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ON SOME TOTAL GRAPHS ON FINITE RINGS

M. TAGHIDOOST LASKUKALAYEH, M. GHOLAMNIA TALESHANI AND
A. ABBASI∗

Abstract. We give a decomposition of the total graph T (Γ(Z2npm))
where p is a prime and m,n are positive integers. We also stud-
ied some graph theoretical properties with some of its fundamental
subgraphs.

1. Introduction

Let R be a commutative ring and Z(R) and Reg(R) be the sets
of zero-divisors and regular elements of R, respectively. Let T (Γ(R))
denote the total graph of R and let Z(Γ(R)) and Reg(Γ(R)) be the
induced subgraphs of T (Γ(R)) with vertices in Z(R) and Reg(R), re-
spectively. In this paper, we study the decomposition of total graphs on
some finite commutative rings R = Zm, where the set of zero-divisors
of R is not an ideal. For m ≥ 2, it is well-known that Z(Zm) is an ideal
of Zm if and only if m = pn for some prime p and integer n ≥ 1.

For a simple graph G, let V (G) and E(G) be the sets of vertices and
edges of G, respectively. For a nonnegative integer r, the graph G is
called r-regular if all vetices have the same degree r. Recall that the
complement of a graph G is a graph denoted by Ḡ on the same vertex
set as G, where two distinct vertices are adjacent in Ḡ if and only if
they are not adjacent in G. A graph is called planar if it can be drawn
in the plane without crossing edges. A tree is a connected graph with
no cycles. A claw the star graph K1,3. A claw-free is one that does not
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have a claw as an induced subgraph. A caterpillar is a tree in which a
single path is incident to every edge. A k-coloring of G is a function
f : V (G) −→ {1, . . . , k} from the vertex set into the set of positive
integers less than or equal to k. A k-coloring is said to be proper if
adjacent vertices are colored differently. A graph is called k-colorable
if it has a proper k-coloring. The chromatic number χ(G) is the least
k such that G is k-colorable. For vertices x and y of G, we define
d(x, y) to be the length of a shortest path from x to y. d(x, x) = 0; and
d(x, y) = ∞ if there is no such path). The diameter of G is defined
as diam(G) = sup{d(x, y)| x and y are vertices of G}. The girth of G,
denoted by gr(G), is the length of a shortest cycle in G. gr(G) = ∞
if G contains no cycles. We say that two (induced) subgraphs G1 and
G2 of G are disjoint if G1 and G2 have no common vertices and no
vertex of G1 (respectively, G2) is adjacent (in G) to any vertex not in
G1 (respectively, G2). An independent set of G is a set of vertices, no
two of which are adjacent. The independence number of G is defined as
the maximum size of an independent set of vertices, denoted by α(G).
A vertex cover of a graph G is a set Q ⊂ V (G) that contains at least
one endpoint of all edges. We denote the minimum size of vertex covers
in G by β(G). A dominating set for a graph G is a set D ⊆ V (G) such
that every vertex of V (G)−D is adjacent to at least one vertex of D.
The domination number γ(G) is the number of vertices of a smallest
dominating set for G. A set I ⊆ V (G) is an independent dominating set
of G if I is both an independent and dominating set. The cardinality of
a minimum independent dominating set of G is called the independent
domination number of G and is denoted by i(G). A graph G is called
domination perfect if γ(H) = i(H) for every induced subgraph H of G.
A graph is well-covered if i(G) = α(G). A matching of G is a set of
non-loop edges with no shared endpoints. The vertices incident to the
edges of a matching M are saturated by M . A perfect matching is a
matching that saturates every vertex. The maximum size of matchings
in G is denoted by α′(G). An edge cover of G is a set L of edges such
that every vertex of G is incident to some edge of L. The minimum
size of edge covers is denoted by β′(G). Let ω(G) denote the number of
components of a graph G. A vertex cut of a graph G is a set S ⊆ V (G)
such that G−S has more than one component. The connectivity of G,
written as κ(G), is the minimum size of a vertex set S such that G−S
is disconnected or has only one vertex. A disconnecting set of edges
is a set F ⊆ E(G) such that G − F has more than one component.
The edge-connectivity of G, written as κ′(G), is the minimum size of a
disconnecting set. More terminologies can be seen in [5].
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Throughout, we assume that p is an odd prime number and n,m
are natural numbers. Note that Z(Z2npm) is not an ideal of Z2npm . So,
by [2] we have

(1) T (Γ(Z2npm)) is a connected graph with diam(T (Γ(Z2npm))) = 2
and gr(T (Γ(Z2npm)) = gr(Z(Γ(Z2npm))) = 3.

