Journal of Algebraic Systems

Vol. 9, No. 2, (2022), pp 203-217

ANNIHILATING-IDEAL GRAPH OF $C(X)$

M. BADIE

Abstract

The annihilating-ideal graph of the ring $C(X)$ is studied. It is tried to associate the graph properties of $\mathbb{A} \mathbb{G}(X)$, the ring properties of $C(X)$ and the topological properties of X. It is shown that X has an isolated point if and only if \mathbb{R} is a direct summand of $C(X)$ and this happens if and only if $\mathbb{A} \mathbb{G}(X)$ is not triangulated. Radius, girth, dominating number and clique number of $\mathbb{A} \mathbb{G}(X)$ are investigated. It is proved that $c(X) \leqslant \operatorname{dt}(\mathbb{A} \mathbb{G}(X)) \leqslant w(X)$ and $\omega \mathbb{A} \mathbb{G}(X)=\chi \mathbb{A} \mathbb{G}(X)=c(X)$.

1. Introduction

Let $G=\langle V(G), E(G)\rangle$ be an undirected graph. A vertex adjacent to just one vertex is called a pendant vertex. The degree of a vertex of G is the number of vertices adjacent to the vertex. If G has a vertex adjacent to all other vertices and all other vertices are pendant, then G is called a star graph. For each pair of vertices u and v in $V(G)$, the length of the shortest path between u and v, denoted by $d(u, v)$, is called the distance between u and v. The diameter of G is defined $\operatorname{by} \operatorname{diam}(G)=\sup \{d(u, v): u, v \in V(G)\}$. The eccentricity of a vertex u of G, denoted by $\operatorname{ecc}(u)$, is defined to be $\max \{d(u, v)$: $v \in G\}$. The minimum of $\{\operatorname{ecc}(u): u \in G\}$, denoted by $\operatorname{Rad}(G)$, is called the radius of G. For every $u, v \in V(G)$, we denote the length of the shortest cycle containing u and v by gi (u, v) and the minimum

[^0]length of cycles in G, is denoted by $\operatorname{girth}(G)$ and is called the girth of graph, so $\operatorname{girth}(G)=\min \{\operatorname{gi}(u, v): u, v \in V(G)\}$. We say G is triangulated (hypertriangulated) if each vertex (edge) of G is a vertex (edge) of some triangle. A subset D of $V(G)$ is called a dominating set if for each $u \in V(G) \backslash D$, there is some $v \in D$, such that v is adjacent to u. The dominating number of G, denoted by $\operatorname{dt}(G)$, is the smallest cardinal number of dominating sets of G. Two vertices u and v are called orthogonal and is denote by $u \perp v$, if u and v are adjacent and there is no vertex which adjacent to both vertices u and v. If for every $u \in V(G)$, there is some $v \in V(G)$ such that $u \perp v$, then G is called complemented. A subset of a graph G is called a clique of G if each pair of vertices of this subset are adjacent. The supremum of the cardinality of cliques of G, denoted by $\omega(G)$, is called the clique number of G. The chromatic number of G, denoted by $\chi(G)$, is the minimum cardinal number of colors needed to color vertices of G so that no two vertices have the same color. Clearly, $\omega(G) \leqslant \chi(G)$. A subset of vertices of a graph is called independent if no two adjacent vertices of this subset are adjacent. A bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets U and V such that every edge connects a vertex in U to one in V.

Throughout the paper, R denotes a commutative ring with unity. For each subset S of R and each element a of R, we denote $\{x \in$ $R: a x \in S\}$ by $(S: a)$. When $I=\langle 0\rangle$ we write $\operatorname{Ann}(a)$ instead of $(\langle 0\rangle: a)$ and call this the annihilator of a. If for each subset S of R, there is some $a \in R$ such that $\operatorname{Ann}(S)=\operatorname{Ann}(a)$, then we say R satisfies infinite annihilating condition (R is an i.a.c ring). An ideal I is called annihilating ideal if $\operatorname{Ann}(I) \neq\{0\}$. We denote the family of all non-zero annihilating ideals of R by $\mathbb{A}(R)^{*}$. We denote by $\mathbb{A} \mathbb{G}(R)$ the graph with vertices $\mathbb{A}(R)^{*}$, and two distinct vertices I and J are adjacent, if $I J=\{0\}$.

In this paper, X denotes a Tychonoff space and $C(X)$ denotes the set of all real-valued continuous functions on X. The weight of X, denoted by $w(X)$, is the infimum of the cardinalities of bases of X. The cellularity of X, denoted by $c(X)$, is defined as
$\sup \{|\mathcal{U}|: \mathcal{U}$ is a family of mutually disjoint nonempty open subsets of $X\}$.
For any $f \in C(X)$, we denote $f^{-1}\{0\}$ and $X \backslash f^{-1}\{0\}$ by $Z(f)$ and $\operatorname{Coz}(f)$, respectively. Every set of the form $Z(f)$ (resp., $\operatorname{Coz}(f))$ is called a zeroset (resp., cozero set). The family of all zerosets of X is denoted by $Z(X)$. An ideal I of $C(X)$ is called fixed (free) if $\bigcap_{f \in I} Z(f) \neq \emptyset\left(\bigcap_{f \in I} Z(f)=\emptyset\right)$. For a subset A of X, we denote $\{f \in C(X): A \subseteq Z(f)\}$ and $\{f \in C(X): A \subseteq$ $\left.Z(f)^{\circ}\right\}$ by M_{A} and O_{A}, respectively. When $A=\{p\}$, we write M_{p} and O_{p}
instead of $M_{\{p\}}$ and $O_{\{p\}}$, respectively; it is clear that $M_{A}=\bigcap_{p \in A} M_{p}$ and $O_{A}=\bigcap_{p \in A} O_{p}$. For each space $X, \beta X$ denotes Stone-Cěch compactification of X. By [11, Theorem 7.3(Gelfand-Kolmogoroff)], $\left\{M^{p}: p \in \beta X\right\}$ is the family of all maximal ideal of $C(X)$. An ideal I of $C(X)$ is called a z ideal, if the conditions $Z(f)=Z(g)$ and $f \in I$, implies $g \in I$. For each subset \mathcal{F} of $Z(X)$ and S of $C(X)$, we denote $\{f \in C(X): Z(f) \in \mathcal{F}\}$ and $\{Z(f): f \in S\}$ by $Z^{-1}(\mathcal{F})$ and $Z(S)$, respectively. Clearly, for every ideal I of $C(X), Z^{-1}(Z(I))$ is the smallest z-ideal containing I. For more details, we refer the reader to $[4,9,11,15]$.

Graphs on $C(X)$ are studied in a number of interesting investigations, in which attempts are made to associate the ring properties of $C(X)$, the graph properties of graphs on $C(X)$ and the topological properties of X. In $[3,5,6]$, the zero-divisor graph, the comaximal ideal graph of $C(X)$ and comaximal graph of $C(X)$ were studied. Papers [7, 8] are studies that embarked on investigating the annihilating-ideal graph of commutative rings. Later on, this line of research was pursued in several papers, including $[1,2,10,12$, 13, 14].

The main purpose of this paper is studying the annihilating-ideal graph of $C(X)$. We abbreviate $\mathbb{A}(C(X))^{*}$ and $\mathbb{A} \mathbb{G}(C(X))$ by $\mathbb{A}(X)^{*}$ and $\mathbb{A} \mathbb{G}(X)$, respectively. If $|X|=1$, then $\mathbb{A}(X)^{*}=\emptyset$, so we assume $|X|>1$, throughout the paper.

