Journal of Algebraic Systems

Vol. 9, No. 2, (2022), pp 267-280

ON SOME TOTAL GRAPHS ON FINITE RINGS

M. TAGHIDOOST LASKUKALAYEH, M. GHOLAMNIA TALESHANI AND A. ABBASI*

Abstract

We give a decomposition of the total graph $T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$ where p is a prime and m, n are positive integers. We also studied some graph theoretical properties with some of its fundamental subgraphs.

1. Introduction

Let R be a commutative ring and $Z(R)$ and $\operatorname{Reg}(R)$ be the sets of zero-divisors and regular elements of R, respectively. Let $T(\Gamma(R))$ denote the total graph of R and let $Z(\Gamma(R))$ and $\operatorname{Reg}(\Gamma(R))$ be the induced subgraphs of $T(\Gamma(R))$ with vertices in $Z(R)$ and $\operatorname{Reg}(R)$, respectively. In this paper, we study the decomposition of total graphs on some finite commutative rings $R=\mathbb{Z}_{m}$, where the set of zero-divisors of R is not an ideal. For $m \geq 2$, it is well-known that $Z\left(\mathbb{Z}_{m}\right)$ is an ideal of \mathbb{Z}_{m} if and only if $m=p^{n}$ for some prime p and integer $n \geq 1$.

For a simple graph G, let $V(G)$ and $E(G)$ be the sets of vertices and edges of G, respectively. For a nonnegative integer r, the graph G is called r-regular if all vetices have the same degree r. Recall that the complement of a graph G is a graph denoted by \bar{G} on the same vertex set as G, where two distinct vertices are adjacent in \bar{G} if and only if they are not adjacent in G. A graph is called planar if it can be drawn in the plane without crossing edges. A tree is a connected graph with no cycles. A claw the star graph $K_{1,3}$. A claw-free is one that does not

[^0]have a claw as an induced subgraph. A caterpillar is a tree in which a single path is incident to every edge. A k-coloring of G is a function $f: V(G) \longrightarrow\{1, \ldots, k\}$ from the vertex set into the set of positive integers less than or equal to k. A k-coloring is said to be proper if adjacent vertices are colored differently. A graph is called k-colorable if it has a proper k-coloring. The chromatic number $\chi(G)$ is the least k such that G is k-colorable. For vertices x and y of G, we define $d(x, y)$ to be the length of a shortest path from x to $y . d(x, x)=0$; and $d(x, y)=\infty$ if there is no such path). The diameter of G is defined as $\operatorname{diam}(G)=\sup \{d(x, y) \mid \mathrm{x}$ and y are vertices of $G\}$. The girth of G, denoted by $\operatorname{gr}(G)$, is the length of a shortest cycle in $G . \operatorname{gr}(G)=\infty$ if G contains no cycles. We say that two (induced) subgraphs G_{1} and G_{2} of G are disjoint if G_{1} and G_{2} have no common vertices and no vertex of G_{1} (respectively, G_{2}) is adjacent (in G) to any vertex not in G_{1} (respectively, G_{2}). An independent set of G is a set of vertices, no two of which are adjacent. The independence number of G is defined as the maximum size of an independent set of vertices, denoted by $\alpha(G)$. A vertex cover of a graph G is a set $Q \subset V(G)$ that contains at least one endpoint of all edges. We denote the minimum size of vertex covers in G by $\beta(G)$. A dominating set for a graph G is a set $D \subseteq V(G)$ such that every vertex of $V(G)-D$ is adjacent to at least one vertex of D. The domination number $\gamma(G)$ is the number of vertices of a smallest dominating set for G. A set $I \subseteq V(G)$ is an independent dominating set of G if I is both an independent and dominating set. The cardinality of a minimum independent dominating set of G is called the independent domination number of G and is denoted by $i(G)$. A graph G is called domination perfect if $\gamma(H)=i(H)$ for every induced subgraph H of G. A graph is well-covered if $i(G)=\alpha(G)$. A matching of G is a set of non-loop edges with no shared endpoints. The vertices incident to the edges of a matching M are saturated by M. A perfect matching is a matching that saturates every vertex. The maximum size of matchings in G is denoted by $\alpha^{\prime}(G)$. An edge cover of G is a set L of edges such that every vertex of G is incident to some edge of L. The minimum size of edge covers is denoted by $\beta^{\prime}(G)$. Let $\omega(G)$ denote the number of components of a graph G. A vertex cut of a graph G is a set $S \subseteq V(G)$ such that $G-S$ has more than one component. The connectivity of G, written as $\kappa(G)$, is the minimum size of a vertex set S such that $G-S$ is disconnected or has only one vertex. A disconnecting set of edges is a set $F \subseteq E(G)$ such that $G-F$ has more than one component. The edge-connectivity of G, written as $\kappa^{\prime}(G)$, is the minimum size of a disconnecting set. More terminologies can be seen in [5].