(2) Z(Z2npm) is a set of 2n−1pm−1(p + 1) elements which can be
classified into two subsets of even and odd zero-divisors with
2n−1pm and 2n−1pm−1 elements, respectively. In addition, it is
obvious that Reg(Z2npm) is the set of odd elements that are not
multiples of p and has 2n−1pm−1(p− 1) elements.

(3) By (2) and Lemma 2.4 of [4], T (Γ(Z2npm)) is a (2n−1pm−1(p +
1)− 1)-regular graph.

2. Decomposition of T (Γ(Z2npm))

Let p be an odd prime number. In this section, we consider the total
graph T (Γ(Z2npm)) and decompose it in sevsral steps. At first, we give
some basic notions require in the contex of this request.
Lemma 2.1. The only odd zero-divisor of the ring Z2p is p.
Proof. It is obvious that p is an odd zero-divisor of Z2p. Let a be an
odd zero-divisor of Z2p. Then there exists a 0 ̸= b ∈ Z2p such that
ab = 0. It is clear that p ∤ b. Hence, p | a and so, p = a. □
Theorem 2.2. The clique number of T (Γ(Z2p)) is p.
Proof. The set of zero-divisors of Z2p contains p and all even elements.
Thus, in T (Γ(Z2p)) every even vertex of T (Γ(Z2p)) is adjacent to the
other even vertices and similarly every odd vertex of Z2p is adjacent to
the other odd vertices. Since we have exactly p even and p odd elements
in Z2p, so there are exactly two complete graphs Kp in the total graph,
one with even vertices and the other with odd vertices. Now we show
that there isn’t any complete graph with more than p vertices. We
claim that there isn’t any odd vertex adjacent to all even vertices. Let
x be an odd vertex adjacent to all even vertices, so x + y ∈ Z(Z2p)
for any even vertex y. Thus, by Lemma 2.1, x + y = p for any even
vertex y which is a contradiction. Similarly, there isn’t any even vertex
adjacent to all odd vertices. Hence ω(T (Γ(Z2p))) = p. □
Definition 2.3. A decomposition of a graph G is a set of subgraphs
G1, G2, . . . , Gr that partitions the edges of G such that

∪
1≤i≤r E(Gi) =

E(G) and E(Gi)∩E(Gj) = ∅ for all i ̸= j. If there is a decomposition
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G1, G2, · · · , Gr for G, we say that G is decomposed by G1, G2, . . . , Gr

and denote it by G = G1 +G2 + · · ·+Gr.

Our next theorem provides a decomposition of the total graph which
will be useful in the sequel.

Theorem 2.4. T (Γ(Z2p)) has the following decomposition;
T (Γ(Z2p)) = 2Kp + pK1,1.

Proof. By the argument of Theorem 2.2, we have exactly two complete
graphs Kp in the decomposition of T (Γ(Z2p)). By Lemma 2.1, p is the
only odd zero divisor of ring Z2p. Moreover, there are exactly p distinct
pairs of even-odd vertices in Z2p such that the sum of each is p. So we
have p edges between even vertices and odd vertices. □
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Figure 1. T (Γ(Z10))

Theorem 2.5. The followings hold.
(i) Z(Γ(Z2p)) = Kp +K1,1.
(ii) Reg(Γ(Z2p)) is a complete graph with p− 1 vertices.

Proof. (i) It’s clear that in Z(Γ(Z2p)), there exist p even vertices adja-
cent to each other. So we have a complete graph Kp. By Lemma 2.1,
p is the only odd zero-divisor in Z2p which is adjacent to 0.

