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ANNIHILATING-IDEAL GRAPH OF C(X)

M. BADIE

Abstract. The annihilating-ideal graph of the ring C(X) is stud-
ied. It is tried to associate the graph properties of AG(X), the ring
properties of C(X) and the topological properties of X. It is shown
that X has an isolated point if and only if R is a direct summand
of C(X) and this happens if and only if AG(X) is not triangulated.
Radius, girth, dominating number and clique number of AG(X)
are investigated. It is proved that c(X) ⩽ dt(AG(X)) ⩽ w(X) and
ωAG(X) = χAG(X) = c(X).

1. Introduction

Let G =
⟨
V (G), E(G)

⟩
be an undirected graph. A vertex adjacent

to just one vertex is called a pendant vertex. The degree of a vertex
of G is the number of vertices adjacent to the vertex. If G has a
vertex adjacent to all other vertices and all other vertices are pendant,
then G is called a star graph. For each pair of vertices u and v in
V (G), the length of the shortest path between u and v, denoted by
d(u, v), is called the distance between u and v. The diameter of G is
defined by diam(G) = sup{d(u, v) : u, v ∈ V (G)}. The eccentricity
of a vertex u of G, denoted by ecc(u), is defined to be max{d(u, v) :
v ∈ G}. The minimum of {ecc(u) : u ∈ G}, denoted by Rad(G), is
called the radius of G. For every u, v ∈ V (G), we denote the length
of the shortest cycle containing u and v by gi(u, v) and the minimum
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length of cycles in G, is denoted by girth(G) and is called the girth
of graph, so girth(G) = min{gi(u, v) : u, v ∈ V (G)}. We say G is
triangulated (hypertriangulated) if each vertex (edge) of G is a vertex
(edge) of some triangle. A subset D of V (G) is called a dominating
set if for each u ∈ V (G) \ D, there is some v ∈ D, such that v is
adjacent to u. The dominating number of G, denoted by dt(G), is the
smallest cardinal number of dominating sets of G. Two vertices u and
v are called orthogonal and is denote by u ⊥ v, if u and v are adjacent
and there is no vertex which adjacent to both vertices u and v. If for
every u ∈ V (G), there is some v ∈ V (G) such that u ⊥ v, then G
is called complemented. A subset of a graph G is called a clique of G
if each pair of vertices of this subset are adjacent. The supremum of
the cardinality of cliques of G, denoted by ω(G), is called the clique
number of G. The chromatic number of G, denoted by χ(G), is the
minimum cardinal number of colors needed to color vertices of G so
that no two vertices have the same color. Clearly, ω(G) ⩽ χ(G). A
subset of vertices of a graph is called independent if no two adjacent
vertices of this subset are adjacent. A bipartite graph is a graph whose
vertices can be divided into two disjoint and independent sets U and
V such that every edge connects a vertex in U to one in V .

Throughout the paper, R denotes a commutative ring with unity.
For each subset S of R and each element a of R, we denote {x ∈
R : ax ∈ S} by (S : a). When I =

⟨
0
⟩

we write Ann(a) instead of(⟨
0
⟩
: a

)
and call this the annihilator of a. If for each subset S of

R, there is some a ∈ R such that Ann(S) = Ann(a), then we say R
satisfies infinite annihilating condition (R is an i.a.c ring). An ideal I
is called annihilating ideal if Ann(I) ̸= {0}. We denote the family of
all non-zero annihilating ideals of R by A(R)∗. We denote by AG(R)
the graph with vertices A(R)∗, and two distinct vertices I and J are
adjacent, if IJ = {0}.

In this paper, X denotes a Tychonoff space and C(X) denotes the
set of all real-valued continuous functions on X. The weight of X,
denoted by w(X), is the infimum of the cardinalities of bases of X.
The cellularity of X, denoted by c(X), is defined as

sup{|U| : U is a family of mutually disjoint nonempty open subsets of X}.

For any f ∈ C(X), we denote f−1{0} and X \ f−1{0} by Z(f) and Coz(f),
respectively. Every set of the form Z(f)(resp., Coz(f)) is called a zeroset
(resp., cozero set). The family of all zerosets of X is denoted by Z(X). An
ideal I of C(X) is called fixed (free) if

∩
f∈I Z(f) ̸= ∅ (

∩
f∈I Z(f) = ∅). For

a subset A of X, we denote {f ∈ C(X) : A ⊆ Z(f)} and {f ∈ C(X) : A ⊆
Z(f)◦} by MA and OA, respectively. When A = {p}, we write Mp and Op
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instead of M{p} and O{p}, respectively; it is clear that MA =
∩

p∈AMp and
OA =

∩
p∈AOp. For each space X, βX denotes Stone-Cěch compactification

of X. By [11, Theorem 7.3(Gelfand-Kolmogoroff)], {Mp : p ∈ βX} is the
family of all maximal ideal of C(X). An ideal I of C(X) is called a z-
ideal, if the conditions Z(f) = Z(g) and f ∈ I, implies g ∈ I. For each
subset F of Z(X) and S of C(X), we denote {f ∈ C(X) : Z(f) ∈ F} and
{Z(f) : f ∈ S} by Z−1(F) and Z(S), respectively. Clearly, for every ideal I
of C(X), Z−1(Z(I)) is the smallest z-ideal containing I. For more details,
we refer the reader to [4, 9, 11, 15].

