1. [3] Let H be a nonempty set and " \circ " be a hyper operation on H, that \circ is a function from $H \times H$ to $P^*(H) = P(H) \setminus \{\emptyset\}$. Then H is called a *hyper K-algebra* iff it contains a constant "0" and satisfies the following axioms:

(HK1): $(x \circ z) \circ (y \circ z) < x \circ y$, (HK2): $(x \circ y) \circ z = (x \circ z) \circ y$, (HK3): x < x(HK4): $x < y, y < x \Longrightarrow x = y$, (HK5): 0 < x

for all $x, y, z \in H$, where x < y means $0 \in x \circ y$ and for every $A, B \subseteq H, A < B$ is defined by $\exists a \in A, \exists b \in B$ such that a < b. If $A, B \subseteq H$, then $A \circ B := \bigcup_{a \in A, b \in B} a \circ b$.

Theorem 2.2. [3] Let $(H, \circ, 0)$ be a hyper K-algebra. Then for all $x, y, z \in H$ and for all nonempty subsets A, B and C of H the following statements hold:

 $\begin{array}{l} (i) \ x \circ y < z \Leftrightarrow x \circ z < y, \\ (ii) \ (x \circ z) \circ (x \circ y) < y \circ z, \\ (iii) \ x \circ (x \circ y) < y, \\ (iv) \ x \circ y < x, \\ (v) \ A \subseteq B \Rightarrow A < B, \\ (vi) \ x \in x \circ 0, \\ (vii) \ (A \circ C) \circ (A \circ B) < B \circ C, \\ (viii) \ A \circ B < C \Leftrightarrow A \circ C < B. \end{array}$

Definition 2.3. [11] Let H_1 and H_2 be two hyper K-algebras. A mapping $f: H_1 \to H_2$ is said to be a homomorphism if

- (1) f(0) = 0,
- (2) $f(x \circ y) = f(x) \circ f(y), \forall x, y \in H_1.$

Theorem 2.4. [11] Let $(H_1, \circ_1, 0)$ and $(H_2, \circ_2, 0)$ be two hyper Kalgebras and $H = H_1 \times H_2$. Then $(H, \circ, 0)$ where $(a_1, b_1) \circ (a_2, b_2) =$

 $(a_1 \circ_1 a_2, b_1 \circ_2 b_2)$ for all $(a_1, b_1), (a_2, b_2) \in H$ is a hyper K-algebra, and it is called the hyper K-product of H_1 and H_2 .

Definition 2.5. [10] A hyper K-algebra $(H, \circ, 0)$ is called simple if for all distinct elements $a, b \in H \setminus \{0\}$, $a \not\leq b$ and $b \not\leq a$, otherwise is called normal.

Theorem 2.6. [10] Let $(H, \circ, 0)$ be a simple hyper K-algebra. Then for all $x \in H$, $x \circ 0 = \{x\}$.

Definition 2.7. [1] Let $(H, \circ, 0)$ be a hyper K-algebra. Then $(H, \circ, 0)$ is called:

(i) weak implicative, if for all $x, y \in H$, $x < x \circ (y \circ x)$,

(*ii*) implicative, if for all $x, y \in H$, $x \in x \circ (y \circ x)$.

Definition 2.8. [3, 11] Let I be nonempty subset of a hyper K-algebra such that $0 \in I$. Then I is said to be a hyper K-ideal (weak hyper K-ideal) of H if $x \circ y < I(x \circ y \subseteq I)$ and $y \in I$ imply $x \in I$ for all $x, y \in H$.

Theorem 2.9. [9] Let I be a hyper K-ideal of hyper K-algebra $(H, \circ, 0)$ and A, B be nonempty subsets of H, then $A \circ B < I$ iff $A \circ B \cap I \neq \emptyset$.

Notation 2.10. Let A and I be two nonempty sets, we set $AR_1I := A \subseteq I$, $AR_2I := A \cap I \neq \emptyset$ and $AR_3I := A < I$.

Definition 2.11. [9] Let I be a nonempty subset of a hyper K-algebra $(H, \circ, 0)$ such that $0 \in I$. Then I is called a positive implicative hyper K-ideal of type (i, j, k) of H and we write I - PIHKI(i, j, k), if $(x \circ y) \circ zR_iI$ and $y \circ zR_jI$ imply that $x \circ zR_kI$ for all $x, y, z \in H, i, j, k \in \{1, 2, 3\}$.