In the rest part of this section, we put forward a number of propositions immediately concluded from the native algebraic properties of $C(X)$ and $[5,7,8]$. In Section 2, we define maps \mathbf{O} from the family of all subsets of $C(X)$ onto the family of all open subsets of X and \mathbf{I} from the family of all subsets of X into the family of all ideals of $C(X)$. We study these maps and apply these notions to study the graph. We show that I is adjacent to J if and only if $\mathbf{O}(I) \cap \mathbf{O}(J)=\emptyset$, the non-zero ideal I is an annihilating ideal if and only if $\overline{\mathbf{O}(I)} \neq X, \mathbf{I}(U) \in \mathbb{A}(X)^{*}$ if and only if $\bar{U}^{\circ} \neq \emptyset$. In Section 3, we investigate the radius of the graph and we show that $\mathbb{A} \mathbb{G}(X)$ is a star graph if and only if $|X|=2$. Section 4, is devoted to the girth of the graph. In this section we show that if $|X|>2$, then $\operatorname{girth} \mathbb{A}(X)=3$; also, we show that an ideal I in $\mathbb{A}(X)^{*}$ is a pendant vertex if and only if $X \backslash \overline{\mathbf{O}(I)}$ is singleton. The study of dominating number of the graph is the subject of Section 5 . In this section we show that both $\omega \mathbb{A} \mathbb{G}(X)$ and $\chi \mathbb{A} \mathbb{G}(X)$ are identical with the cellularity of X.

Proposition 1.1. The following statements are equivalent.
(a) $|X|=2$.
(b) $\operatorname{diam}(\mathbb{A} \mathbb{G}(X))=1$.
(c) $\omega \mathbb{A} \mathbb{G}(X)=2$.
(d) $\mathbb{A} \mathbb{G}(X)$ is a bipartite graph by two nonempty parts.
(e) $\mathbb{A} \mathbb{G}(X)$ is a complete bipartite graph by two nonempty parts.

Proof. It is concluded from [8, Theorem 1.4] and [14, Corollary 2.1].

Proposition 1.2. The following statements hold.
(a) X has at least 3 points, if and only if $\operatorname{diam}(\mathbb{A} \mathbb{G}(X))=3$.
(b) $\chi(\mathbb{A} \mathbb{G}(X))=\omega(\mathbb{A} \mathbb{G}(X))$.

Proof. (a). It is concluded from [8, Proposition 1.1], [5, Corollary 1.3] and the previous proposition.
(b). It is evident, by [8, Corollary 2.11].

The following proposition is an immediate consequence of [7, Theorem 1.4], [8, Corollaries 2.11 and 2.12] and the fact that X is finite if and only if $C(X)$ has just finitely many ideals. We note that for each ring R the zero-divisor graph $\Gamma(R)$ is a graph with vertices of all nonzero zero-divisor elements of R, and two vertices x and y are adjacent, if $x y=0$.

Proposition 1.3. The following statements are equivalent.
(a) $\mathbb{A} \mathbb{G}(X)$ is a finite graph.
(b) $C(X)$ has only finitely many ideals.
(c) Every vertex of $\mathbb{A} \mathbb{G}(X)$ has a finite degree.
(d) X is finite.
(e) $\chi(\mathbb{A} \mathbb{G}(X))$ is finite.
(f) $\omega(\mathbb{A} \mathbb{G}(X))$ is finite.
(g) $\mathbb{A} \mathbb{G}(X)$ does not have an infinite clique.
(h) $\chi(\Gamma(C(X)))$ is finite.

2. $\mathbf{I}(U)$ and $\mathbf{O}(I)$

We denote (for simplicity and studying map properties) two concepts in the form of maps. For each subset S of $C(X)$, we denote $\bigcup_{f \in S} \operatorname{Coz}(f)$ by $\mathbf{O}(S)$, and for each subset U of X, we denote $\{f \in C(X): U \subseteq \mathrm{Z}(f)\}=$ $M_{U}=\bigcap_{a \in U} M_{a}$ by $\mathbf{I}(U)$. It is clear that $\mathbf{O}(S)=X \backslash\left(\bigcap_{f \in S} \mathrm{Z}(f)\right)$ and if G is an open set in X, then $\mathbf{I}(G)=O_{G}$. First, in this section we study the properties of these maps, then utilizing the maps, the edges and vertices of $\mathbb{A} \mathbb{G}(X)$ are investigated.

Lemma 2.1. Let S and T be two subsets of $C(X), f$ be an element of $C(X)$ and U, V be two subsets of X. The following hold.
(a) If $S \subseteq T$, then $\mathbf{O}(S) \subseteq \mathbf{O}(T)$.
(b) If $U \subseteq V$, then $\mathbf{I}(V) \subseteq \mathbf{I}(U)$.
(c) $\mathbf{O}(S)=\emptyset$ if and only if $S=\{0\}$.
(d) $\mathbf{O}(S)=X$ if and only if $\langle S\rangle$ is a free ideal.
(e) $\mathbf{I}(U)=\{0\}$ if and only if U is dense in X.
(f) $\mathbf{I}(U)=C(X)$ if and only if $U=\emptyset$.
(g) $\mathbf{O}(\langle f\rangle)=\operatorname{Coz}(f)$.
(h) $\mathbf{I}(U)=\mathbf{I}(\bar{U})$.

Proof. It is straightforward.

Proposition 2.2. Let S be a subset of $C(X)$. If $I=\langle S\rangle$, then $\mathbf{O}(I)=$ $\mathbf{O}(S)$.

Proof. It is straightforward.
Proposition 2.3. Let $\left\{I_{\alpha}\right\}_{\alpha \in A}$ be a family of ideals of $C(X), I$ and J be ideals of $C(X),\left\{U_{\alpha}\right\}_{\alpha \in A}$ be a family of subsets of X and U and V be subsets of X. Then the following hold.
(a) $\mathbf{O}\left(\sum_{\alpha \in A} I_{\alpha}\right)=\bigcup_{\alpha \in A} \mathbf{O}\left(I_{\alpha}\right)$.
(b) $\mathbf{O}\left(\bigcap_{\alpha \in A} I_{\alpha}\right) \subseteq \bigcap_{\alpha \in A} \mathbf{O}\left(I_{\alpha}\right)$.
(c) $\mathbf{I}\left(\bigcup_{\alpha \in A} U_{\alpha}\right)=\bigcap_{\alpha \in A} \mathbf{I}\left(U_{\alpha}\right)$.
(d) $\mathbf{O}(I \cap J)=\mathbf{O}(I) \cap \mathbf{O}(J)$.
(e) $\mathbf{I}(U \cap V) \supseteq \mathbf{I}(U)+\mathbf{I}(V)$.

Proof. It is straightforward.
In the following examples we show that the equality in parts (b) and (e) of the above proposition need not be established.

Example 2.4. Consider the ring $C(\mathbb{R})$. For each $r \in \mathbb{Q}$, we have $\mathbf{O}\left(M_{r}\right)=$ $\mathbb{R} \backslash\{r\}$, thus $\bigcap_{r \in Q} \mathbf{O}\left(M_{r}\right)=\mathbb{R} \backslash \mathbb{Q}$. Also $\bigcap_{r \in \mathbb{Q}} M_{r}=M_{\mathbb{Q}}=\{0\}$, so $\mathbf{O}\left(\bigcap_{r \in \mathbb{Q}} M_{r}\right)=\mathbf{O}(\{0\})=\emptyset$.

Example 2.5. Consider $C(\mathbb{R})$. Easily we can see that, $\mathbf{I}(\mathbb{Q})=\{0\}=$ $\mathbf{I}(\mathbb{R} \backslash \mathbb{Q})$, and thus $\mathbf{I}[\mathbb{Q} \cap(\mathbb{R} \backslash \mathbb{Q})]=\mathbf{I}(\emptyset)=C(\mathbb{R}) \neq\{0\}=\mathbf{I}(\mathbb{Q})+\mathbf{I}(\mathbb{R} \backslash \mathbb{Q})$.

Corollary 2.6. Let U and V be subsets of X. The following are equivalent.
(a) $U \cup V$ is dense in X.
(b) $\mathbf{I}(U) \cap \mathbf{I}(V)=\{0\}$.
(c) $\mathbf{I}(U) \mathbf{I}(V)=\{0\}$.