Graphs on C(X) are studied in a number of interesting investigations, in
which attempts are made to associate the ring properties of C(X), the graph
properties of graphs on C(X) and the topological properties of X. In [3, 5, 6],
the zero-divisor graph, the comaximal ideal graph of C(X) and comaximal
graph of C(X) were studied. Papers [7, 8] are studies that embarked on
investigating the annihilating-ideal graph of commutative rings. Later on,
this line of research was pursued in several papers, including [1, 2, 10, 12,
13, 14].

The main purpose of this paper is studying the annihilating-ideal graph
of C(X). We abbreviate A(C(X))∗ and AG(C(X)) by A(X)∗ and AG(X),
respectively. If |X| = 1, then A(X)∗ = ∅, so we assume |X| > 1, throughout
the paper.

In the rest part of this section, we put forward a number of propositions
immediately concluded from the native algebraic properties of C(X) and
[5, 7, 8]. In Section 2, we define maps O from the family of all subsets of
C(X) onto the family of all open subsets of X and I from the family of all
subsets of X into the family of all ideals of C(X). We study these maps and
apply these notions to study the graph. We show that I is adjacent to J if
and only if O(I) ∩O(J) = ∅, the non-zero ideal I is an annihilating ideal if
and only if O(I) ̸= X, I(U) ∈ A(X)∗ if and only if U

◦
̸= ∅. In Section 3, we

investigate the radius of the graph and we show that AG(X) is a star graph
if and only if |X| = 2. Section 4, is devoted to the girth of the graph. In this
section we show that if |X| > 2, then girthAG(X) = 3; also, we show that
an ideal I in A(X)∗ is a pendant vertex if and only if X \O(I) is singleton.
The study of dominating number of the graph is the subject of Section 5.
In this section we show that both ωAG(X) and χAG(X) are identical with
the cellularity of X.

Proposition 1.1. The following statements are equivalent.
(a) |X| = 2.
(b) diam(AG(X)) = 1.
(c) ωAG(X) = 2.
(d) AG(X) is a bipartite graph by two nonempty parts.
(e) AG(X) is a complete bipartite graph by two nonempty parts.

Proof. It is concluded from [8, Theorem 1.4] and [14, Corollary 2.1]. □
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Proposition 1.2. The following statements hold.
(a) X has at least 3 points, if and only if diam(AG(X)) = 3.
(b) χ(AG(X)) = ω(AG(X)).

Proof. (a). It is concluded from [8, Proposition 1.1], [5, Corollary 1.3] and
the previous proposition.

(b). It is evident, by [8, Corollary 2.11]. □

The following proposition is an immediate consequence of [7, Theorem
1.4], [8, Corollaries 2.11 and 2.12] and the fact that X is finite if and only
if C(X) has just finitely many ideals. We note that for each ring R the
zero-divisor graph Γ(R) is a graph with vertices of all nonzero zero-divisor
elements of R, and two vertices x and y are adjacent, if xy = 0.

Proposition 1.3. The following statements are equivalent.
(a) AG(X) is a finite graph.
(b) C(X) has only finitely many ideals.
(c) Every vertex of AG(X) has a finite degree.
(d) X is finite.
(e) χ(AG(X)) is finite.
(f) ω(AG(X)) is finite.
(g) AG(X) does not have an infinite clique.
(h) χ(Γ(C(X))) is finite.

2. I(U) and O(I)

We denote (for simplicity and studying map properties) two concepts in
the form of maps. For each subset S of C(X), we denote

∪
f∈S Coz(f) by

O(S), and for each subset U of X, we denote {f ∈ C(X) : U ⊆ Z(f)} =

MU =
∩

a∈U Ma by I(U). It is clear that O(S) = X \
(∩

f∈S Z(f)
)

and if
G is an open set in X, then I(G) = OG. First, in this section we study the
properties of these maps, then utilizing the maps, the edges and vertices of
AG(X) are investigated.

Lemma 2.1. Let S and T be two subsets of C(X), f be an element of C(X)
and U , V be two subsets of X. The following hold.

(a) If S ⊆ T , then O(S) ⊆ O(T ).
(b) If U ⊆ V , then I(V ) ⊆ I(U).
(c) O(S) = ∅ if and only if S = {0}.
(d) O(S) = X if and only if

⟨
S
⟩

is a free ideal.
(e) I(U) = {0} if and only if U is dense in X.
(f) I(U) = C(X) if and only if U = ∅.
(g) O(

⟨
f
⟩
) = Coz(f).

(h) I(U) = I(U).

Proof. It is straightforward. □
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Proposition 2.2. Let S be a subset of C(X). If I =
⟨
S
⟩
, then O(I) =

O(S).