(ii) In Reg(Γ(Z2p)), all odd vertices of T (Γ(Z2p)) are adjacent to each
other except p. So, we have the complete graph Kp−1. □
Theorem 2.6. For all n ≥ 1 and p ≥ 3, we have the following decom-
position

T (Γ(Z2np)) = 2K2n−1p + pK2n−1,2n−1 .

Proof. As mentioned in the proof of Theorem 2.2, T (Γ(Z2np)) induces
two complete subgraphs K2n−1p, one consists of even vertices and the
other of odd vertices. The proof is completed by showing that the re-
maining edges of T (Γ(Z2np)) appears in p induced subgraphs K2n−1,2n−1
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with parts as even and odd vertices. We’ll refer to these partitions as
even-odd partitions.

We proceed by induction on n. For n = 1, in view of Theorem 2.4,
there are p induced subgraphs K1,1 in the decomposition of T (Γ(Z2p)).
Let the assertion be true for a n > 1. It is enough to show that
T (Γ(Z2n+1p)) has p induced subgraphs K2n,2n .

Since |V (T (Γ(Z2n+1p))| = 2|V (T (Γ(Z2np))|, any induced subgraph
K2n,2n of T (Γ(Z2n+1p)) can be constructed by appending 2n−1 even
vertices to the even part elements and 2n−1 odd vertices to odd part
elements of an induced subgraph K2n−1,2n−1 of T (Γ(Z2np)). Let K =

{0, . . . , 2n−1−1}, K ′
= {2n−1, . . . , 2n−1} and {2kp; k ∈ K}

∪
{(2k+

1)p; k ∈ K},{2kp + 2; k ∈ K}
∪
{(2k + 1)p − 2; k ∈ K}, . . .

,{2kp+2p−1; k ∈ K}
∪
{(2k+1)p−2p−1; k ∈ K} be even-odd par-

titions of p subgraphs K2n−1,2n−1 . Consider the subgraph K2n−1,2n−1

of T (Γ(Z2np)) with A = {2kp; k ∈ K} as even part and B =
{(2k + 1)p; k ∈ K} as odd part; and append to A and B, 2n−1

even vertices of A′ = {2kp; k ∈ K
′} and 2n−1 odd vertices of B′ =

{(2k + 1)p; k ∈ K
′}, respectively. We have to show that for any

x ∈ A, y ∈ B, x′ ∈ A′ and y′ ∈ B′, x′ is adjacent to both y′ and y and
also, x is adjacent to y′.

Note that for any x′ ∈ A′, there is x ∈ A such that x′ = x + 2np.
Similarly, for any y′ ∈ B′, y′ = y + 2np for some y ∈ B. By induction
hypothesis x+ y ∈ Z(Z2np); it follows that, x′ + y′ = (x+ 2np) + (y +

2np) = (x + y) + 2n+1p ≡2n+1p x + y ∈ Z(Z2np) ⊆ Z(Z2n+1p). Hence x′

is adjacent to y′.
If x ∈ A, then there is an odd number k ∈ {1, . . . , 2n − 1} such that

x + y = kp. So, one sees immediately that x′ + y = (x + 2np) + y =
kp + 2np = (k + 2n)p in which k + 2n is an odd number belonging to
{1 + 2n, . . . , 2n+1 − 1}. Thus x′ + y ∈ Zodd(Z2n+1p), where the index
means the odd zero-divisors. Similarly x is adjacent to y′. □

Theorem 2.7. The followings hold.
(i) Z(Γ(Z2np)) = K2n−1p +K2n−1,2n−1 +K2n−1 for n > 1.
(ii) Reg(Γ(Z2np)) is a complete graph with 2n−1(p− 1) vertices.