Proof. It follows from Lemma 2.1 and Proposition 2.3.
Proposition 2.7. Let I be an ideal of $C(X)$ and U be a subset of X. The following hold.
(a) $\mathbf{O}(\mathbf{I}(U))=(X \backslash U)^{\circ}$.
(b) $\mathbf{I}(\mathbf{O}(I))=\operatorname{Ann}(I)$.
(c) $(\mathbf{I O})^{3}(I)=(\mathbf{I O})(I)$.
(d) $\mathbf{O}(\operatorname{Ann}(I))=(X \backslash \mathbf{O}(I))^{\circ}$.

Proof. (a). $\mathbf{O}(\mathbf{I}(U))=\bigcup_{f \in \mathbf{I}(U)} \operatorname{Coz}(f)=\bigcup_{Z(f) \supseteq U} \operatorname{Coz}(f)=\bigcup_{\operatorname{Coz}(f) \subseteq X \backslash U} \operatorname{Coz}(f)=$ $(X \backslash U)^{\circ}$.
(b).

$$
\begin{aligned}
f \in \operatorname{Ann}(I) & \Leftrightarrow \quad \forall g \in I \quad f g=0 \\
& \Leftrightarrow \quad \forall g \in I \quad \mathrm{Z}(f) \cup \mathrm{Z}(g)=X \\
& \Leftrightarrow \quad \forall g \in I \quad \operatorname{Coz}(g) \subseteq \mathrm{Z}(f) \\
& \Leftrightarrow \quad \bigcup_{g \in I} \operatorname{Coz}(g) \subseteq \mathrm{Z}(f) \\
& \Leftrightarrow \quad \mathbf{O}(I) \subseteq \mathrm{Z}(f) \\
& \Leftrightarrow \quad f \in \mathbf{I}(\mathbf{O}(I))
\end{aligned}
$$

Thus $\operatorname{Ann}(I)=\mathbf{I}(\mathbf{O}(I))$.
(c). Since $\mathrm{Ann}^{3}(I)=\operatorname{Ann}(I)$, it follows from (b), immediately.
(d). By (b) and (a), $\mathbf{O}(\operatorname{Ann}(I))=\mathbf{O}(\mathbf{I}(\mathbf{O}(I)))=(X \backslash \mathbf{O}(I))^{\circ}$.

Now the following corollary can be concluded from parts (a) and (e) of Proposition 2.7 and Lemma 2.1(e).

Corollary 2.8. Suppose that I is a non-zero ideal of $C(X)$ and $U \subseteq X$.
(a) $I \in \mathbb{A}(X)^{*}$ if and only if $\overline{\mathbf{O}(I)} \neq X$.
(b) $\mathbf{I}(U) \in \mathbb{A}(X)^{*}$ if and only if $\bar{U}^{\circ} \neq \emptyset$.

Corollary 2.9. If I is an annihilating ideal of $C(X)$, then I is a fixed ideal.

Proof. Since I is annihilating, $\operatorname{Ann}(I) \neq\{0\}$, so Proposition 2.7, deduces $\mathbf{I}(\mathbf{O}(I)) \neq\{0\}$, hence $\mathbf{O}(I)$ is not dense, by Lemma 2.1. Thus $\mathbf{O}(I) \neq X$ and therefore $\bigcap_{f \in I} \mathrm{Z}(f)=X \backslash \mathbf{O}(I) \neq \emptyset$, so I is a fixed ideal.

The converse of the above corollary need not be true, for instance $M_{0} \subseteq$ $C(\mathbb{R})$ is a fixed ideal which is not an annihilating ideal.

Corollary 2.10. Let P be a prime ideal of $C(X) . P$ is annihilating if and only if there is some isolated point p in X such that $P=M_{p}=O_{p}$.

Proof. (\Rightarrow). By Corollary 2.9, P is fixed, so there is some $p \in X$ such that $O_{p} \subseteq P \subseteq M_{p}$. Thus $\mathbf{O}(P)=X \backslash\left(\bigcap_{f \in P} \mathrm{Z}(f)\right)=X \backslash\{p\}$. Since P is annihilating, $\operatorname{Ann}(P) \neq\{0\}$ and therefore $\mathbf{I}(\mathbf{O}(P)) \neq\{0\}$, by Proposition 2.7. Now Lemma 2.1, deduces $X \backslash\{p\}$ is not dense and thus p is an isolated point. Consequently, $P=M_{p}=O_{p}$.
(\Leftarrow). Since $P=M_{p}, \mathbf{O}(P)=X \backslash\left(\bigcap_{f \in P} \mathrm{Z}(f)\right)=X \backslash\{p\}$. Since p is an isolated point, it follows that $\mathbf{O}(P)$ is not dense in X, thus $\mathbf{I}(\mathbf{O}(P)) \neq$ $\{0\}$, by Lemma 2.1. Now Proposition 2.7, entails that $\operatorname{Ann}(P) \neq\{0\}$ and therefore P is annihilating.

Lemma 2.11. If G is an open subset of X, then an ideal I exists such that $\mathbf{O}(I)=G$. In other words, \mathbf{O} maps the family of all ideals of $C(X)$ onto the family of all open subsets of X.

Proof. Put $I=\langle\{f \in C(X): \operatorname{Coz}(f) \subseteq G\}\rangle$. Then by Proposition 2.2,

$$
\mathbf{O}(I)=\mathbf{O}(\langle\{f: \operatorname{Coz}(f) \subseteq G\}\rangle)=\bigcup_{\operatorname{Coz}(f) \subseteq G} \operatorname{Coz}(f)=G
$$

Now we note that for each ideal I of $C(X)$, the ideal I_{z} means the smallest z-ideal containing I; i.e. I_{z} is the intersection of all z-ideals containing I.

Lemma 2.12. For each ideal I of $C(X)$, we have $\mathbf{O}\left(I_{z}\right)=\mathbf{O}(I)$.
Proof. Since $\mathrm{Z}(I)=\mathrm{Z}\left(I_{z}\right)$, so $\{\operatorname{Coz}(f): f \in I\}=\left\{\operatorname{Coz}(f): f \in I_{z}\right\}$ and therefore $\mathbf{O}\left(I_{z}\right)=\mathbf{O}(I)$.

Theorem 2.13. O is a map from the family of all z-ideals of $C(X)$ onto the family of all open sets of X.

Proof. It is clear by Lemmas 2.11 and 2.12.
Theorem 2.14. Let I and J be two ideals of $C(X)$. The following statements hold
(a) $I J=\{0\}$ if and only if $\mathbf{O}(I) \cap \mathbf{O}(J)=\emptyset$.
(b) $I \operatorname{Ann}(J)=\{0\}$ if and only if $\mathbf{O}(I) \subseteq \overline{\mathbf{O}(J)}$.
(c) $\operatorname{Ann}(I) \operatorname{Ann}(J)=\{0\}$ if and only if $\mathbf{O}(I) \cup \mathbf{O}(J)=X$.
(d) $\overline{\mathbf{O}(I)}=\overline{\mathbf{O}(J)}$ if and only if $\operatorname{Ann}(I)=\operatorname{Ann}(J)$.
(e) $\mathbf{I}(U) I=\{0\}$ if and only if $\mathbf{O}(I) \subseteq \bar{U}$.