Proof. It is straightforward. □

Proposition 2.3. Let {Iα}α∈A be a family of ideals of C(X), I and J be
ideals of C(X), {Uα}α∈A be a family of subsets of X and U and V be subsets
of X. Then the following hold.

(a) O
(∑

α∈A Iα
)
=

∪
α∈AO(Iα).

(b) O
(∩

α∈A Iα
)
⊆

∩
α∈AO(Iα).

(c) I
(∪

α∈A Uα

)
=

∩
α∈A I(Uα).

(d) O(I ∩ J) = O(I) ∩O(J).
(e) I(U ∩ V ) ⊇ I(U) + I(V ).

Proof. It is straightforward. □

In the following examples we show that the equality in parts (b) and (e)
of the above proposition need not be established.

Example 2.4. Consider the ring C(R). For each r ∈ Q, we have O(Mr) =
R \ {r}, thus

∩
r∈QO(Mr) = R \ Q. Also

∩
r∈QMr = MQ = {0}, so

O
(∩

r∈QMr

)
= O({0}) = ∅.

Example 2.5. Consider C(R). Easily we can see that, I(Q) = {0} =
I(R \Q), and thus I [Q ∩ (R \Q)] = I(∅) = C(R) ̸= {0} = I(Q) + I(R \Q).

Corollary 2.6. Let U and V be subsets of X. The following are equivalent.
(a) U ∪ V is dense in X.
(b) I(U) ∩ I(V ) = {0}.
(c) I(U)I(V ) = {0}.

Proof. It follows from Lemma 2.1 and Proposition 2.3. □

Proposition 2.7. Let I be an ideal of C(X) and U be a subset of X. The
following hold.

(a) O(I(U)) = (X \ U)◦.
(b) I(O(I)) = Ann(I).
(c) (IO)3(I) = (IO)(I).
(d) O(Ann(I)) = (X \O(I))◦.

Proof. (a). O(I(U)) =
∪

f∈I(U)

Coz(f) =
∪

Z(f)⊇U

Coz(f) =
∪

Coz(f)⊆X\U

Coz(f) =

(X \ U)◦.
(b).
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f ∈ Ann(I) ⇔ ∀g ∈ I fg = 0

⇔ ∀g ∈ I Z(f) ∪ Z(g) = X

⇔ ∀g ∈ I Coz(g) ⊆ Z(f)

⇔
∪
g∈I

Coz(g) ⊆ Z(f)

⇔ O(I) ⊆ Z(f)

⇔ f ∈ I(O(I))

Thus Ann(I) = I(O(I)).
(c). Since Ann3(I) = Ann(I), it follows from (b), immediately.
(d). By (b) and (a), O(Ann(I)) = O(I(O(I))) = (X \O(I))◦. □

Now the following corollary can be concluded from parts (a) and (e) of
Proposition 2.7 and Lemma 2.1(e).

Corollary 2.8. Suppose that I is a non-zero ideal of C(X) and U ⊆ X.
(a) I ∈ A(X)∗ if and only if O(I) ̸= X.
(b) I(U) ∈ A(X)∗ if and only if U

◦
̸= ∅.

Corollary 2.9. If I is an annihilating ideal of C(X), then I is a fixed ideal.

Proof. Since I is annihilating, Ann(I) ̸= {0}, so Proposition 2.7, deduces
I(O(I)) ̸= {0}, hence O(I) is not dense, by Lemma 2.1. Thus O(I) ̸= X
and therefore

∩
f∈I Z(f) = X \O(I) ̸= ∅, so I is a fixed ideal. □

The converse of the above corollary need not be true, for instance M0 ⊆
C(R) is a fixed ideal which is not an annihilating ideal.

Corollary 2.10. Let P be a prime ideal of C(X). P is annihilating if and
only if there is some isolated point p in X such that P = Mp = Op.

Proof. (⇒). By Corollary 2.9, P is fixed, so there is some p ∈ X such that
Op ⊆ P ⊆ Mp. Thus O(P ) = X \

(∩
f∈P Z(f)

)
= X \ {p}. Since P is

annihilating, Ann(P ) ̸= {0} and therefore I(O(P )) ̸= {0}, by Proposition
2.7. Now Lemma 2.1, deduces X \ {p} is not dense and thus p is an isolated
point. Consequently, P = Mp = Op.

(⇐). Since P = Mp, O(P ) = X \
(∩

f∈P Z(f)
)
= X \ {p}. Since p is

an isolated point, it follows that O(P ) is not dense in X, thus I(O(P )) ̸=
{0}, by Lemma 2.1. Now Proposition 2.7, entails that Ann(P ) ̸= {0} and
therefore P is annihilating. □

Lemma 2.11. If G is an open subset of X, then an ideal I exists such that
O(I) = G. In other words, O maps the family of all ideals of C(X) onto
the family of all open subsets of X.
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Proof. Put I =
⟨{

f ∈ C(X) : Coz(f) ⊆ G
}⟩

. Then by Proposition 2.2,

O(I) = O
(⟨
{f : Coz(f) ⊆ G}

⟩)
=

∪
Coz(f)⊆G

Coz(f) = G □

Now we note that for each ideal I of C(X), the ideal Iz means the smallest
z-ideal containing I; i.e. Iz is the intersection of all z-ideals containing I.