Throughout, we assume that p is an odd prime number and n, m are natural numbers. Note that $Z\left(\mathbb{Z}_{2^{n} p^{m}}\right)$ is not an ideal of $\mathbb{Z}_{2^{n} p^{m}}$. So, by [2] we have
(1) $T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$ is a connected graph with $\operatorname{diam}\left(T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)\right)=2$ and $\operatorname{gr}\left(T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)=\operatorname{gr}\left(Z\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)\right)=3\right.$.
(2) $Z\left(\mathbb{Z}_{2^{n} p^{m}}\right)$ is a set of $2^{n-1} p^{m-1}(p+1)$ elements which can be classified into two subsets of even and odd zero-divisors with $2^{n-1} p^{m}$ and $2^{n-1} p^{m-1}$ elements, respectively. In addition, it is obvious that $\operatorname{Reg}\left(\mathbb{Z}_{2^{n} p^{m}}\right)$ is the set of odd elements that are not multiples of p and has $2^{n-1} p^{m-1}(p-1)$ elements.
(3) By (2) and Lemma 2.4 of [4], $T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$ is a $\left(2^{n-1} p^{m-1}(p+\right.$ $1)-1)$-regular graph.

2. Decomposition of $T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$

Let p be an odd prime number. In this section, we consider the total graph $T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$ and decompose it in sevsral steps. At first, we give some basic notions require in the contex of this request.

Lemma 2.1. The only odd zero-divisor of the ring $\mathbb{Z}_{2 p}$ is p.
Proof. It is obvious that p is an odd zero-divisor of $\mathbb{Z}_{2 p}$. Let a be an odd zero-divisor of $\mathbb{Z}_{2 p}$. Then there exists a $0 \neq b \in \mathbb{Z}_{2 p}$ such that $a b=0$. It is clear that $p \nmid b$. Hence, $p \mid a$ and so, $p=a$.
Theorem 2.2. The clique number of $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ is p.
Proof. The set of zero-divisors of $\mathbb{Z}_{2 p}$ contains p and all even elements. Thus, in $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ every even vertex of $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ is adjacent to the other even vertices and similarly every odd vertex of $\mathbb{Z}_{2 p}$ is adjacent to the other odd vertices. Since we have exactly p even and p odd elements in $\mathbb{Z}_{2 p}$, so there are exactly two complete graphs K_{p} in the total graph, one with even vertices and the other with odd vertices. Now we show that there isn't any complete graph with more than p vertices. We claim that there isn't any odd vertex adjacent to all even vertices. Let x be an odd vertex adjacent to all even vertices, so $x+y \in Z\left(\mathbb{Z}_{2 p}\right)$ for any even vertex y. Thus, by Lemma 2.1, $x+y=p$ for any even vertex y which is a contradiction. Similarly, there isn't any even vertex adjacent to all odd vertices. Hence $\omega\left(T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)\right)=p$.
Definition 2.3. A decomposition of a graph G is a set of subgraphs $G_{1}, G_{2}, \ldots, G_{r}$ that partitions the edges of G such that $\bigcup_{1 \leq i \leq r} E\left(G_{i}\right)=$ $E(G)$ and $E\left(G_{i}\right) \cap E\left(G_{j}\right)=\emptyset$ for all $i \neq j$. If there is a decomposition
$G_{1}, G_{2}, \cdots, G_{r}$ for G, we say that G is decomposed by $G_{1}, G_{2}, \ldots, G_{r}$ and denote it by $G=G_{1}+G_{2}+\cdots+G_{r}$.