Proof. ($\mathrm{a} \Rightarrow$). Since $I J=\{0\}, I \subseteq \operatorname{Ann}(J)$, thus $I \subseteq \mathbf{I}(\mathbf{O}(J)$), by Proposition 2.7(b). Now suppose that $f \in I$, then $f \in \mathbf{I}(\mathbf{O}(J))$, hence $\mathbf{Z}(f) \supseteq \mathbf{O}(J)$, so $\operatorname{Coz}(f) \subseteq X \backslash \mathbf{O}(J)$. It follows that $\mathbf{O}(I)=\bigcup_{f \in I} \operatorname{Coz}(f) \subseteq X \backslash \mathbf{O}(J)$ and therefore $\mathbf{O}(I) \cap \mathbf{O}(J)=\emptyset$.
$(\mathrm{a} \Leftarrow)$. Suppose that $f \in I$ and $g \in J$, then $\operatorname{Coz}(f) \subseteq \mathbf{O}(I)$ and $\operatorname{Coz}(g) \subseteq$ $\mathbf{O}(J)$, thus $\operatorname{Coz}(f) \cap \operatorname{Coz}(g) \subseteq \mathbf{O}(I) \cap \mathbf{O}(J)=\emptyset$, so $f g=0$ and therefore $I J=\{0\}$.
(b). Considering part (a), $I \operatorname{Ann}(J)=\{0\}$ if and only if $\mathbf{O}(I) \cap \mathbf{O}(\operatorname{Ann}(J))=$ \emptyset. By Proposition 2.7, it is equivalent to $\mathbf{O}(I) \cap(X \backslash \mathbf{O}(J))^{\circ}=\emptyset$. It is equivalent to $\mathbf{O}(I) \subseteq \overline{\mathbf{O}(J)}$.
(c). According to part $(\mathrm{a}), \operatorname{Ann}(I) \operatorname{Ann}(J)=\{0\}$ if and only if $\mathbf{O}(\operatorname{Ann}(I)) \cap$ $\mathbf{O}(\operatorname{Ann}(J))=\emptyset$ if and only if $(X \backslash \mathbf{O}(J))^{\circ} \cap(X \backslash \mathbf{O}(I))^{\circ}=\emptyset$, By Proposition 2.7. It is equivalent to stating that $\overline{\mathbf{O}(I) \cup \mathbf{O}(I)}=X$.
(d). Via part (b),

$$
\begin{aligned}
\overline{\mathbf{O}(I)}=\overline{\mathbf{O}(J)} & \Leftrightarrow \mathbf{O}(I) \subseteq \overline{\mathbf{O}(J)} \text { and } \mathbf{O}(J) \subseteq \overline{\mathbf{O}(I)} \\
& \Leftrightarrow I \operatorname{Ann}(J)=\{0\} \text { and } J \operatorname{Ann}(I)=\{0\} \\
& \Leftrightarrow \operatorname{Ann}(J) \subseteq \operatorname{Ann}(I) \text { and } \operatorname{Ann}(I) \subseteq \operatorname{Ann}(J) \\
& \Leftrightarrow \operatorname{Ann}(I)=\operatorname{Ann}(J) .
\end{aligned}
$$

(e). Through part (a) and Proposition 2.7,

$$
\begin{aligned}
I \mathbf{I}(U)=\{0\} & \Leftrightarrow \mathbf{O}(I) \cap \mathbf{O}(\mathbf{I}(U))=\emptyset \\
& \Leftrightarrow \mathbf{O}(I) \cap(X \backslash U)^{\circ}=\emptyset \\
& \Leftrightarrow \mathbf{O}(I) \cap X \backslash \bar{U}=\emptyset \\
& \Leftrightarrow \mathbf{O}(I) \subseteq \bar{U} .
\end{aligned}
$$

Proposition 2.15. Suppose that $I, J \in \mathbb{A}(R)^{*}$. Then I and J are adjacent if and only if each maximal ideal of $C(X)$ contains either I or J.

Proof. (\Rightarrow). It is clear.
(\Leftarrow). By the assumption, we have

$$
\begin{aligned}
& \forall p \in X \quad I \subseteq M_{p} \quad \text { or } \quad J \subseteq M_{p} \\
\Rightarrow & \forall p \in X \quad p \in \bigcap_{f \in I} Z(f) \quad \text { or } \quad p \in \bigcap_{f \in J} Z(f) \\
\Rightarrow & \left(\bigcap_{f \in I} Z(f)\right) \cup\left(\bigcap_{f \in J} Z(f)\right)=X \\
\Rightarrow & \mathbf{O}(I) \cap \mathbf{O}(J)=\emptyset
\end{aligned}
$$

Hence I and J are adjacent, by Theorem 2.14(a).
Corollary 2.16. Suppose that $I, J \in \mathbb{A}(X)^{*}$. Then I and J are orthogonal if and only if $\mathbf{O}(I) \cap \mathbf{O}(J)=\emptyset$ and $\overline{\mathbf{O}(I) \cup \mathbf{O}(J)}=X$.
Proof. It is verifiable through Theorem 2.14(a) and Corollary 2.8(a).
Proposition 2.17. If each closed set of X is a zero set, then $C(X)$ is an i.a.c. ring.

Proof. By the assumption, each open set of X is a cozero set and thus \mathbf{O} is a map from the family all ideals of $C(X)$ onto the family all cozero sets of X, by Lemma 2.11. Suppose that S is a subset of X and set $I=\langle S\rangle$. Now we can conclude that there is some $f \in C(X)$ such that $\mathbf{O}(I)=\mathbf{O}(S)=\operatorname{Coz}(f)$. Thus, by Lemma 2.1(g), Proposition 2.2 and Theorem 2.14(a),

$$
\begin{aligned}
g \in \operatorname{Ann}(I) & \Leftrightarrow g I=\{0\} \quad \Leftrightarrow \quad \mathbf{O}(\langle g\rangle) \cap \mathbf{O}(I)=\emptyset \\
& \Leftrightarrow \operatorname{Coz}(g) \cap \operatorname{Coz}(f)=\emptyset \quad \Leftrightarrow \quad g f=0 \\
& \Leftrightarrow g \in \operatorname{Ann}(f)
\end{aligned}
$$

Hence $\operatorname{Ann}(S)=\operatorname{Ann}(I)=\operatorname{Ann}(f)$, i.e. $C(X)$ is an i.a.c. ring.

3. Radius of the graph

In this section, some topological properties of X are linked to the distance and eccentricity of vertices of $\mathbb{A} \mathbb{G}(X)$, then by these facts we study the radius of the graph.

Lemma 3.1. For any ideals I and J in $\mathbb{A}(X)^{*}$,
(a) $d(I, J)=1$ if and only if $\mathbf{O}(I) \cap \mathbf{O}(J)=\emptyset$.
(b) $d(I, J)=2$ if and only if $\mathbf{O}(I) \cap \mathbf{O}(J) \neq \emptyset$ and $\overline{\mathbf{O}(I) \cup \mathbf{O}(J)} \neq X$.
(c) $d(I, J)=3$ if and only if $\mathbf{O}(I) \cap \mathbf{O}(J) \neq \emptyset$ and $\overline{\mathbf{O}(I) \cup \mathbf{O}(J)}=X$.

Proof. (a). It is evident, by Theorem 2.14.
$(\mathrm{b} \Rightarrow)$. Since I is not adjacent to $J, \mathbf{O}(I) \cap \mathbf{O}(J) \neq \emptyset$, by Theorem 2.14. By the assumption there is an ideal K in $\mathbb{A}(X)^{*}$ such that K is adjacent to both ideals I and J. Now Lemma 2.1 concludes that $\mathbf{O}(K) \neq \emptyset$ and also Theorem 2.14 implies that $\mathbf{O}(I) \cap \mathbf{O}(K)=\emptyset$ and $\mathbf{O}(J) \cap \mathbf{O}(K)=\emptyset$, hence $\mathbf{O}(K) \cap(\mathbf{O}(I) \cup \mathbf{O}(J))=\emptyset$ and thus $\overline{\mathbf{O}(I) \cup \mathbf{O}(J)} \neq X$.
$(\mathrm{b} \Leftarrow)$. Theorem 2.14 follows that I is not adjacent to J. Set $H=$ $\mathbf{O}(I) \cup \mathbf{O}(J)$ and $K=\mathbf{I}(H)$. Since $\emptyset \neq H \subseteq \bar{H}^{\circ} \neq \emptyset$, by Corollary 2.8, $\mathbf{I}(H) \in \mathbb{A}(X)^{*}$. Since $\mathbf{O}(I), \mathbf{O}(J) \subseteq H \subseteq \bar{H}, I K=J K=\{0\}$, by Theorem 2.14. Hence K is adjacent to both ideals I and J, thus $d(I, J)=2$.
(c). It follows from (a), (b) and [7, Theorem 2.1].