Lemma 2.12. For each ideal I of C(X), we have O(Iz) = O(I).

Proof. Since Z(I) = Z(Iz), so {Coz(f) : f ∈ I} = {Coz(f) : f ∈ Iz} and
therefore O(Iz) = O(I). □

Theorem 2.13. O is a map from the family of all z-ideals of C(X) onto
the family of all open sets of X.

Proof. It is clear by Lemmas 2.11 and 2.12. □

Theorem 2.14. Let I and J be two ideals of C(X). The following state-
ments hold

(a) IJ = {0} if and only if O(I) ∩O(J) = ∅.
(b) IAnn(J) = {0} if and only if O(I) ⊆ O(J).
(c) Ann(I)Ann(J) = {0} if and only if O(I) ∪O(J) = X.
(d) O(I) = O(J) if and only if Ann(I) = Ann(J).
(e) I(U)I = {0} if and only if O(I) ⊆ U .

Proof. (a ⇒). Since IJ = {0}, I ⊆ Ann(J), thus I ⊆ I(O(J)), by Proposi-
tion 2.7(b). Now suppose that f ∈ I, then f ∈ I(O(J)), hence Z(f) ⊇ O(J),
so Coz(f) ⊆ X \O(J). It follows that O(I) =

∪
f∈I Coz(f) ⊆ X \O(J) and

therefore O(I) ∩O(J) = ∅.
(a ⇐). Suppose that f ∈ I and g ∈ J , then Coz(f) ⊆ O(I) and Coz(g) ⊆

O(J), thus Coz(f) ∩ Coz(g) ⊆ O(I) ∩ O(J) = ∅, so fg = 0 and therefore
IJ = {0}.

(b). Considering part (a), IAnn(J) = {0} if and only if O(I)∩O(Ann(J)) =
∅. By Proposition 2.7, it is equivalent to O(I)∩(X \O(J))◦ = ∅. It is equiv-
alent to O(I) ⊆ O(J).

(c). According to part (a), Ann(I)Ann(J) = {0} if and only if O(Ann(I))∩
O(Ann(J)) = ∅ if and only if (X \O(J))◦∩(X \O(I))◦ = ∅, By Proposition
2.7. It is equivalent to stating that O(I) ∪O(I) = X.

(d ). Via part (b),

O(I) = O(J) ⇔ O(I) ⊆ O(J) and O(J) ⊆ O(I)

⇔ IAnn(J) = {0} and JAnn(I) = {0}
⇔ Ann(J) ⊆ Ann(I) and Ann(I) ⊆ Ann(J)

⇔ Ann(I) = Ann(J) .
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(e). Through part (a) and Proposition 2.7,
II(U) = {0} ⇔ O(I) ∩O(I(U)) = ∅

⇔ O(I) ∩ (X \ U)◦ = ∅
⇔ O(I) ∩X \ U = ∅
⇔ O(I) ⊆ U . □

Proposition 2.15. Suppose that I, J ∈ A(R)∗. Then I and J are adjacent
if and only if each maximal ideal of C(X) contains either I or J .

Proof. (⇒). It is clear.
(⇐). By the assumption, we have

∀p ∈ X I ⊆ Mp or J ⊆ Mp

⇒ ∀p ∈ X p ∈
∩
f∈I

Z(f) or p ∈
∩
f∈J

Z(f)

⇒

∩
f∈I

Z(f)

 ∪

∩
f∈J

Z(f)

 = X

⇒ O(I) ∩O(J) = ∅

Hence I and J are adjacent, by Theorem 2.14(a). □

Corollary 2.16. Suppose that I, J ∈ A(X)∗. Then I and J are orthogonal
if and only if O(I) ∩O(J) = ∅ and O(I) ∪O(J) = X.

Proof. It is verifiable through Theorem 2.14(a) and Corollary 2.8(a). □

Proposition 2.17. If each closed set of X is a zero set, then C(X) is an
i.a.c. ring.

Proof. By the assumption, each open set of X is a cozero set and thus O is a
map from the family all ideals of C(X) onto the family all cozero sets of X,
by Lemma 2.11 . Suppose that S is a subset of X and set I =

⟨
S
⟩
. Now we

can conclude that there is some f ∈ C(X) such that O(I) = O(S) = Coz(f).
Thus, by Lemma 2.1(g), Proposition 2.2 and Theorem 2.14(a),

g ∈ Ann(I) ⇔ gI = {0} ⇔ O(
⟨
g
⟩
) ∩O(I) = ∅

⇔ Coz(g) ∩ Coz(f) = ∅ ⇔ gf = 0

⇔ g ∈ Ann(f)

Hence Ann(S) = Ann(I) = Ann(f), i.e. C(X) is an i.a.c. ring. □

3. Radius of the graph

In this section, some topological properties of X are linked to the distance
and eccentricity of vertices of AG(X), then by these facts we study the radius
of the graph.
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Lemma 3.1. For any ideals I and J in A(X)∗,
(a) d(I, J) = 1 if and only if O(I) ∩O(J) = ∅.
(b) d(I, J) = 2 if and only if O(I) ∩O(J) ̸= ∅ and O(I) ∪O(J) ̸= X.
(c) d(I, J) = 3 if and only if O(I) ∩O(J) ̸= ∅ and O(I) ∪O(J) = X.