Definition 2.12. [9] Let I be a nonempty subset of a hyper K-algebra $(H, \circ, 0)$ such that $0 \in I$. Then I is called a commutative hyper K-ideal of type (i, j) and we write I - CHKI(i, j), if $(x \circ y) \circ zR_iI$ and $z \in I$ imply that $x \circ (y \circ (y \circ x))R_iI$ for all $x, y, z \in H, i, j \in \{1, 2, 3\}$.

Definition 2.13. [1] Let I be a nonempty subset of a hyper K-algebra $(H, \circ, 0)$ such that $0 \in I$. Then I is called an implicative (weak implicative) hyper K-ideal if $(x \circ z) \circ (y \circ x) < I((x \circ z) \circ (y \circ x) \subseteq I)$ and $z \in I$ imply $x \in I$, for all $x, y, z \in H$.

Theorem 2.14. [1] Let I be a hyper K-ideal of hyper K-algebra H. Then I is an (weak) implicative hyper K-ideal if and only if $(x \circ (y \circ x) \subseteq I)x \circ (y \circ x) < I$ implies that $x \in I$, for any $x, y \in H$.

Definition 2.15. [6] Let ρ be a relation defined on a set X. Then converse of ρ (denoted by $\bar{\rho}$) is defined by $a \bar{\rho} b \Leftrightarrow b \rho a, a, b \in X$.

Definition 2.16. [6] If (X, ρ) be a partially ordered set (poset) then the poset $(\bar{X}, \bar{\rho})$, where $\bar{X} = X$ and $\bar{\rho}$ is converse of ρ is called dual of X.

Definition 2.17. [6] Let (L, \leq) be a partially ordered set. Then L is called a chain if every two members are comparable, i.e. $x \leq y$ or $y \leq x$ for all $x, y \in L$, and it is said to be a lattice if for every $a, b \in L$, $\sup\{a, b\}$ and $\inf\{a, b\}$ exist in L, in this case, we write $Sup\{a, b\} = a \lor b$ and $Inf\{a, b\} = a \land b$.

Definition 2.18. [6] A lattice *L* is called a distributive lattice if $a \land (b \lor c) = (a \land b) \lor (a \land c)$ for all $a, b, c \in L$.

Theorem 2.19. [6] A chain is a distributive lattice.

Theorem 2.20. [6] Two lattices L and M are distributive lattices iff $L \times M$ is distributive lattice.

3. Left absorbing hyper K-algebras

In this section we define the concept of left absorbing hyper Kalgebras. Also, some related properties are investigated.

Definition 3.1. Let H be a nonempty set and " \circ " a hyper operation on H. Then " \circ " is called a left absorbing hyper operation if $x \in x \circ y$ for all $x, y \in H$.

Theorem 3.2. Let H containing 0 be a set and " \circ " a left absorbing hyper operation on H. Then $(H, \circ, 0)$ is hyper K-algebra iff satisfies the following axioms:

(1) $(x \circ y) \circ z = (x \circ z) \circ y$, (2) x < x, (3) $x < y, y < x \Longrightarrow x = y$.

for all $x, y, z \in H$.

Proof. Let H be a hyper K-algebra, it is clear (1), (2) and (3) hold. Conversely, since " \circ " is a left absorbing hyper operation on H, we have $x \circ y \subseteq (x \circ z) \circ (y \circ z)$ then $(x \circ z) \circ (y \circ z) < x \circ y$, also $0 \in 0 \circ x$, for all $x, y, z \in H$, so (HK1) and (HK5) hold and $(H, \circ, 0)$ is a hyper K-algebra.

The following examples show that properties (1) and (2) in the above theorem are independent from each other.

Example 3.3. Let $H = \{0, 1, 2\}$ and consider the following Cayley tables:

0 ₁	0	1	2		\circ_2	0	1	2
0	$\{0\}$	{0}	{0}	-	0	$\{0\}$	{0}	{0}
1	$\{1,2\}$	$\{1,2\}$	$\{0,1\}$		1	$\{1,2\}$	$\{0,1\}$	$\{1,2\}$
2	$\{2\}$	$\{2\}$	$\{0,2\}$		2	$\{2\}$	$\{2\}$	$\{0,2\}$

Hyper operations \circ_1 and \circ_2 are left absorbing on H. In $(H, \circ_1, 0)$ the properties 1 and 3 hold, but $1 \not\leq 1$ and in $(H, \circ_2, 0)$ the properties 2 and 3 hold but $(1 \circ_2 0) \circ_2 2 \neq (1 \circ_2 2) \circ_2 0$.