Lemma 3.2. Let $f \in C(X)$, I be an ideal of $C(X)$ and $p \in \mathbf{O}(I)$. If $\mathrm{Coz}(f) \subseteq\{p\}$ and p is an isolated point of X, then $f \in I$.
Proof. Since $p \in \mathbf{O}(I)$, there is some $g \in I$ such that $p \in \operatorname{Coz}(g)$. Set

$$
h(x)= \begin{cases}\frac{f(p)}{g(p)} & x=p \\ 0 & x \neq p\end{cases}
$$

Since p is an isolated point, $h \in C(X)$. Now we have $f=g h$ and therefore $f \in I$.
Proposition 3.3. Suppose that I is a non-zero annihilating ideal of $C(X)$. The following statements hold.
(a) $\operatorname{ecc}(I)=3$ if and only if $\mathbf{O}(I)$ is not a singleton.
(b) ecc $(I)=2$ if and only if $\mathbf{O}(I)$ is a singleton and $|X|>2$.
(c) $\operatorname{ecc}(I)=1$ if and only if $\mathbf{O}(I)$ is a singleton and $|X|=2$.

Proof. $(\mathrm{a} \Rightarrow)$. There is some $J \in \mathbb{A}(X)^{*}$ such that $d(I, J)=3$. Lemma 3.1, concludes that $\mathbf{O}(I) \cap \mathbf{O}(J) \neq \emptyset$ and $\overline{\mathbf{O}(I) \cup \mathbf{O}(J)}=X$. If $\mathbf{O}(I)$ is a singleton, then $\mathbf{O}(I) \subseteq \mathbf{O}(J)$ and therefore $\overline{\mathbf{O}(J)}=\overline{\mathbf{O}(I) \cup \mathbf{O}(J)}=X$, so $J \notin \mathbb{A}(X)^{*}$, by Corollary 2.8 , which is a contradiction.
$(\mathrm{a} \Leftarrow)$. There are distinct points p and q in $\mathbf{O}(I)$, so there are disjoint open sets $H, K \subseteq \mathbf{O}(I)$ such that $p \in H$ and $q \in K$. By Lemma 2.11, there is some ideal J such that $\mathbf{O}(J)=H \cup X \backslash \overline{\mathbf{O}(I)}$. Since $q \notin \overline{\mathbf{O}(J)}$ and $p \in \mathbf{O}(J)$, Lemma 2.1 and Corollary 2.8, conclude that $J \in \mathbb{A}(X)^{*}$. Then

$$
\begin{gathered}
H \subseteq \mathbf{O}(I) \cap \mathbf{O}(J) \quad \Rightarrow \quad \mathbf{O}(I) \cap \mathbf{O}(J) \neq \emptyset \\
\overline{\mathbf{O}(I) \cup \mathbf{O}(J)} \supseteq \overline{\mathbf{O}(I)} \cup(X \backslash \overline{\mathbf{O}(I)})=X \quad \Rightarrow \quad \overline{\mathbf{O}(I) \cup \mathbf{O}(J)}=X
\end{gathered}
$$

Hence $d(I, J)=3$, by Lemma 3.1. Consequently, $\operatorname{ecc}(I)=3$.
$(\mathrm{c} \Rightarrow)$. Since $\operatorname{ecc}(I)=1, I$ is adjacent to any element of $\mathbb{A}(X)^{*}$. By (a), $\mathbf{O}(I)$ is a singleton, thus there is some isolated point $p \in X$ such that $\mathbf{O}(I)=\{p\}$. Since $\emptyset \neq X \backslash\{p\}$ is open, by Lemma 2.11, there is some ideal J, such that $\mathbf{O}(J)=X \backslash\{p\}$. Since $\mathbf{O}(J) \neq \emptyset$ and $\overline{\mathbf{O}(J)}=X \backslash\{p\} \neq X$, we obtain that $J \in \mathbb{A}(X)^{*}$, by Lemma 2.1 and Corollary 2.8. Since ecc $(I)=1$, $\operatorname{ecc}(J) \leqslant 2$, so $\mathbf{O}(J)$ is a singleton, by part (a), and therefore $|X|=2$.
$(\mathrm{c} \Leftarrow) . C(X) \cong \mathbb{R} \oplus \mathbb{R}$, so $\mathbb{A} \mathbb{G}(X)$ is a star graph, by [7, Corollary 2.3]. Since $\mathbb{A}(X)^{*}$ has just two elements, it follows that $\operatorname{ecc}(I)=1$.
(b). It concludes from (a) and (c).

The following corollary is an immediate consequence of the above theorem.
Corollary 3.4. $|X|=2$ if and only if $\mathbb{A} \mathbb{G}(X)$ is a star.
Now we can determine the radius of the graph.
Theorem 3.5. For any topological space X,

$$
\operatorname{Rad}(\mathbb{A} \mathbb{G}(X))= \begin{cases}1 & \text { if }|X|=2 \\ 2 & \text { if }|X|>2 \text { and } X \text { has an isolated point. } \\ 3 & \text { if }|X|>2 \text { and } X \text { does not have any isolated point. }\end{cases}
$$

Proof. It is a straight consequence of Lemma 2.11 and Proposition 3.3.

4. Girth of the graph

In this section, first we provide an equivalent topological property to pendant vertices, then we show that if $\mathbb{A} \mathbb{G}(X)$ has a cycle then $\operatorname{girth} \mathbb{A}(X)=3$. Finally we attempt to associate the graph properties of $\mathbb{A}(\mathbb{G}(X)$, the ring properties of $C(X)$ and the topological properties of X.

Lemma 4.1. Suppose that Y is a clopen subset of X. Then for each ideal I of $C(X)$, there are ideals I_{1}, I_{2} of $C(X)$ such that $I=I_{1} \oplus I_{2}$ and I_{1} and I_{2} are ideals of $M_{Y} \cong C(X \backslash Y)$ and $M_{X \backslash Y} \cong C(Y)$, respectively.
Proof. Considering the fact that Y is clopen, $C(X) \cong C(Y) \oplus C(X \backslash Y)$, it is straightforward.

Proposition 4.2. Let $I \in \mathbb{A}(X)^{*}$. Then $X \backslash \overline{\mathbf{O}(I)}$ is a singleton if and only if I is a pendant vertex.

Proof. \Rightarrow). Suppose that $X \backslash \overline{\mathbf{O}(I)}=\{p\}$. Since $\{p\}$ is open, by Lemma 2.11, there is an ideal J such that $\mathbf{O}(J)=\{p\}$, then $\overline{\mathbf{O}(J)}=\{p\}$, and therefore $J \in \mathbb{A}(X)^{*}$, by Lemma 2.1 and Corollary 2.8. Also $\mathbf{O}(I) \cap \mathbf{O}(J)=$ \emptyset, so I is adjacent to J, by Theorem 2.14. Suppose that K is adjacent to I and $Y=\overline{\mathbf{O}(I)}$. Then $\mathbf{O}(K) \cap \mathbf{O}(I)=\emptyset$, by Theorem 2.14, thus $\mathbf{O}(K) \subseteq X \backslash \overline{\mathbf{O}(I)}=\{p\}$. By Lemma 2.1, $\mathbf{O}(K) \neq \emptyset$, so $\mathbf{O}(K)=\{p\}$. Since $\{p\}$ is clopen, by Lemma 4.1, it follows that there are ideals K_{1} and K_{2} of $M_{p} \cong C(Y)$ and $M_{Y} \cong C(\{p\}) \cong \mathbb{R}$, respectively, such that $K=K_{1} \oplus K_{2}$.