Proof. (a). It is evident, by Theorem 2.14.
(b ⇒). Since I is not adjacent to J , O(I) ∩O(J) ̸= ∅, by Theorem 2.14.

By the assumption there is an ideal K in A(X)∗ such that K is adjacent to
both ideals I and J . Now Lemma 2.1 concludes that O(K) ̸= ∅ and also
Theorem 2.14 implies that O(I) ∩O(K) = ∅ and O(J) ∩O(K) = ∅, hence
O(K) ∩ (O(I) ∪O(J)) = ∅ and thus O(I) ∪O(J) ̸= X.

(b ⇐). Theorem 2.14 follows that I is not adjacent to J . Set H =

O(I) ∪ O(J) and K = I(H). Since ∅ ̸= H ⊆ H
◦
̸= ∅, by Corollary 2.8,

I(H) ∈ A(X)∗. Since O(I),O(J) ⊆ H ⊆ H, IK = JK = {0}, by Theorem
2.14. Hence K is adjacent to both ideals I and J , thus d(I, J) = 2.

(c). It follows from (a), (b) and [7, Theorem 2.1]. □
Lemma 3.2. Let f ∈ C(X), I be an ideal of C(X) and p ∈ O(I). If
Coz(f) ⊆ {p} and p is an isolated point of X, then f ∈ I.

Proof. Since p ∈ O(I), there is some g ∈ I such that p ∈ Coz(g). Set

h(x) =

{
f(p)
g(p) x = p

0 x ̸= p

Since p is an isolated point, h ∈ C(X). Now we have f = gh and therefore
f ∈ I. □
Proposition 3.3. Suppose that I is a non-zero annihilating ideal of C(X).
The following statements hold.

(a) ecc(I) = 3 if and only if O(I) is not a singleton.
(b) ecc(I) = 2 if and only if O(I) is a singleton and |X| > 2.
(c) ecc(I) = 1 if and only if O(I) is a singleton and |X| = 2.

Proof. (a ⇒). There is some J ∈ A(X)∗ such that d(I, J) = 3. Lemma
3.1, concludes that O(I) ∩ O(J) ̸= ∅ and O(I) ∪O(J) = X. If O(I) is a
singleton, then O(I) ⊆ O(J) and therefore O(J) = O(I) ∪O(J) = X, so
J /∈ A(X)∗, by Corollary 2.8, which is a contradiction.

(a ⇐). There are distinct points p and q in O(I), so there are disjoint
open sets H,K ⊆ O(I) such that p ∈ H and q ∈ K. By Lemma 2.11,
there is some ideal J such that O(J) = H ∪X \O(I). Since q /∈ O(J) and
p ∈ O(J), Lemma 2.1 and Corollary 2.8, conclude that J ∈ A(X)∗. Then

H ⊆ O(I) ∩O(J) ⇒ O(I) ∩O(J) ̸= ∅

O(I) ∪O(J) ⊇ O(I) ∪
(
X \O(I)

)
= X ⇒ O(I) ∪O(J) = X

Hence d(I, J) = 3, by Lemma 3.1. Consequently, ecc(I) = 3.
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(c ⇒). Since ecc(I) = 1, I is adjacent to any element of A(X)∗. By
(a), O(I) is a singleton, thus there is some isolated point p ∈ X such that
O(I) = {p}. Since ∅ ̸= X \ {p} is open, by Lemma 2.11, there is some ideal
J , such that O(J) = X \ {p}. Since O(J) ̸= ∅ and O(J) = X \ {p} ̸= X, we
obtain that J ∈ A(X)∗, by Lemma 2.1 and Corollary 2.8. Since ecc(I) = 1,
ecc(J) ⩽ 2, so O(J) is a singleton, by part (a), and therefore |X| = 2.

(c ⇐). C(X) ∼= R ⊕ R, so AG(X) is a star graph, by [7, Corollary 2.3].
Since A(X)∗ has just two elements, it follows that ecc(I) = 1.

(b). It concludes from (a) and (c). □
The following corollary is an immediate consequence of the above theorem.

Corollary 3.4. |X| = 2 if and only if AG(X) is a star.

Now we can determine the radius of the graph.

Theorem 3.5. For any topological space X,

Rad(AG(X)) =


1 if |X| = 2

2 if |X| > 2 and X has an isolated point.
3 if |X| > 2 and X does not have any isolated point.