Definition 3.4. The hyper K-algebra which has been introduced in theorem 3.2 is called a left absorbing hyper K-algebra.

Example 3.5. Let $H = \{0, 1, 2\}$ and consider the following Cayley tables:

\circ_1	0	1	2	\circ_2	0	1	2
0	$\{0,1\}$	$\{0\}$	$\{0\}$	0	{0}	$\{0\}$	$\{0\}$
1	{1}	$\{0,1\}$	$\{1\}$	1	{1}	$\{0\}$	$\{1\}$
2	$\{1,2\}$	$\{0,2\}$	$\{0,2\}$	2	${2}$	$\{0,1\}$	$\{0,1,2\}$

Then $(H, \circ_1, 0)$ is a left absorbing hyper K-algebra, but $(H, \circ_2, 0)$ is not a left absorbing hyper K-algebra, since $2 \notin 2 \circ_2 1$.

Theorem 3.6. Let $(H_1, \circ_1, 0)$ and $(H_2, \circ_2, 0)$ be a left absorbing hyper K-algebra and a hyper K-algebra respectively, and $f : H_1 \to H_2$ be an onto homomorphism. Then $(H_2, \circ_2, 0)$ is a left absorbing hyper K-algebra.

Proof. Let $t, s \in H_2$. Since f is an onto homomorphism, there exist $x, y \in H_1$ that f(x) = t and f(y) = s. Since $(H_1, \circ_1, 0)$ is a left absorbing hyper K-algebra, we have $x \in x \circ_1 y$. So $f(x) \in f(x \circ_1 y) = f(x) \circ_2 f(y) = t \circ_2 s$ and $(H_2, \circ_2, 0)$ is a left absorbing hyper K-algebra.

Theorem 3.7. Let H_1 and H_2 be two left absorbing hyper K-algebras. Then $H = H_1 \times H_2$ is a left absorbing hyper K-algebra.

Proof. By Theorem 2.4, H is a hyper K-algebra. Since $x_1 \in x_1 \circ_1 x_2$ and $y_1 \in y_1 \circ_2 y_2$ we have $(x_1, y_1) \in (x_1 \circ_1 x_2, y_1 \circ_2 y_2) = (x_1, y_1) \circ (x_2, y_2)$ and the proof is complete.

Theorem 3.8. Let $(H, \circ, 0)$ be a left absorbing hyper K-algebra. Then the hyper operation \circ is order preserving, i.e. if y < z then $x \circ y < x \circ z$ and $y \circ x < z \circ x$, for all $x, y, z \in H$. Also if B < C then $A \circ B < A \circ C$ and $B \circ A < C \circ A$, for all subsets A, B and C of H. *Proof.* Since $x \in x \circ t$ for all $x, t \in H$ we get $x \circ y < x \circ z$. Also y < z implies $y \circ x < z \circ x$, since $y \in y \circ x$ and $z \in z \circ x$. The proof of the other cases are similar.

Theorem 3.9. Let $(H, \circ, 0)$ be a simple hyper K-algebra. Then H is a left absorbing hyper K-algebra.

Proof. Let $x, y \in H$. By Theorem 2.2 (iv), we have $x \circ y < x$, so there exist $a \in x \circ y$ where a < x. Since H is simple we get a = 0 or a = x. If a = 0 then $0 \in x \circ y$ which is a contradiction to the simplicity of H. Thus a = x and $x \in x \circ y$.

Theorem 3.10. Let $(H, \circ, 0)$ be a simple left absorbing hyper K-algebra. Then for all $x \in H$, $0 \circ 0 \subseteq x \circ x$.

Proof. By (HK2), (HK3) and Theorem 2.6, we have $0 \circ 0 \subseteq (x \circ x) \circ 0 = (x \circ 0) \circ x = x \circ x$.

In Example 3.5, $(H, \circ_1, 0)$ is a left absorbing hyper K-algebra but it is not simple and $0 \circ_1 0 \not\subseteq 2 \circ_1 2$.