If $K_{1} \neq\{0\}$, then $0 \neq f \in K_{1} \subseteq K$ exists, so there is a $q \in Y$ such that $f(q) \neq 0$, thus $p \neq q \in \operatorname{Coz}(f) \subseteq \mathbf{O}(K)$, which is a contradiction. Hence $K_{1}=\{0\}$, since $K \neq\{0\}$, it follows that $K_{2}=M_{Y}$, thus $K=M_{Y}$, and this completes the proof.
$\Leftarrow)$. Suppose that $X \backslash \overline{\mathbf{O}(I)}$ is not a singleton, so distinct points p, q in $X \backslash \overline{\mathbf{O}(I)}$ exist. Since $X \backslash \overline{\mathbf{O}(I)}$ is open and X is Hausdorff, there are disjointed open sets H_{1} and H_{2} containing p and q, respectively, in which $H_{1} \cap \mathbf{O}(I)=H_{2} \cap \mathbf{O}(I)=\emptyset$. Now Lemma 2.11, implies that there are ideals J_{1} and J_{2} such that $\mathbf{O}\left(J_{1}\right)=H_{1}$ and $\mathbf{O}\left(J_{2}\right)=H_{2}$, clearly $J_{1}, J_{2} \in \mathbb{A}(X)^{*}$. Then $\mathbf{O}(I) \cap \mathbf{O}\left(J_{1}\right)=\mathbf{O}(I) \cap \mathbf{O}\left(J_{2}\right)=\emptyset$. So, by Theorem 2.14, I is adjacent to both ideals J_{1} and J_{2}.
Lemma 4.3. Suppose that $I, J \in \mathbb{A}(X)^{*}$ are not pendant vertices. The following statements hold.
(a) $\mathbf{O}(I) \cap \mathbf{O}(J)=\emptyset$ and $\overline{\mathbf{O}(I) \cup \mathbf{O}(J)} \neq X$ if and only if $\operatorname{gi}(I, J)=3$.
(b) If $\mathbf{O}(I) \cap \mathbf{O}(J)=\emptyset$ and $\overline{\mathbf{O}(I) \cup \mathbf{O}(J)}=X$, then $\operatorname{gi}(I, J)=4$.
(c) If $\mathbf{O}(I) \cap \mathbf{O}(J) \neq \emptyset$ and $\overline{\mathbf{O}(I)}=\overline{\mathbf{O}(J)}$, then $\operatorname{gi}(I, J)=4$.
(d) Suppose that $\mathbf{O}(I) \cap \mathbf{O}(J) \neq \emptyset$ and $\overline{\mathbf{O}(I)} \neq \overline{\mathbf{O}(J)}$. Then $X \backslash$ $\overline{\mathbf{O}(I) \cup \mathbf{O}(J)}$ is not a singleton if and only if $\operatorname{gi}(I, J)=4$.
(e) $\mathbf{O}(I) \cap \mathbf{O}(J) \neq \emptyset, \overline{\mathbf{O}(I)} \neq \overline{\mathbf{O}(J)}$ and $X \backslash \overline{\mathbf{O}(I) \cup \mathbf{O}(J)}$ is a singleton if and only if $\operatorname{gi}(I, J)=5$.

Proof. $(\mathrm{a} \Rightarrow)$. Set $H=\mathbf{O}(I) \cup \mathbf{O}(J)$ and $K=\mathbf{I}(H)$. Since $\bar{H} \neq X$ and $\bar{H}^{\circ} \neq \emptyset, K \in \mathbb{A}(X)^{*}$, by Corollary 2.8(b). Since $\mathbf{O}(I), \mathbf{O}(J) \subseteq H \subseteq \bar{H}$, by Theorem 2.14, K is adjacent to both ideals I and J. By the assumption and Theorem 2.14, I is adjacent to J, hence gi $(I, J)=3$.
($\mathrm{a} \Leftarrow$). By the assumption, I is adjacent to J and some $K \in \mathbb{A}(X)^{*}$ exists such that K is adjacent to both ideals I and J, so $\mathbf{O}(I) \cap \mathbf{O}(J)=$ $\emptyset, \mathbf{O}(I) \cap \mathbf{O}(K)=\emptyset$ and $\mathbf{O}(J) \cap \mathbf{O}(K)=\emptyset$, by Theorem 2.14. Hence $(\mathbf{O}(I) \cup \mathbf{O}(J)) \cap \mathbf{O}(K)=\emptyset$. Since $K \neq\{0\}, \mathbf{O}(K) \neq \emptyset$, by Lemma 2.1, and therefore $\overline{\mathbf{O}(I) \cup \mathbf{O}(J)} \neq X$.
(b). The assumption and part (a) imply that $\operatorname{gi}(I, J) \geqslant 4$ and Theorem 2.14, concludes that $I J=\operatorname{Ann}(I) \operatorname{Ann}(J)=\{0\}$. Since I and J are not pendant vertices, there are $I_{1}, J_{1} \in \mathbb{A}(X)^{*}$ such that I is adjacent to $I_{1} \neq J$ and J is adjacent to $J_{1} \neq I$, so $I I_{1}=J J_{1}=\{0\}$, thus $I_{1} \subseteq \operatorname{Ann}(I)$ and $J_{1} \subseteq \operatorname{Ann}(J)$, hence $I_{1} J_{1} \subseteq \operatorname{Ann}(I) \operatorname{Ann}(J)=\{0\}$ and therefore $I_{1} J_{1}=\{0\}$. Consequently, I is adjacent to J, J is adjacent to J_{1}, J_{1} is adjacent to I_{1} and I_{1} is adjacent to I, they imply that $\operatorname{gi}(I, J)=4$.
(c). We can conclude from the assumption and part (a), that $\operatorname{gi}(I, J) \geqslant 4$. Since $\overline{\mathbf{O}(J)}=\overline{\mathbf{O}(J)}$, by Theorem 2.14, it follows that $\operatorname{Ann}(I)=\operatorname{Ann}(J)$. Since I is adjacent to $\operatorname{Ann}(I)$ and I is not a pendant vertex, it follows there is some vertex $I_{1} \in \mathbb{A}(X)^{*}$ distinct from $\operatorname{Ann}(I)$ such that I is adjacent to I_{1}, then $I_{1} I=\{0\}$, so $I_{1} \subseteq \operatorname{Ann}(I)=\operatorname{Ann}(J)$ and therefore $I_{1} J=\{0\}$. Consequently, I is adjacent to $\operatorname{Ann}(I), \operatorname{Ann}(J)$ is adjacent to J, J is adjacent to I_{1} and I_{1} is adjacent to I and thus $\operatorname{gi}(I, J)=4$.
$(\mathrm{d} \Rightarrow)$. Evidently, there are two distinct nonempty open sets H_{1} and H_{2} such that $H_{1} \cap \mathbf{O}(I)=H_{1} \cap \mathbf{O}(J)=H_{2} \cap \mathbf{O}(I)=H_{2} \cap \mathbf{O}(J)=\emptyset$. Then, by Lemma 2.11, there are two ideals K_{1} and K_{2} such that $\mathbf{O}\left(K_{1}\right)=H_{1}$ and $\mathbf{O}\left(K_{2}\right)=H_{2}$, it is clear that $K_{1}, K_{2} \in \mathbb{A}(X)^{*}$, by Lemma 2.1 and Corollary 2.8. Now Theorem 2.14, concludes that both vertices I and J are adjacent to both vertices K_{1} and K_{2}, thus gi $(I, J)=4$, by part (a).
$(\mathrm{d} \Leftarrow)$. By Theorem 2.14, I is not adjacent to J. Since $\operatorname{gi}(I, J)=4$, it follows that there are distinct vertices K_{1} and K_{2} which are adjacent to both vertices I and J, so $I+J$ is adjacent to both vertices K_{1} and K_{2}. Now Propositions 2.3 and 4.2, conclude that $X \backslash \overline{\mathbf{O}(I) \cup \mathbf{O}(J)}=X \backslash \overline{\mathbf{O}(I+J)}$ is not a singleton.
$(\mathrm{e} \Rightarrow)$. By parts (a) and (d), gi $(I, J) \geqslant 5$. If $\mathbf{O}(I) \subseteq \overline{\mathbf{O}(J)}$, then $\overline{\mathbf{O}(I)} \subseteq \overline{\mathbf{O}(J)}$, so $X \backslash \overline{\mathbf{O}(I) \cup \mathbf{O}(J)}=X \backslash \overline{\mathbf{O}(J)}$ and therefore $X \backslash \overline{\mathbf{O}(J)}$ is a singleton, by the assumption. Now Proposition 4.2, concludes that J is a pendant vertex, which contradicts the assumption, so $\mathbf{O}(I) \nsubseteq \overline{\mathbf{O}(J)}$, similarly, it can been shown that $\mathbf{O}(J) \nsubseteq \overline{\mathbf{O}(I)}$, so $H_{1}=\mathbf{O}(I) \backslash \overline{\mathbf{O}(J)}$ and $H_{2}=\mathbf{O}(J) \backslash \overline{\mathbf{O}(I)}$ are nonempty open sets; thus, Lemma 2.11, implies that there are ideals K_{1} and K_{2} such that $\mathbf{O}\left(K_{1}\right)=H_{1}$ and $\mathbf{O}\left(K_{2}\right)=H_{2}$, it is evident that $K_{1}, K_{2} \in \mathbb{A}(X)^{*}$, by Lemma 2.1 and Corollary 2.8. Since $X \backslash \overline{\mathbf{O}(I) \cup \mathbf{O}(J)}$ is a nonempty open set, there is an ideal K_{3} such that $\mathbf{O}\left(K_{3}\right)=X \backslash \overline{\mathbf{O}(I) \cup \mathbf{O}(J)}$, it is clear that $K_{3} \in \mathbb{A}(X)^{*}$, by Lemma 2.1 and Corollary 2.8. Then