Proof. It is a straight consequence of Lemma 2.11 and Proposition 3.3. □

4. Girth of the graph

In this section, first we provide an equivalent topological property to pen-
dant vertices, then we show that if AG(X) has a cycle then girthAG(X) = 3.
Finally we attempt to associate the graph properties of AG(X), the ring
properties of C(X) and the topological properties of X.

Lemma 4.1. Suppose that Y is a clopen subset of X. Then for each ideal
I of C(X), there are ideals I1, I2 of C(X) such that I = I1 ⊕ I2 and I1 and
I2 are ideals of MY

∼= C(X \ Y ) and MX\Y ∼= C(Y ), respectively.

Proof. Considering the fact that Y is clopen, C(X) ∼= C(Y )⊕ C(X \ Y ), it
is straightforward. □

Proposition 4.2. Let I ∈ A(X)∗. Then X \O(I) is a singleton if and only
if I is a pendant vertex.

Proof. ⇒). Suppose that X \ O(I) = {p}. Since {p} is open, by Lemma
2.11, there is an ideal J such that O(J) = {p}, then O(J) = {p}, and
therefore J ∈ A(X)∗, by Lemma 2.1 and Corollary 2.8. Also O(I)∩O(J) =
∅, so I is adjacent to J , by Theorem 2.14. Suppose that K is adjacent
to I and Y = O(I). Then O(K) ∩ O(I) = ∅, by Theorem 2.14, thus
O(K) ⊆ X \O(I) = {p}. By Lemma 2.1, O(K) ̸= ∅, so O(K) = {p}. Since
{p} is clopen, by Lemma 4.1, it follows that there are ideals K1 and K2 of
Mp

∼= C(Y ) and MY
∼= C ({p}) ∼= R, respectively, such that K = K1 ⊕K2.
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If K1 ̸= {0}, then 0 ̸= f ∈ K1 ⊆ K exists, so there is a q ∈ Y such that
f(q) ̸= 0, thus p ̸= q ∈ Coz(f) ⊆ O(K), which is a contradiction. Hence
K1 = {0}, since K ̸= {0}, it follows that K2 = MY , thus K = MY , and this
completes the proof.

⇐). Suppose that X \ O(I) is not a singleton, so distinct points p, q

in X \ O(I) exist. Since X \ O(I) is open and X is Hausdorff, there are
disjointed open sets H1 and H2 containing p and q, respectively, in which
H1∩O(I) = H2∩O(I) = ∅. Now Lemma 2.11, implies that there are ideals
J1 and J2 such that O(J1) = H1 and O(J2) = H2, clearly J1, J2 ∈ A(X)∗.
Then O(I)∩O(J1) = O(I)∩O(J2) = ∅. So, by Theorem 2.14, I is adjacent
to both ideals J1 and J2. □
Lemma 4.3. Suppose that I, J ∈ A(X)∗ are not pendant vertices. The
following statements hold.

(a) O(I) ∩O(J) = ∅ and O(I) ∪O(J) ̸= X if and only if gi(I, J) = 3.
(b) If O(I) ∩O(J) = ∅ and O(I) ∪O(J) = X, then gi(I, J) = 4.
(c) If O(I) ∩O(J) ̸= ∅ and O(I) = O(J), then gi(I, J) = 4.
(d) Suppose that O(I) ∩ O(J) ̸= ∅ and O(I) ̸= O(J). Then X \

O(I) ∪O(J) is not a singleton if and only if gi(I, J) = 4.
(e) O(I)∩O(J) ̸= ∅, O(I) ̸= O(J) and X \O(I) ∪O(J) is a singleton

if and only if gi(I, J) = 5.

Proof. (a ⇒). Set H = O(I) ∪ O(J) and K = I(H). Since H ̸= X and
H

◦
̸= ∅, K ∈ A(X)∗, by Corollary 2.8(b). Since O(I),O(J) ⊆ H ⊆ H, by

Theorem 2.14, K is adjacent to both ideals I and J . By the assumption
and Theorem 2.14, I is adjacent to J , hence gi(I, J) = 3.

(a ⇐). By the assumption, I is adjacent to J and some K ∈ A(X)∗

exists such that K is adjacent to both ideals I and J , so O(I) ∩ O(J) =
∅, O(I) ∩ O(K) = ∅ and O(J) ∩ O(K) = ∅, by Theorem 2.14. Hence
(O(I) ∪O(J))∩O(K) = ∅. Since K ̸= {0}, O(K) ̸= ∅, by Lemma 2.1, and
therefore O(I) ∪O(J) ̸= X.

(b). The assumption and part (a) imply that gi(I, J) ⩾ 4 and Theorem
2.14, concludes that IJ = Ann(I)Ann(J) = {0}. Since I and J are not
pendant vertices, there are I1, J1 ∈ A(X)∗ such that I is adjacent to I1 ̸= J
and J is adjacent to J1 ̸= I, so II1 = JJ1 = {0}, thus I1 ⊆ Ann(I) and
J1 ⊆ Ann(J), hence I1J1 ⊆ Ann(I)Ann(J) = {0} and therefore I1J1 = {0}.
Consequently, I is adjacent to J , J is adjacent to J1, J1 is adjacent to I1
and I1 is adjacent to I, they imply that gi(I, J) = 4.