Proof. (i) There are 2n−1p even zero-divisors and 2n−1 odd zero-divisors
in Z2np. Clearly, the 2n−1p even vertices in Z(Γ(Z2np)) are adjacent to
each other which induce the complete graph K2n−1p. Furthermore, the
set of odd zero-divisors of Z2np is {p, 3p, . . . , (2n − 1)p} which forms
K2n−1 , (see Figure 2.b). Considering the sets {2kp; 0 ≤ k ≤ 2n−1−1}
and {(2k+1)p; 0 ≤ k ≤ 2n−1−1} as two parts, the complete bipartite
subgraph K2n−1,2n−1 will be formed, (see Figure 2.a).
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(ii) The vertices of Reg(Γ(Z2np)) are the odd vertices of T (Γ(Z2np))
which are non-zero-divisors, so they are not multiple of p, and
|V (Reg(Γ(Z2np)))| = 2n−1(p − 1). One can clearly see that they form
the complete graph K2n−1(p−1). □
Theorem 2.8. For all n ≥ 1 and p ≥ 3, one has

T (Γ(Z2npm)) = 2K2n−1pm + pK2n−1pm−1,2n−1pm−1.

(a)

(b)

p 3p 5p (2n − 1)p7p

0 2p 4p 6p (2n − 2)p

5p

p

3p
(2n − 1)p
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9p

Figure 2.

Proof. We do by induction on m. For m = 1, in view of Theorem
2.6, T (Γ(Z2np)) = 2K2n−1p + pK2n−1,2n−1 . Let the assertion be true
for a m > 1. Analogue of the proof of Theorem 2.6, T (Γ(Z2npm+1))
induces two complete subgraphs as K2n−1pm+1 , one consists of even ver-
tices and the other of odd vertices. In the similar way to the proof of
Theorem 2.6, consider the subgraph K2n−1pm−1,2n−1pm−1 of T (Γ(Z2npm))
with A = {2kp; k = 0, . . . , 2n−1pm−1 − 1} as even part and B =
{(2k + 1)p; k = 0, . . . , 2n−1pm−1 − 1} as odd part, and append to A
and B even vertices A′ = {2kp; k = 2n−1pm−1, . . . , 2n−1pm − 1} as
odd vertices B′ = {(2k + 1)p; k = 2n−1pm−1, . . . , 2n−1pm − 1}, re-
spectively. Let x′ ∈ A′ and y′ ∈ B′, then we have x′ = x + a2npm

and y′ = y + a2npm for some x ∈ A, y ∈ B and 1 ≤ a ≤ p − 1. By
induction hypothesis x + y ∈ Z(Z2npm); so, it follows that, x′ + y′ =
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(x + y) + 2a2npm ∈ Z(Z2npm) ⊆ Z(Z2npm+1). Hence, x′ is adjacent to
y′. It is easy to check that for any x′ ∈ A′ and y ∈ B, x′ is adjacent to
y, too. □
Corollary 2.9. The following statements hold.

(i) Z(Γ(Z2npm)) = K2n−1pm + K2n−1pm−1,2n−1pm−1 + K2n−1pm−1 for
n > 1.

(ii) Reg(Γ(Z2npm)) is a complete graph with 2n−1pm−1(p−1) vertices.

3. Some properties of G = T (Γ(Z2npm))

In this section, we show that G = T (Γ(Z2npm)) is a claw-free graph
and determine some graph theoretical properties of G and Ḡ. We
also study the structure of ZR(Γ(R)), the spanning subgraph of G =
T (Γ(R)) with edge set E(G)−E(H) where H = Z(Γ(R))∪Reg(Γ(R)).

Corollary 3.1. Let G = T (Γ(Z2npm)), then
κ(G) = κ′(G) = 2n−1pm−1(p+ 1)− 1.

Proof. By decomposition of G proved in Theorem 2.8, each vertex con-
tributes in exactly one complete subgraph K2n−1pm and one complete
bipartite subgraph K2n−1pm−1,2n−1pm−1 . So, to obtain the number of
smallest vertex cut, first we pick up all vertices of K2n−1pm except one,
say v. By the way, v has 2n−1pm−1 neighbours in the other K2n−1pm ,
which should be picked up. So, κ(G) = (2n−1pm − 1) + 2n−1pm−1 =
2n−1pm−1(p+1)−1. Also, to determine the number of smallest discon-
necting set of edges, we should pick up all edges incident on a vertex.
Thus, for an arbitrary vertex v on G, κ(G) = κ′(G) = deg(v) which is
2n−1pm−1(p+ 1)− 1. □
Proposition 3.2. T (Γ(Z2npm)) is a claw-free graph.