$$
\begin{aligned}
\mathbf{O}(I) \cap \mathbf{O}\left(K_{2}\right) & =\mathbf{O}\left(K_{2}\right) \cap \mathbf{O}\left(K_{1}\right)=\mathbf{O}\left(K_{1}\right) \cap \mathbf{O}(J) \\
& =\mathbf{O}(J) \cap \mathbf{O}\left(K_{3}\right)=\mathbf{O}\left(K_{3}\right) \cap \mathbf{O}(I)=\emptyset
\end{aligned}
$$

so $\operatorname{gi}(I, J)=5$.
($\mathrm{e} \Leftarrow$). It is clear, by parts (a)-(d).
It is clear that if $|X|=2$, then $\mathbb{A} \mathbb{G}(X)$ does not have any cycle. In the following theorem we show that if $\mathbb{A} \mathbb{G}(X)$ has a cycle then the girth of the graph is 3 .

Theorem 4.4. If $|X|>2$, then $\operatorname{girth} \mathbb{A}(X)=3$.
Proof. It is clearly observable that there are mutually disjointed nonempty open sets G_{1}, G_{2} and G_{3}. By Lemma 2.11, there are ideals I_{1}, I_{2} and I_{3}, such that $\mathbf{O}\left(I_{1}\right)=G_{1}, \mathbf{O}\left(I_{2}\right)=G_{2}$ and $\mathbf{O}\left(I_{3}\right)=G_{3}$, evidently, $I_{1}, I_{2}, I_{3} \in \mathbb{A}(X)^{*}$, by Lemma 2.1 and Corollary 2.8. By Theorem 2.14, I_{1} is adjacent to I_{2}, I_{2} is adjacent to I_{3} and I_{3} is adjacent to I_{1}, hence $\operatorname{girth} \mathbb{A}(X)=3$.

Theorem 4.5. The following statements are equivalent.
(a) X has an isolated point.
(b) \mathbb{R} is a direct summand of $C(X)$.
(c) $\mathbb{A} \mathbb{G}(X)$ has a pendant vertex.
(d) $\mathbb{A} \mathbb{G}(X)$ is not triangulated.

Proof. ($\mathrm{a} \Leftrightarrow \mathrm{b}$) and $(\mathrm{c} \Rightarrow \mathrm{d})$ are clear and ($\mathrm{a} \Leftrightarrow \mathrm{c}$) follows from Proposition 4.2.
$(\mathrm{d} \Rightarrow \mathrm{a})$ Suppose that X does not have any isolated point and $I \in \mathbb{A}(X)^{*}$. Then $X \backslash \mathbf{O}(I)$ is not a singleton, so it has two distinct points p and q, so there are disjoint open sets G_{1} and G_{2}, such that $G_{1} \cap \mathbf{O}(I)=G_{2} \cap \mathbf{O}(I)=$ \emptyset. By Lemma 2.11, there are $J, K \in \mathbb{A}(X)^{*}$, such that $\mathbf{O}(J)=G_{1}$ and $\mathbf{O}(K)=G_{2}$. Thus I is adjacent to J, J is adjacent to K and K is adjacent to I. Consequently, $\mathbb{A} \mathbb{G}(X)$ is triangulated.

5. Dominating number

In the last section, an upper bound and a lower bound for dominating number of the graph by topological notions are offered, then the chromatic number and the clique number of the graph are studied.
Theorem 5.1. $c(X) \leqslant \operatorname{dt}(\mathbb{A} \mathbb{G}(X)) \leqslant w(X)$, for each topological space X.
Proof. Suppose that \mathcal{U} is a family of mutually disjointed nonempty open sets. If $\overline{\bigcup \mathcal{U}} \neq X$, then $\mathcal{V}=\mathcal{U} \cup\{X \backslash \overline{\cup \mathcal{U}}\}$ is a family of mutually disjoint open sets which $\overline{\bigcup \mathcal{V}}=X$, so without loss of generality we can assume that $\overline{\cup \mathcal{U}}=X$. For each $U \in \mathcal{U}$, there are some $I_{U} \in \mathbb{A}(X)^{*}$ such that $\mathbf{O}\left(I_{U}\right)=U$, by Lemma 2.11. Since $U \neq \emptyset$ and $\bar{U} \neq X$, it follows that $I_{U} \in \mathbb{A}(X)^{*}$, by Lemma 2.1 and Corollary 2.8. Now suppose that D is a dominating set, then for each $U \in \mathcal{U}$, there is an ideal J_{U} in D such that J_{U} is adjacent to $\sum_{U \neq V \in \mathcal{U}} I_{V}$. Now Theorem 2.14, implies that $\mathbf{O}\left(J_{U}\right) \cap \mathbf{O}\left(\sum_{U \neq V \in \mathcal{U}} I_{V}\right)=$ \emptyset, thus $\mathbf{O}\left(J_{U}\right) \cap\left(\bigcup_{U \neq V \in \mathcal{U}} U\right)=\emptyset$. Suppose that $J_{U}=J_{U^{\prime}}$, for some $U, U^{\prime} \in \mathcal{U}$. Then $\mathbf{O}\left(J_{U}\right)=\mathbf{O}\left(J_{U^{\prime}}\right)$. If $U \neq U^{\prime}$, then

$$
\begin{aligned}
\mathbf{O}\left(J_{U}\right) \cap \bigcup \mathcal{U} & =\mathbf{O}\left(J_{U}\right) \cap\left[\left(\bigcup_{U \neq V \in \mathcal{U}} V\right) \cup\left(\bigcup_{U^{\prime} \neq V \in \mathcal{U}} V\right)\right] \\
& =\left[\mathbf{O}\left(J_{U}\right) \cap\left(\bigcup_{U \neq V \in \mathcal{U}} V\right)\right] \cup\left[\mathbf{O}\left(J_{U}\right) \cap\left(\bigcup_{U^{\prime} \neq V \in \mathcal{U}} V\right)\right]=\emptyset .
\end{aligned}
$$

Thus $\overline{\bigcup \mathcal{U}} \neq X$, which contradicts our assumption. Hence $U=U^{\prime}$, so $|\mathcal{U}| \leqslant|D|$, and consequently $c(X) \leqslant \operatorname{dt}(\mathbb{A} \mathbb{G}(X))$.