(c). We can conclude from the assumption and part (a), that gi(I, J) ⩾ 4.
Since O(J) = O(J), by Theorem 2.14, it follows that Ann(I) = Ann(J).
Since I is adjacent to Ann(I) and I is not a pendant vertex, it follows there
is some vertex I1 ∈ A(X)∗ distinct from Ann(I) such that I is adjacent
to I1, then I1I = {0}, so I1 ⊆ Ann(I) = Ann(J) and therefore I1J = {0}.
Consequently, I is adjacent to Ann(I), Ann(J) is adjacent to J , J is adjacent
to I1 and I1 is adjacent to I and thus gi(I, J) = 4.



214 BADIE

(d ⇒). Evidently, there are two distinct nonempty open sets H1 and H2

such that H1 ∩O(I) = H1 ∩O(J) = H2 ∩O(I) = H2 ∩O(J) = ∅. Then,
by Lemma 2.11, there are two ideals K1 and K2 such that O(K1) = H1 and
O(K2) = H2, it is clear that K1,K2 ∈ A(X)∗, by Lemma 2.1 and Corollary
2.8. Now Theorem 2.14, concludes that both vertices I and J are adjacent
to both vertices K1 and K2, thus gi(I, J) = 4, by part (a).

(d ⇐). By Theorem 2.14, I is not adjacent to J . Since gi(I, J) = 4,
it follows that there are distinct vertices K1 and K2 which are adjacent to
both vertices I and J , so I+J is adjacent to both vertices K1 and K2. Now
Propositions 2.3 and 4.2, conclude that X \O(I) ∪O(J) = X \O(I + J) is
not a singleton.

(e ⇒). By parts (a) and (d), gi(I, J) ⩾ 5. If O(I) ⊆ O(J), then
O(I) ⊆ O(J), so X \ O(I) ∪O(J) = X \ O(J) and therefore X \ O(J)
is a singleton, by the assumption. Now Proposition 4.2, concludes that J
is a pendant vertex, which contradicts the assumption, so O(I) ̸⊆ O(J),
similarly, it can been shown that O(J) ̸⊆ O(I), so H1 = O(I) \O(J) and
H2 = O(J) \O(I) are nonempty open sets; thus, Lemma 2.11, implies that
there are ideals K1 and K2 such that O(K1) = H1 and O(K2) = H2, it
is evident that K1,K2 ∈ A(X)∗, by Lemma 2.1 and Corollary 2.8. Since
X \ O(I) ∪O(J) is a nonempty open set, there is an ideal K3 such that
O(K3) = X \O(I) ∪O(J), it is clear that K3 ∈ A(X)∗, by Lemma 2.1 and
Corollary 2.8. Then

O(I) ∩O(K2) = O(K2) ∩O(K1) = O(K1) ∩O(J)

= O(J) ∩O(K3) = O(K3) ∩O(I) = ∅

so gi(I, J) = 5.
(e ⇐). It is clear, by parts (a)-(d). □

It is clear that if |X| = 2, then AG(X) does not have any cycle. In the
following theorem we show that if AG(X) has a cycle then the girth of the
graph is 3.

Theorem 4.4. If |X| > 2, then girthAG(X) = 3.

Proof. It is clearly observable that there are mutually disjointed nonempty
open sets G1, G2 and G3. By Lemma 2.11, there are ideals I1, I2 and I3, such
that O(I1) = G1, O(I2) = G2 and O(I3) = G3, evidently, I1, I2, I3 ∈ A(X)∗,
by Lemma 2.1 and Corollary 2.8. By Theorem 2.14, I1 is adjacent to I2, I2
is adjacent to I3 and I3 is adjacent to I1, hence girthAG(X) = 3. □

Theorem 4.5. The following statements are equivalent.
(a) X has an isolated point.
(b) R is a direct summand of C(X).
(c) AG(X) has a pendant vertex.
(d) AG(X) is not triangulated.



ANNIHILATING-IDEAL GRAPH OF C(X) 215

Proof. (a ⇔ b) and (c ⇒ d) are clear and (a ⇔ c) follows from Proposition
4.2.

(d ⇒ a) Suppose that X does not have any isolated point and I ∈ A(X)∗.
Then X \O(I) is not a singleton, so it has two distinct points p and q, so
there are disjoint open sets G1 and G2, such that G1 ∩O(I) = G2 ∩O(I) =
∅. By Lemma 2.11, there are J,K ∈ A(X)∗, such that O(J) = G1 and
O(K) = G2. Thus I is adjacent to J , J is adjacent to K and K is adjacent
to I. Consequently, AG(X) is triangulated. □

5. Dominating number

In the last section, an upper bound and a lower bound for dominating
number of the graph by topological notions are offered, then the chromatic
number and the clique number of the graph are studied.