Our next theorem provides a decomposition of the total graph which will be useful in the sequel.

Theorem 2.4. $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ has the following decomposition;

$$
T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)=2 K_{p}+p K_{1,1}
$$

Proof. By the argument of Theorem 2.2, we have exactly two complete graphs K_{p} in the decomposition of $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$. By Lemma 2.1, p is the only odd zero divisor of ring $\mathbb{Z}_{2 p}$. Moreover, there are exactly p distinct pairs of even-odd vertices in $\mathbb{Z}_{2 p}$ such that the sum of each is p. So we have p edges between even vertices and odd vertices.

Figure 1. $T\left(\Gamma\left(\mathbb{Z}_{10}\right)\right)$
Theorem 2.5. The followings hold.
(i) $Z\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)=K_{p}+K_{1,1}$.
(ii) $\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ is a complete graph with $p-1$ vertices.

Proof. (i) It's clear that in $Z\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$, there exist p even vertices adjacent to each other. So we have a complete graph K_{p}. By Lemma 2.1, p is the only odd zero-divisor in $\mathbb{Z}_{2 p}$ which is adjacent to 0 .
(ii) In $\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$, all odd vertices of $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ are adjacent to each other except p. So, we have the complete graph K_{p-1}.

Theorem 2.6. For all $n \geq 1$ and $p \geq 3$, we have the following decomposition

$$
T\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)=2 K_{2^{n-1} p}+p K_{2^{n-1}, 2^{n-1}}
$$

Proof. As mentioned in the proof of Theorem 2.2, $T\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)$ induces two complete subgraphs $K_{2^{n-1} p}$, one consists of even vertices and the other of odd vertices. The proof is completed by showing that the remaining edges of $T\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)$ appears in p induced subgraphs $K_{2^{n-1}, 2^{n-1}}$
with parts as even and odd vertices. We'll refer to these partitions as even-odd partitions.

We proceed by induction on n. For $n=1$, in view of Theorem 2.4, there are p induced subgraphs $K_{1,1}$ in the decomposition of $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$. Let the assertion be true for a $n>1$. It is enough to show that $T\left(\Gamma\left(\mathbb{Z}_{2^{n+1} p}\right)\right)$ has p induced subgraphs $K_{2^{n}, 2^{n}}$.

Since $\mid V\left(T\left(\Gamma\left(\mathbb{Z}_{2^{n+1} p}\right)\right)|=2| V\left(T\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right) \mid\right.\right.$, any induced subgraph $K_{2^{n}, 2^{n}}$ of $T\left(\Gamma\left(\mathbb{Z}_{2^{n+1} p}\right)\right)$ can be constructed by appending 2^{n-1} even vertices to the even part elements and 2^{n-1} odd vertices to odd part elements of an induced subgraph $K_{2^{n-1}, 2^{n-1}}$ of $T\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)$. Let $K=$ $\left\{0, \ldots, 2^{n-1}-1\right\}, K^{\prime}=\left\{2^{n-1}, \ldots, 2^{n}-1\right\}$ and $\{2 k p ; \quad k \in K\} \bigcup\{(2 k+$ 1) $p ; \quad k \in K\},\{2 k p+2 ; \quad k \in K\} \bigcup\{(2 k+1) p-2 ; \quad k \in K\}, \ldots$,$\left\{2 k p+2^{p-1} ; \quad k \in K\right\} \bigcup\left\{(2 k+1) p-2^{p-1} ; \quad k \in K\right\}$ be even-odd partitions of p subgraphs $K_{2^{n-1}, 2^{n-1}}$. Consider the subgraph $K_{2^{n-1}, 2^{n-1}}$ of $T\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)$ with $A=\{2 k p ; k \in K\}$ as even part and $B=$ $\{(2 k+1) p ; \quad k \in K\}$ as odd part; and append to A and $B, 2^{n-1}$ even vertices of $A^{\prime}=\left\{2 k p ; \quad k \in K^{\prime}\right\}$ and 2^{n-1} odd vertices of $B^{\prime}=$ $\left\{(2 k+1) p ; \quad k \in K^{\prime}\right\}$, respectively. We have to show that for any $x \in A, y \in B, x^{\prime} \in A^{\prime}$ and $y^{\prime} \in B^{\prime}, x^{\prime}$ is adjacent to both y^{\prime} and y and also, x is adjacent to y^{\prime}.