Now suppose that \mathcal{B} is a base for X, without loss of generality we can assume that every element of \mathcal{B} is not empty. For each $B \in \mathcal{B}$, there is some $0 \neq f_{B} \in C(X)$ such that $\emptyset \neq \operatorname{Coz}\left(f_{B}\right) \subseteq B$. Clearly, we can choose f_{B} such that $\overline{\operatorname{Coz}\left(f_{B}\right)} \neq X$. Lemma 2.1, concludes that $\mathbf{O}\left(\left\langle f_{B}\right\rangle\right)=\operatorname{Coz}\left(f_{B}\right)$, so $\mathbf{O}\left(\left\langle f_{B}\right\rangle\right) \neq \emptyset$ and $\overline{\mathbf{O}\left(\left\langle f_{B}\right\rangle\right)} \neq X$, for each $B \in \mathcal{B}$, thus $\left\langle f_{B}\right\rangle \in \mathbb{A}(X)^{*}$, by Lemma 2.1 and Corollary 2.8. For each $J \in \mathbb{A}(X)^{*}, \overline{\mathbf{O}(I)} \neq X$, by Corollary 2.8, so $(X \backslash \mathbf{O}(I))^{\circ} \neq \emptyset$, thus $B \in \mathcal{B}$ exists such that $B \subseteq(X \backslash \mathbf{O}(I))^{\circ}$, hence $\mathbf{O}\left(\left\langle f_{B}\right\rangle\right) \subseteq X \backslash \mathbf{O}(I)$, consequently, $\mathbf{O}\left(\left\langle f_{B}\right\rangle\right) \cap \mathbf{O}(I)=\emptyset$, therefore Theorem 2.14, implies that $\left\langle f_{B}\right\rangle$ is adjacent to I. Hence $\left\{\left\langle f_{B}\right\rangle: B \in \mathcal{B}\right\}$ is a
dominating set. Since $\left|\left\{\left\langle f_{B}\right\rangle: B \in \mathcal{B}\right\}\right| \leqslant|\mathcal{B}|$, it follows that $\operatorname{dt}(\mathbb{A} \mathbb{G}(X)) \leqslant$ $w(X)$.

Now we can conclude the following corollary from the above theorem.
Corollary 5.2. If X is discrete, then $\operatorname{dt}(\mathbb{A} \mathbb{G}(X))=|X|$.
Theorem 5.3. $\operatorname{dt}(\mathbb{A} \mathbb{G}(X))$ is finite if and only if $|X|$ is finite. In this case, $\operatorname{dt}(\mathbb{A} \mathbb{G}(X))=|X|$.

Proof. $\Rightarrow)$. Suppose that $|X|$ is infinite. Clearly $c(X)$ is infinite, so $\operatorname{dt}(\mathbb{A} \mathbb{G}(X))$ is infinite, by Theorem 5.1.
$\Leftarrow)$. If $|X|$ is finite, then X is discrete, so $\operatorname{dt}(\mathbb{A} \mathbb{G}(X))=|X|$ is finite, by Corollary 5.2.

Theorem 5.4. $\chi \mathbb{A} \mathbb{G}(X)=\omega \mathbb{A} \mathbb{G}(X)=c(X)$, for each topological space X.

Proof. It is an immediate consequence of Proposition 1.2, Lemma 2.11 and Theorem 2.14.

Acknowledgments

The author would like to thank the referee for the valuable suggestions and comments.

References

1. G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr, and F. Shaveisi, On the coloring of the annihilating-ideal graph of a commutative ring, Discrete Math., 312 (2012), 2620-2626.
2. F. Aliniaeifard and M. Behboodi, Rings whose annihilating-ideal graphs have positive genus, J. Algebra Appl., 11 (2012), 1250049.
3. A. Amini, B. Amini, E. Momtahan, and M. H. Shirdareh Haghighi, On a graph of ideals, Acta Math. Hung., 134 (2012), 369-384.
4. M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Reading, Mass.-Menlo Park, Calif.-London-Don Mills, Ont.: Addison-Wesley Publishing Company, 1969.
5. F. Azarpanah and M. Motamedi, Zero-divisor graph of C(X), Acta Math. Hung., 108 (2005), 25-36.
6. M. Badie, Comaximal graph of $\mathrm{C}(\mathrm{X})$, Commentat. Math. Univ. Carol., $\mathbf{5 7}$ (2016), 353-364.
7. M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings. I., J. Algebra Appl., 10 (2011), 727-739.
8. M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings. II., J. Algebra Appl., 10 (2011), 741-753.
9. J.A. Bondy and U.S.R. Murty, Graph theory with application, The Macmillan Press, New York, 1976.
10. T. Chelvam and K. Selvakumar, On the connectivity of the annihilating-ideal graphs, Discuss. Math. Gen. Algebra Appl., 35 (2015), 195-204.
11. L. Gillman and M. Jerison, Rings of continuous functions, The University Series in Higher Mathematics. Princeton-Toronto-London-New York: D. Van Nostrand Company, Inc., 1960.
12. J. Guo, T. Wu, and H. Yu, On rings whose annihilating-ideal graphs are blowups of a class of Boolean graphs, J. Korean Math. Soc., 54 (2017), 847-865.
13. R. Nikandish and H. R. Maimani, Dominating sets of the annihilating-ideal graphs, Electron. Notes Discrete Math., 45 (2014) 17-22.
14. R. Nikandish, H. R. Maimani, and S. Kiani, Domination number in the annihilating-ideal graphs of commutative rings, Publ. Inst. Math., Nouv. Ser., 97 (2015), 225-231.
15. S. Willard, General topology., Addison-Wesley Series in Mathematics. Reading, Mass. Addison-Wesley Publishing Company., 1970.

Mehdi Badie

Department of Mathematics, Jundi-Shapur University of Technology, P.O. Box 64615/334, Dezful, Iran.
Email: badie@jsu.ac.ir

Journal of Algebraic Systems

ANNIHILATING-IDEAL GRAPH OF $C(X)$

M. BADIE

$$
\begin{gathered}
C(X) \text { كراف ايدهآل-يوجساز }
\end{gathered}
$$

'دانشگاه صنعتى جندى شايور دزفول، دزفول، ايران
با مطالعهى ايدهآل-يوتساز حلقهى $C(X)$ سعى كردمايم كه رابطههايى بين خواص گراف

 نباشد. همحنين شعاع، كمر و اعداد احاطهگر و خوشهاى $. w \mathbb{A} \mathbb{G}(X)=\chi \mathbb{A} \mathbb{G}(X)=c(X) \quad, \quad c(X) \leqslant \operatorname{dt}(\mathbb{A} \mathbb{G}(X)) \leqslant w(X)$

كلمات كليدى: حلقهى توابع پيوسته، گراف ايدهآل-پوجساز، عدد رنگى، عدد خوشهاى، سلوليت.

[^0]: DOI: 10.22044/jas.2021.10008.1496.
 $\operatorname{MSC}(2010): 54 \mathrm{C} 40,05 \mathrm{C} 25$.
 Keywords: Rings of real-valued continuous functions, Annihilating-ideal graph, Clique number, Chromatic number, Cellularity.
 Received: 24 August 2020, Accepted: 10 February 2021.