Proof. By decomposition of G in Theorem 2.8, some stars K1,3 are visi-
ble in T (Γ(Z2npm)). One can show that they are not induced subgraphs
of T (Γ(Z2npm)), by the light discussion in the following cases.
Case 1: All vertices of K1,3 are present in one K2n−1pm .
Case 2: The center vertex of K1,3 is in one of K2n−1pm and the leaves
are in the other one.
Case 3: There is a leaf of K1,3 in one K2n−1pm and the other vertices
are in the other one.
By the adjacencies in complete graphs we are done. □
Lemma 3.3. (See [5], Lemma 3.1.21) In a graph G, S ⊆ V (G) is an
independent set if and only if S̄ is a vertex cover, and hence α(G) +
β(G) = n(G).
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Theorem 3.4. (See [5], Theorem 3.1.22) If G is a graph without iso-
lated vertices, then α′(G) + β′(G) = n(G).

Proposition 3.5. (See [5], Corollary 3.1.24) If G is a bipartite graph
with no isolated vertices, then α(G) = β′(G).

Corollary 3.6. Let G = T (Γ(Z2npm)), then
(i) α(G) = γ(G) = 2,
(ii) β(G) = 2npm − 2,
(iii) α′(G) = β′(G) = 2n−1pm,
(iv) i(G) = 2, and G is domination perfect.
(v) G is well-covered.

Proof. Using the structure of G decomposed in Theorem 2.8, it is a
simple matter to verify that the largest independent sets are of size two,
which contain a pair of even and odd nonadjacent vertices present in
the different two K2n−1pm s, like {(2k+1)p, (2k+1)p−1}. Also, they can
be the smallest dominating sets. So, α(G) = γ(G) = 2. By Proposition
3.2, G is claw-free. So by the main theorem in [1] for claw-free graphs,
i(G) = γ(G) and G is domination perfect. Also, since i(G) = α(G), G
is a well-covered graph. Furthermore, the maximum size of matchings
is the number of independent edges between two K2n−1pm s, which is
equal to |V (K2n−1pm)|, i.e. α′(G) = 2n−1pm. The equalities mentioned
in Lemma 3.3 and Theorem 3.4 yield the remaining items. □

Remark 3.7. The chromatic number of complete bipartite graphs and
complete graphs are well-known by [5] and [3], as follows

χ(Km,n) = 2, χ(Kn) = n.

Corollary 3.8. Let G = T (Γ(Z2npm)), then χ(G) = 2n−1pm.

Proof. According to the decomposition of Theorem 2.8 and Corollary
3.6, there are 2n−1pm independent sets of vertices of size two in G, each
contain a pair of even and odd nonadjacent vertices from different two
K2n−1pm s. Thus, we can color the vertices of each independent set
by the same color. Since each independent set contains a vertex of a
complete graph, by Remark 3.7, we need 2n−1pm different colors for
coloring of the vertices of G. Thus, χ(G) = 2n−1pm. □

In the next two results, we mention some simple properties about
the complement of G. Anderson and Badawi in [2], described the total
graph of R completely. They showed that if 2 ∈ Z(R), then the struc-
ture of Reg(Γ(R)) is different from that without 2 in Z(R). And since
in this paper, 2 ∈ Z(Z2npm)), we need the next lemma.
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Definition 3.9. Let G = T (Γ(R)). Then Ḡ, the complement of G, is
a graph with vertex set V (G) and two vertices x and y are adjacent if
and only if x+ y /∈ Z(R).
Lemma 3.10. Let R be a finite ring such that |R| = n. Let G =
T (Γ(R)). If 2 ∈ Z(R), then Ḡ is a (n− |Z(R)|)-regular graph.
Proof. By Lemma 2.4 of [4], G is a (|Z(R)| − 1)-regular graph. Let v
be an arbitrary vertex of G. Evidently, by definition of complement,
degḠ(v) = degKn(v)−degG(v) = (n−1)−(|Z(R)|−1) = n−|Z(R)|. □
Corollary 3.11. Let G = T (Γ(Z2npm)). Then the following statements
hold.