Note that for any $x^{\prime} \in A^{\prime}$, there is $x \in A$ such that $x^{\prime}=x+2^{n} p$. Similarly, for any $y^{\prime} \in B^{\prime}, y^{\prime}=y+2^{n} p$ for some $y \in B$. By induction hypothesis $x+y \in Z\left(\mathbb{Z}_{2^{n} p}\right)$; it follows that, $x^{\prime}+y^{\prime}=\left(x+2^{n} p\right)+(y+$ $\left.2^{n} p\right)=(x+y)+2^{n+1} p \equiv^{2^{n+1} p} x+y \in Z\left(\mathbb{Z}_{2^{n} p}\right) \subseteq Z\left(\mathbb{Z}_{2^{n+1} p}\right)$. Hence x^{\prime} is adjacent to y^{\prime}.

If $x \in A$, then there is an odd number $k \in\left\{1, \ldots, 2^{n}-1\right\}$ such that $x+y=k p$. So, one sees immediately that $x^{\prime}+y=\left(x+2^{n} p\right)+y=$ $k p+2^{n} p=\left(k+2^{n}\right) p$ in which $k+2^{n}$ is an odd number belonging to $\left\{1+2^{n}, \ldots, 2^{n+1}-1\right\}$. Thus $x^{\prime}+y \in Z_{\text {odd }}\left(\mathbb{Z}_{2^{n+1} p}\right)$, where the index means the odd zero-divisors. Similarly x is adjacent to y^{\prime}.

Theorem 2.7. The followings hold.
(i) $Z\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)=K_{2^{n-1} p}+K_{2^{n-1}, 2^{n-1}}+K_{2^{n-1}}$ for $n>1$.
(ii) $\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)$ is a complete graph with $2^{n-1}(p-1)$ vertices.

Proof. (i) There are $2^{n-1} p$ even zero-divisors and 2^{n-1} odd zero-divisors in $\mathbb{Z}_{2^{n} p}$. Clearly, the $2^{n-1} p$ even vertices in $Z\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)$ are adjacent to each other which induce the complete graph $K_{2^{n-1} p}$. Furthermore, the set of odd zero-divisors of $\mathbb{Z}_{2^{n} p}$ is $\left\{p, 3 p, \ldots,\left(2^{n}-1\right) p\right\}$ which forms $K_{2^{n-1}}$, (see Figure 2.b). Considering the sets $\left\{2 k p ; 0 \leq k \leq 2^{n-1}-1\right\}$ and $\left\{(2 k+1) p ; \quad 0 \leq k \leq 2^{n-1}-1\right\}$ as two parts, the complete bipartite subgraph $K_{2^{n-1}, 2^{n-1}}$ will be formed, (see Figure 2.a).
(ii) The vertices of $\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)$ are the odd vertices of $T\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)$ which are non-zero-divisors, so they are not multiple of p, and $\left|V\left(\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)\right)\right|=2^{n-1}(p-1)$. One can clearly see that they form the complete graph $K_{2^{n-1}(p-1)}$.