It is clear that any implicative hyper K-algebra is weak implicative hyper K-algebra but the converse is not true. For example, $(H, \circ_2, 0)$ in Example 3.5, is weak implicative hyper K-algebra but it is not implicative hyper K-algebra. The following theorem shows that these concepts are equivalent when the hyper K-algebra is left absorbing.

Theorem 3.11. Let $(H, \circ, 0)$ be a left absorbing hyper K-algebra. Then H is implicative hyper K-algebra.

Proof. Since $x \in x \circ (y \circ x)$, by definition 2.7(iii), H is implicative. \Box

Theorem 3.12. Let $(H, \circ, 0)$ be a left absorbing hyper K-algebra and $0 \in I \subseteq H$. Then I is a weak hyper K-ideal.

Proof. Let $x \circ y \subseteq I$ and $y \in I$. Since H is a left absorbing hyper K-algebra we have $x \in I$.

The left absorbing condition in Theorem 3.12 is necessary, since $I = \{0, 1\}$ is not weak hyper K-ideal of $(H, \circ_2, 0)$ in Example 3.5, because $2 \circ_2 1 \subseteq I$ and $2 \notin I$. Even, under condition of Theorem 3.12, I may not be hyper K-ideal of H. Because $I = \{0, 1\}$ is not a hyper K-ideal of $(H, \circ_1, 0)$ in Example 3.5, since $2 \circ_1 1 < I$ and $2 \notin I$. Now, we want to study the relationship between all types of positive implicative and commutative hyper K-ideals. We show that all types of these two hyper K-ideals form a distributive lattice. Also, we investigate these relationships in a left absorbing hyper K-algebra.

3.1. Lattice of I - PIHKI(i, j, k) and left absorbing hyper K-algebras.

Theorem 3.13. Let A and I be two nonempty subsets of a hyper K-algebra H. Then AR_iI imply AR_jI iff $i \leq j$ where $i, j, k \in \{1, 2, 3\}$.

Proof. Since $A \subseteq I \Rightarrow A \cap I \neq \emptyset \Rightarrow A < I$, by notation 2.10, we have $AR_iI \Rightarrow AR_jI$ iff $i \leq j$.

Theorem 3.14. Let H be a hyper K-algebra and L be a set of I - PIHKI(i, j, k) on H, such that I is fixed and $i, j, k \in \{1, 2, 3\}$. Then (L, \sqsubseteq) is a distributive lattice where $(i, j, k) \sqsubseteq (i', j', k')$ iff $i \ge i', j \ge j'$ and $k \le k'$.

Proof. Let $L = (\{(i, j, k) | i, j, k \in \{1, 2, 3\}\}, \subseteq)$ and $L_1 = (\{1, 2, 3\}, \leq)$ where \leq is usual order and L_2 is dual of L_1 . Then it is clear that L_1 and L_2 are chains, so (L, \sqsubseteq) is isomorphic to $L_2 \times L_2 \times L_1$ and by Theorems 2.19 and 2.20, (L, \sqsubseteq) is a distributive lattice. \Box

The diagram of the lattice introduced in Theorem 3.14 is as Figure 1 (for simplicity, we use ijk instead of I - PIHKI(i, j, k)), if I be a hyper K-ideal of H, then by Theorems 3.15, 3.17, 3.18 and 3.19 in Ref. [9], AR_2I is equivalent to AR_3I and in this case, its diagram is as Figure 2. In the following diagrams, any two comparable elements are joined by lines and non-comparable elements are not joined. Moreover, in such a way that if $ijk \leq i'j'k'$ then ijk lies left i'j'k' in the Figure 1.

Theorem 3.15. Let $(H, \circ, 0)$ be a left absorbing hyper K-algebra and $0 \in I \subseteq H$. Then I is a I - PIHKI(1, j, k) where $j, k \in \{1, 2, 3\}$.

Proof. Let $(x \circ y) \circ z \subseteq I$. Since H is left absorbing hyper K-algebra we have, $x \circ z \subseteq (x \circ y) \circ z \subseteq I$ and by Theorem 3.13 the proof is complete.

The following example shows that in Theorem 3.15, the left absorbing condition of H is necessary.