(i) Ḡ is a 2n−1pm−1(p− 1)-regular graph.
(ii) Ḡ is a connected bipartite graph.
(iii) Ḡ is triangle-free.
(iv) diam(Ḡ) = 3, except for G = T (Γ(Z6)).
(v) gr(Ḡ) = 4, except for G = T (Γ(Z6)).
(vi) α(Ḡ) = β(Ḡ) = α′(Ḡ) = β′(Ḡ) = 2n−1pm.

Proof. By Lemma 3.10, the regularity of Ḡ is 2npm−2n−1pm−1(p+1) =
2n−1pm−1(p−1). Since every two even (odd) vertices of G are adjacent,
they are nonadjacent in Ḡ. Hence, Ḡ is a triangle-free graph with no
odd cycle and thus, Ḡ is a bipartite graph with parts of even and odd
vertices. In view of Example 3.2, one can obtain the complement of
G = T (Γ(Z6)) and see that Ḡ ∼= C6 whose diameter is 2 and girth
is 6. This is the only exception graph for parts [(iv)] and [(v)]. For
G ̸= T (Γ(Z6)), any pair of even vertices has a common neighbour
and so does any pair of odd vertices. If x and y are two nonadjacent
even and odd vertices,respectively, then they don’t have any common
neighbour, so diam(Ḡ) > 2. On the other hand, there exist odd and
even vertices z and t, respectively such that x ∼ z ∼ t ∼ y. Therefore
Ḡ is connected and diam(Ḡ) = 3. Furthermore, for G ̸= T (Γ(Z6)),
there is a C4 in Ḡ, like 0 ∼ 1 ∼ (2k + 1)p + 1 ∼ (2k + 1)p + 2 ∼ 0
where 0 ≤ k ≤ (p − 1)/2. Thus gr(Ḡ) = 4. For the last part, it is
easy to see that the set of even vertices and the set of odd vertices are
two only largest independent sets in Ḡ, so α(Ḡ) = 2n−1pm. Looking at
Lemma 3.3, we conclude that β(Ḡ) = 2n−1pm. It is easy to check that
α′(Ḡ) = 2n−1pm and in view of Lemma 3.4, β′(Ḡ) = 2n−1pm. □
Remark 3.12. Let G = T (Γ(Z2npm)). In view of Theorem 2.8, one
can see some K3,3 in K2n−1pm−1,2n−1pm−1 or some K5 in K2n−1pm where
G ̸= T (Γ(Z6)). So, by Proposition 6.2.2 in [5], G is not planar. In
Figure 3, we show a planar embedding for T (Γ(Z6)) and draw its dual
which is isomprphic to K2,3.
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T (Γ(Z6)) T ∗(Γ(Z6))

Figure 3. T (Γ(Z6)) and its dual.
Definition 3.13. Let R be a finite ring. Let H = Z(Γ(R))∪Reg(Γ(R)).
The spanning subgraph of G = T (Γ(R)) with edge set E(G) − E(H)
is denoted by ZR(Γ(R)).
Example 3.14. In Figure 4, we see an edge decomposition of T (Γ(Z6))
by Z(Γ(Z6)) as dashed lines, Reg(Γ(Z6)) as a bold line, and ZR(Γ(Z6))
as ordinary lines.