Theorem 5.1. c(X) ⩽ dt(AG(X)) ⩽ w(X), for each topological space X.

Proof. Suppose that U is a family of mutually disjointed nonempty open
sets. If

∪
U ̸= X, then V = U ∪

{
X \

∪
U
}

is a family of mutually disjoint
open sets which

∪
V = X, so without loss of generality we can assume that∪

U = X. For each U ∈ U , there are some IU ∈ A(X)∗ such that O(IU ) = U ,
by Lemma 2.11. Since U ̸= ∅ and U ̸= X, it follows that IU ∈ A(X)∗, by
Lemma 2.1 and Corollary 2.8. Now suppose that D is a dominating set,
then for each U ∈ U , there is an ideal JU in D such that JU is adjacent to∑

U ̸=V ∈U IV . Now Theorem 2.14, implies that O(JU ) ∩O
(∑

U ̸=V ∈U IV

)
=

∅, thus O(JU ) ∩
(∪

U ̸=V ∈U U
)

= ∅. Suppose that JU = J
U′ , for some

U,U ′ ∈ U . Then O(JU ) = O(J
U′ ). If U ̸= U ′, then

O(JU ) ∩
∪

U = O(JU ) ∩
[( ∪

U ̸=V ∈U
V
)
∪
( ∪

U ′ ̸=V ∈U
V
)]

=

[
O(JU ) ∩

( ∪
U ̸=V ∈U

V
)]

∪
[
O(JU ) ∩

( ∪
U ′ ̸=V ∈U

V
)]

= ∅.

Thus
∪
U ̸= X, which contradicts our assumption. Hence U = U ′, so

|U| ⩽ |D|, and consequently c(X) ⩽ dt(AG(X)).
Now suppose that B is a base for X, without loss of generality we can

assume that every element of B is not empty. For each B ∈ B, there is some
0 ̸= fB ∈ C(X) such that ∅ ̸= Coz(fB) ⊆ B. Clearly, we can choose fB

such that Coz(fB ) ̸= X. Lemma 2.1, concludes that O(
⟨
fB

⟩
) = Coz(fB ),

so O(
⟨
fB

⟩
) ̸= ∅ and O(

⟨
fB

⟩
) ̸= X, for each B ∈ B, thus

⟨
fB

⟩
∈ A(X)∗, by

Lemma 2.1 and Corollary 2.8. For each J ∈ A(X)∗, O(I) ̸= X, by Corollary
2.8, so (X \O(I))◦ ̸= ∅, thus B ∈ B exists such that B ⊆ (X \O(I))◦,
hence O(

⟨
fB

⟩
) ⊆ X \ O(I), consequently, O(

⟨
fB

⟩
) ∩ O(I) = ∅, therefore

Theorem 2.14, implies that
⟨
fB

⟩
is adjacent to I. Hence {

⟨
fB

⟩
: B ∈ B} is a
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dominating set. Since
∣∣{⟨fB

⟩
: B ∈ B}

∣∣ ⩽ |B|, it follows that dt(AG(X)) ⩽
w(X). □

Now we can conclude the following corollary from the above theorem.

Corollary 5.2. If X is discrete, then dt(AG(X)) = |X|.

Theorem 5.3. dt(AG(X)) is finite if and only if |X| is finite. In this case,
dt(AG(X)) = |X|.

Proof. ⇒). Suppose that |X| is infinite. Clearly c(X) is infinite, so dt(AG(X))
is infinite, by Theorem 5.1.

⇐). If |X| is finite, then X is discrete, so dt(AG(X)) = |X| is finite, by
Corollary 5.2. □

Theorem 5.4. χAG(X) = ωAG(X) = c(X), for each topological space X.

Proof. It is an immediate consequence of Proposition 1.2, Lemma 2.11 and
Theorem 2.14. □
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M. BADIE

C(X) ایده آل-پوچ ساز گراف

بدیعی١ مهدی

ایران دزفول، دزفول، شاپور جندی صنعتی ١دانشگاه

،AG(X) گراف خواص بین رابطه هایی که کرده ایم سعی C(X) حلقه ی ایده آل-پوچ ساز مطالعه ی با
یک R اگر تنها و اگر دارد منفرد نقطه ی یک X که داده ایم نشان بیابیم. X توپولوژی و C(X) حلقه ی
مثلثی شدنی گراف یک AG(X) که هستند این با معادل نیز دو این و باشد C(X) مستقیم جمعوند
کرده ایم ثابت و شده اند مطالعه AG(X) خوشه ای و احاطه گر اعداد و کمر شعاع، همچنین نباشد.

.wAG(X) = χAG(X) = c(X) و c(X) ⩽ dt (AG(X)) ⩽ w(X)

سلولیت. خوشه ای، عدد رنگی، عدد ایده آل-پوچ ساز، گراف پیوسته، توابع حلقه ی کلیدی: کلمات
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