Example 3.16. Consider a hyper K-algebra $H = \{0, 1, 2\}$ with Cayley table as follows. Then $(H, \circ, 0)$ is not left absorbing and $I = \{0, 1\}$ is not a I - PIHKI(1, 1, 3). Since $(2 \circ 1) \circ 0 = \{1\} \subseteq I$ and $1 \circ 0 \subseteq I$ but $2 \circ 0 \not\leq I$.

If H be a left absorbing hyper K-algebra then all I - PIHKI(1, j, k)where $j, k \in \{1, 2, 3\}$ are equivalent to each other and the diagram of

FIGURE 1. Diagram of I - PIHKI(i, j, k)

FIGURE 2. Diagram of I - PIHKI(i, j, k), when I is a hyper K-ideal

0	0	1	2
0	{0}	{0}	{0}
1	{1}	$\{0\}$	$\{0,1\}$
2	$\{2\}$	$\{1\}$	$\{0,1,2\}$

I - PIHKI(i, j, k), is as Figure 3. when I is a hyper K-ideal, its diagram is as Figure 4.

3.2. Lattice of I-CHKI(i, j) and left absorbing hyper K-algebras.

Theorem 3.17. Let H be a hyper K-algebra and L' be a set of I - CHKI(i, j) on H, such that I is fixed and $i, j \in \{1, 2, 3\}$. Then (L', \preceq) is a distributive lattice where $(i, j) \preceq (i', j')$ iff $i \ge i'$ and $j \le j'$.

Proof. The proof is similar to the proof of Theorem 3.14.

The diagram of the lattice introduced in Theorem 3.17 is as Figure 5 and if I is a hyper K-ideal of H, then its diagram is as Figure 6.

Theorem 3.18. Let $(H, \circ, 0)$ be a left absorbing hyper K-algebra. Then every nonempty subset of H containing 0 is a I - CHKI(1, j); $j \in \{2, 3\}$.

Proof. By according to Figure 5, it is sufficient to prove the theorem for type (1, 2). Let $0 \in I \subseteq H$ and $(x \circ y) \circ z \subseteq I, z \in I$. Since H is left absorbing hyper K-algebra, we have $x \in I$. So $x \circ (y \circ (y \circ x)) \cap I \neq \emptyset$. \Box

The following example shows that in Theorem 3.18, the left absorbing condition of H is necessary.

Example 3.19. In Example 3.16, $(H, \circ, 0)$ is not a left absorbing hyper K-algebra and $I = \{0, 1\}$ is not a I - CHKI(1, 3). Since $(2 \circ 0) \circ 1 = \{1\} \subseteq I$ but $2 \circ (0 \circ (0 \circ 2)) = \{2\} \not \subset I$.

By considering Theorem 3.18 and Figure 5, we see that I-CHKI(1, j) where $j \in \{2, 3\}$ are equivalent to each other, so Figure 5 changes to Figure 7 and when I is a hyper K-ideal its diagram is as Figure 8.

Theorem 3.20. Let $(H, \circ, 0)$ be a left absorbing hyper K-algebra. Then $I = \{0\}$ is a I - CHKI(i, j); $i, j \in \{2, 3\}$.

Proof. Considering Figure 5, it is sufficient to prove the theorem for type (3, 2). Let $(x \circ y) \circ 0 < I = \{0\}$, by Definition 2.1, there exists $a \in x \circ y$ such that $a \circ 0 < \{0\}$. So $a \in a \circ 0 = \{0\}$ and $0 \in x \circ y$. Since H is left absorbing, we have $x \circ y \subseteq x \circ (y \circ (y \circ x))$ and $0 \in (x \circ (y \circ (y \circ x))) \cap I \neq \emptyset$. Thus $x \circ (y \circ (y \circ x)) \cap I \neq \emptyset$ and $I = \{0\}$ is a I - CHKI(3, 2).

The following example shows that in Theorem 3.20, the left absorbing condition of H is necessary.

Example 3.21. In the following hyper K-algebra, we see that $H = \{0, 1, 2, 3\}$ is not left absorbing and $I = \{0\}$ is not a I - CHKI(2, 3). Since $(3 \circ 2) \circ 0 = \{0, 1\} \cap I \neq \emptyset$ but $3 \circ (2 \circ (2 \circ 3)) = \{3\} \not < I$.