2

3

4

1
5

0

Figure 4. Z(Γ(Z6)), Reg(Γ(Z6)), and ZR(Γ(Z6)) in T (Γ(Z6))

Theorem 3.15. ZR(Γ(Z2p)) is a disconnected graph consisting of two
components; a tree and an isolated vertex.
Proof. First, in the graph Z(Γ(Z2p)), zero vertex is adjacent to the
other zero-divisor vertices, so it is an isolated vertex in ZR(Γ(Z2p)).
We claim that the other 2p− 1 vertices induce a connected graph with
2p − 2 edges, so it is a tree, by Theorem 2.1.4 in [5]. Let u, v be two
arbitrary non-adjacent vertices of ZR(Γ(Z2p)). We show that there is
a u, v-path in ZR(Γ(Z2p)). The following cases can be considered:

(i) If both u and v are even vertices, then there exist distinct odd
vertices x ̸= p and y ̸= p such that x ≁ y and x ∼ u , y ∼
v in ZR(Γ(Z2p)), because the zero element is the only even
vertex adjacent to p, and all other odd vertices are adjacent
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in Reg(Γ(Z2p)). So we have x ∼ p ∼ y, and the u, v-path
u ∼ x ∼ p ∼ y ∼ v.

(ii) If both u and v are odd vertices other than p, then we have the
u, v-path u ∼ p ∼ v.

(iii) If one of u or v is p, say u = p, then v is an even vertex, if not,
u ∼ v. Therefore, there exists odd vertex x such that x ∼ v.
So, we have u ∼ x ∼ v.

(iv) If u, v are even and odd vertices, respectively, and none of them
is p, then there exists an odd vertex x such that u ∼ x ∼ p. So,
we have the u, v-path u ∼ x ∼ p ∼ v.

Furthermore, as we mentioned in Theorems 2.4, 2.5,
T (Γ(Z2p)) = 2Kp + pK1,1,

Z(Γ(Z2p)) = Kp +K1,1,

Reg(Γ(Z2p)) = Kp−1.

It follows that,
|E(ZR(Γ(Z2p))| = |E(T (Γ(Z2p)))| − |E(Z(Γ(Z2p)) ∪Reg(Γ(Z2p)))|

= 2
p(p− 1)

2
+ p−

(
p(p− 1)

2
+ 1 +

(p− 1)(p− 2)

2

)
= 2p− 2.

So, ZR(Γ(Z2p)−{0} is a graph with 2p−1 vertices which is connected
with 2p− 2 edges, and it is a tree. □

It is proved in Theorem 2.2.19 of [5] that a tree is a caterpillar if and
only if it does not contain the tree Y below.

Figure 5. The Tree Y

Theorem 3.16. The tree in ZR(Γ(Z2p)) is not a caterpillar for p ̸= 3.

Proof. It is clear that the tree which consists of ZR(Γ(Z6)) without its
isolated vertex 0, shown by bold lines 2 ∼ 1 ∼ 3 ∼ 5 ∼ 4 in Example
3.14, is a P5 which obviously doesn’t contain the tree Y . So it is a
caterpillar. Consider ZR(Γ(Z2p)) without its isolated vertex 0. As the
argument in Theorem 3.15, it is a tree. Let p ̸= 3. Since p is adjacent to
all of the other odd vertices, and there are more than three odd vertices
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in ZR(Γ(Z2p)) where p > 3, one can see the star subgraph K1,3 whose
center is p. Moreover, there is an even vertex adjacent to each one of
the neighbours of p in this K1,3, the degree of these neighbours is not
one. So, Y shown in Figure 5 exists. □

Definition 3.17. Let G be a graph. The subgraph of G obtained
by removing all isolated vertices is called sociable subgraph of G, and
denoted by S(G).

Theorem 3.18. ZR(Γ(Z2np)) is a disconnected graph consisting of a
bipartite graph and 2n−1 isolated vertices.

Proof. In view of Remark 1, Z(Z2np) = {2k; k = 0, . . . , 2n−1p− 1} ∪
{(2k + 1)p; k = 0, . . . , 2n−1 − 1}. So Reg(Z2np) = {2k + 1; k =
0, . . . , 2n−1p − 1} − {(2k + 1)p; k = 0, . . . , 2n−1p − 1}. By the ar-
gument of Theorem 2.7 and looking at Figure 2, one can see that
A = {2kp; k = 0, . . . , 2n−1 − 1} is the set of isolated vertices in
ZR(Γ(Z2np)). Let x be a vertex of ZR(Γ(Z2np)) and x = 2kp, then it
is obvious that

deg
T (Γ(Z2np)

(x) = deg
Z(Γ(Z2np)

(x) = 2n−1(p+ 1)− 1.

So, deg
ZR(Γ(Z2np))(x) = 0. We put aside these isolated vertices, so it

remains to show that S(ZR(Γ(Z2np))) is a bipartite graph. By con-
sidering V1 = Z(Z2np) − A and V2 = Reg(Z2np) as a partition for
S(ZR(Γ(Z2np))), we are done. □

One may easily generalize the result for ZR(Γ(Z2npm)) as the follow-
ing corollary.

Corollary 3.19. ZR(Γ(Z2npm)) is a disconnected graph consisting of
a bipartite graph and 2n−1pm−1 isolated vertices.

Proof. One can see that A = {2kp; k = 0, . . . , 2n−1pm−1 − 1} is the
set of isolated vertices in ZR(Γ(Z2npm)), and S(ZR(Γ(Z2npm))) is par-
titioned by V1 = Z(Z2npm)− A and V2 = Reg(Z2npm). □

Corollary 3.20. The following statements hold for S(ZR(Γ(Z2np))).
(i) The even zero-divisor vertices are of degree 2n−1.
(ii) The odd zero-divisor vertices are of degree 2n−1(p− 1).
(iii) The regular vertices are of degree 2n.
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Proof. (i) The even zero-divisors of Z2np are of the form 2k, where
0 ≤ k ≤ 2n−1p− 1. Let x = 2k be an even zero-divisor vertex. Then

deg
S(ZR(Γ(Z2np)))

(x) = deg
T (Γ(Z2np))

(x)− deg
Z(Γ(Z2np))

(x)

= 2n−1(p+ 1)− 1− (2n−1p− 1)

= 2n−1.

(ii) The odd zero-divisors of Z2np are of the form (2k + 1)p, where 0 ≤
k ≤ 2n−1 − 1. Let x be an odd zero-divisor vertex and x = (2k + 1)p,
then by Theorem 2.7,

deg
Z(Γ(Z2np))

(x) = deg
K

2n−1,2n−1
(x) + deg

K
2n−1

(x)

= 2n−1 + (2n−1 − 1)

= 2n − 1.

It follows that
degS(ZR(Γ(Z2np)))

(x) = degT (Γ(Z2np))(x)− degZ(Γ(Z2np))(x)

= 2n−1(p+ 1)− 1− (2n − 1)

= 2n−1(p− 1).

(iii) Let x be a regular vertex, then
deg

S(ZR(Γ(Z2np)))
(x) = deg

T (Γ(Z2np))
(x)− deg

Reg(Γ(Z2np))
(x)

= 2n−1(p+ 1)− 1− (2n−1(p− 1)− 1)

= 2n.

□

At the end of article, one can easily generalize the recent results to
S(ZR(Γ(Z2npm))).

Corollary 3.21. The following statements hold for S(ZR(Γ(Z2npm))).
(i) The even zero-divisor vertices are of degree 2n−1pm−1.
(ii) The odd zero-divisor vertices are of degree 2n−1pm−1(p− 1).
(iii) The regular vertices are of degree 2npm−1.

Proof. In the light of Theorem 2.5, Theorem 2.7, Corollary 2.9, and
Theorem 3.20, one can easily check the items. □
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متناهی حلقه های روی جامع گراف های درباره

عباسی٣ احمد و طالشانی٢ غلام نیا مونا ، لسکوکلایه١ تقی دوست مژگان

ایران گیلان، گیلان، دانشگاه ریاضی، علوم دانشکده محض، ریاضی گروه ١,٢,٣

T (Γ(Z٢npm)) جامع گراف مقاله این در باشند. مثبت صحیح اعداد n mو و اول عدد یک p کنیم فرض
می دهیم. قرار مطالعه مورد را آن اساسی زیرگراف های و آن خواص کرده، تجزیه را

تعویض پذیر. حلقه های روی گراف های گراف، در تجزیه جامع، گراف کلیدی: کلمات
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