0	0	1	2	3
0	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$
1	{1}	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{1,2\}$	$\{0,1\}$	$\{2\}$
3	{3}	{3}	$\{0,1\}$	$\{0,1\}$

Theorem 3.22. Let $(H, \circ, 0)$ be a left absorbing hyper K-algebra and $I \subseteq H$ be a I - CHKI(i, 1); $i \in \{2, 3\}$. Then I is a weak hyper K-ideal of H.

Proof. Let $x \circ y \subseteq I$ and $y \in I$. Since H is left absorbing, we have $x \circ y \subseteq (x \circ y) \circ 0$, by Theorem 3.13, $(x \circ y) \circ 0R_iI$ where $i \in \{2, 3\}$, by assumption we have $x \circ (y \circ (y \circ x)) \subseteq I$. Since H is left absorbing, we get $x \in I$ and I is a weak hyper K-ideal.

Theorem 3.23. Let $(H, \circ, 0)$ be a left absorbing hyper K-algebra and $I \subseteq H$ be a I - CHKI(3, 1). Then I is a hyper K-ideal of H.

Proof. Let $x \circ y < I$ and $y \in I$. Since H is left absorbing, we have $x \circ y \subseteq (x \circ y) \circ 0$, so $(x \circ y) \circ 0 < I$. By assumption of theorem, we have $x \in x \circ (y \circ (y \circ x)) \subseteq I$ and the proof is complete.

The following example shows that the converse of the above theorem is not true in general.

Example 3.24. Consider $H = \{0, 1, 2\}$. Then $(H, \circ, 0)$ is a left absorbing hyper K-algebra. It could be easly seen that $I = \{0, 1\}$ is a hyper K-ideal of H, but is not I - CHKI(3, 1). Because, $(1 \circ 0) \circ 0 = \{1, 2\} < I$ and $1 \circ (0 \circ (0 \circ 1)) = \{1, 2\} \nsubseteq I$

0	0	1	2
0	{0}	{0}	{0}
1	$\{1,2\}$	$\{0,1\}$	$\{0,1\}$
2	$\{2\}$	$\{2\}$	$\{0,1,2\}$

Theorem 3.25. Let $(H, \circ, 0)$ be a left absorbing hyper K-algebra. Then the only implicative hyper K-ideal of H is H.

Proof. Let $I \subseteq H$ be an implicative hyper K-ideal of H and $x \in H$. Since H is left absorbing, we have $x \in x \circ x$ and so $0 \in x \circ x \subseteq x \circ (x \circ x)$ and consequently $x \circ (x \circ x) < I$. By assumption $x \in I$ and $H \subseteq I$, so I = H.

The following table shows that the converse of the above theorem is not true in general.

Example 3.26. The following table shows a hyper K-algebra structure on $H = \{0, 1, 2\}$, but not left absorbing hyper K-algebra. $I = \{0\}$, $\{0, 1\}$ and $\{0, 2\}$ are not Since $2 \circ (2 \circ 2) < \{0, 1\}$ but $2 \notin \{0, 1\}$. So $I = \{0, 1\}$ is not an implicative hyper K-ideal of H. Similarly, $I = \{0\}$ and $I = \{0, 2\}$ are not an implicative hyper K-ideal of H. Consequently, I = H is the only implicative hyper K-ideal of H.

0	0	1	2
0	{0}	{0}	{0}
1	{1}	$\{0,2\}$	$\{2\}$
2	$\{2\}$	$\{0,\!1\}$	$\{0,1\}$

Theorem 3.27. Let $(H, \circ, 0)$ be a left absorbing hyper K-algebra. Then every nonempty subset of H containing 0 is a weak implicative hyper K-ideal of H.

Proof. Let $0 \in I \subseteq H$ and $x \circ (y \circ x) \subseteq I$. Since H is left absorbing hyper K-algebra we have $x \in x \circ (y \circ x) \subseteq I$. So $x \in I$ and the proof is complete. \Box

Example 3.28. Let $H = \{0, 1, 2\}$ and consider the following table. We see that H is not left absorbing hyper K-algebra and $I = \{0, 2\}$ is not a weak implicative hyper K-ideal of H. Since $(1 \circ 2) \circ (2 \circ 1) = \{0\} \subseteq I$ but $1 \notin I$.

0	0	1	2
0	{0}	{0}	$\{0\}$
1	{1}	$\{0\}$	$\{0\}$
2	{2}	$\{1\}$	$\{0,\!1\}$

OPEN PROBLEM: Under what suitable condition a left absorbing hyper operation satisfies axiom (HK2)?

Conclusion. In this study, authors reduced the conditions necessary to be hyper K-algebra of a hyper operation by introducing left absorbing hyper K-algebras and proved the theorems related to them. Also it was showed that the types of positive implicative and commutative hyper K-ideals form a distributive lattice. Theorems 3.18 and 3.20 is proved by using the figures of these lattices.

References

- A. Boromand saeid, R. A. Borzooei and M. M. Zahedi, (Weak) implicative hyper K-ideal, Bull. Korean Math. Soc., 40 (2003), 123–137.
- R. A. Borzooei, M. Bakhshi, Lattices Structures on Ideals of a BCK-algebras, J. MULT-VALUED LOG. S., 18 (2012), 387–399.
- R. A. Borzooei, A. Hasankhani, M. M. Zahedi, and Y. B. Jun, On hyper Kalgebras, Sci. Math. Jpn., 52(1) (2000), 113–121.

- Y. Imai and K. Iséki, On axiom systems of propositional calculi xiv, Proc. Japan Academi, 42 (1966), 19–22.
- Y. B. Jun, x. L. xin, E. H. Roh, and M. M. Zahedi, Strong on hyper BCK-ideals of hyper BCK-algebras, *Math. Japon.*, 51(3) (2000), 493–498.
- Vijay K. Khanna, Lattices and boolean algebras, Vikas Publishing House Pvt Ltd, 1994.
- F. Marty, Sur une generalization de la notion de groups, 8th congress Math Scandinavies, Stockholm, (1934), 45–49.
- M. A. Nasr-Azadani and M. M. Zahedi, Quasi union hyper K- algebras, *Quasi-groups Relat. Syst.*, 16 (2008), 77–88.
- T. Roodbari and M. M. Zahedi, Positive implicative hyper K-ideals II, Mathematica Japonicae Online, e(2007), 507–520.
- T. Roodbari and L. Torkzadeh and M. M. Zahedi, Simple hyper K-algebras, Quasigroups Relat. Syst., 16 (2008), 131–140.
- M. M. Zahedi, R. A. Borzooei, Y. B. Jun, and A. Hasankhani, Some results on hyper K-algebra, *Sci. Math. Jpn.*, 3(1) (2000), 53–59.

Soodabeh Madadi-Dargahi

Department of Mathematics, University of SHAHED, Tehran, Iran. Email: madadisudabe@yahoo.com

Mohammad Ali Nasr-Azadani

Department of Mathematics, University of SHAHED, P.O.Box 18151-159, Tehran, Iran.

Email: nasr@shahed.ac.ir

Systems Algebraic of Journal

LEFT ABSORBING HYPER K-ALGEBRAS

S. MADADI AND M. A. NASR-AZADANI

ابر K-جبرهای چپ جاذب ^۱سودابه مددی و ^۲محمد علی نصر آزادانی ^{۱,۲}دانشگاه شاهد، تهران، ایران

چکیده: در این مقاله، به معرفی یک نوع از ابر K-جبرها که به آن ابر K-جبرهای چپ جاذب گوییم، می پردازیم. سپس برخی از خواص این دسته را بررسی می کنیم. هم چنین نشان می دهیم که انواع ابر K-ایده ال های استلزامی مثبت و جابه جایی یک مشبکه توزیع پذیر را تشکیل می دهند و مودارهای آن ها را در حالتی که ابر K-جبر چپ جاذب و ابر K-ایده ال های استلزامی مثبت و جابه جایی یک مشبکه توزیع پذیر را تشکیل می دهند و جابه نمودارهای آن ها را در حالتی که ابر K-برهای چپ جاذب انواع ابر K-برهای یک مثبکه توزیع پذیر را تشکیل می دهند و جابه بایی یک مشبکه توزیع پذیر را تشکیل می دهند و جابه مودارهای آن ها را در حالتی که ابر K-جبر چپ جاذب و ابر K-ایده ال های استلزامی مثبت و جابه جایی، یک ابر K-ایده ال باشند، مطالعه می کنیم.

کلمات کلیدی: ابر K-جبر، ابر K-ایده ال، ابر K-ایده ال استلزامی مثبت، ابر K-ایده ال جابه جایی.