Theorem 2.8. For all $n \geq 1$ and $p \geq 3$, one has

$$
T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)=2 K_{2^{n-1} p^{m}}+p K_{2^{n-1} p^{m-1}, 2^{n-1} p^{m-1}}
$$

(a)

(b)

Figure 2.
Proof. We do by induction on m. For $m=1$, in view of Theorem 2.6, $T\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)=2 K_{2^{n-1} p}+p K_{2^{n-1}, 2^{n-1}}$. Let the assertion be true for a $m>1$. Analogue of the proof of Theorem 2.6, $T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m+1}}\right)\right)$ induces two complete subgraphs as $K_{2^{n-1} p^{m+1}}$, one consists of even vertices and the other of odd vertices. In the similar way to the proof of Theorem 2.6, consider the subgraph $K_{2^{n-1} p^{m-1}, 2^{n-1} p^{m-1}}$ of $T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$ with $A=\left\{2 k p ; \quad k=0, \ldots, 2^{n-1} p^{m-1}-1\right\}$ as even part and $B=$ $\left\{(2 k+1) p ; \quad k=0, \ldots, 2^{n-1} p^{m-1}-1\right\}$ as odd part, and append to A and B even vertices $A^{\prime}=\left\{2 k p ; \quad k=2^{n-1} p^{m-1}, \ldots, 2^{n-1} p^{m}-1\right\}$ as odd vertices $B^{\prime}=\left\{(2 k+1) p ; \quad k=2^{n-1} p^{m-1}, \ldots, 2^{n-1} p^{m}-1\right\}$, respectively. Let $x^{\prime} \in A^{\prime}$ and $y^{\prime} \in B^{\prime}$, then we have $x^{\prime}=x+a 2^{n} p^{m}$ and $y^{\prime}=y+a 2^{n} p^{m}$ for some $x \in A, y \in B$ and $1 \leq a \leq p-1$. By induction hypothesis $x+y \in Z\left(\mathbb{Z}_{2^{n} p^{m}}\right)$; so, it follows that, $x^{\prime}+y^{\prime}=$
$(x+y)+2 a 2^{n} p^{m} \in Z\left(\mathbb{Z}_{2^{n} p^{m}}\right) \subseteq Z\left(\mathbb{Z}_{2^{n} p^{m+1}}\right)$. Hence, x^{\prime} is adjacent to y^{\prime}. It is easy to check that for any $x^{\prime} \in A^{\prime}$ and $y \in B, x^{\prime}$ is adjacent to y, too.

Corollary 2.9. The following statements hold.
(i) $Z\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)=K_{2^{n-1} p^{m}}+K_{2^{n-1} p^{m-1}, 2^{n-1} p^{m-1}}+K_{2^{n-1} p^{m-1}}$ for $n>1$.
(ii) $\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$ is a complete graph with $2^{n-1} p^{m-1}(p-1)$ vertices.
3. Some properties of $G=T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$

In this section, we show that $G=T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$ is a claw-free graph and determine some graph theoretical properties of G and \bar{G}. We also study the structure of $\overline{Z R}(\Gamma(R))$, the spanning subgraph of $G=$ $T(\Gamma(R))$ with edge set $E(G)-E(H)$ where $H=Z(\Gamma(R)) \cup \operatorname{Reg}(\Gamma(R))$.

Corollary 3.1. Let $G=T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$, then

$$
\kappa(G)=\kappa^{\prime}(G)=2^{n-1} p^{m-1}(p+1)-1 .
$$

Proof. By decomposition of G proved in Theorem 2.8, each vertex contributes in exactly one complete subgraph $K_{2^{n-1} p^{m}}$ and one complete bipartite subgraph $K_{2^{n-1} p^{m-1}, 2^{n-1} p^{m-1}}$. So, to obtain the number of smallest vertex cut, first we pick up all vertices of $K_{2^{n-1} p^{m}}$ except one, say v. By the way, v has $2^{n-1} p^{m-1}$ neighbours in the other $K_{2^{n-1} p^{m}}$, which should be picked up. So, $\kappa(G)=\left(2^{n-1} p^{m}-1\right)+2^{n-1} p^{m-1}=$ $2^{n-1} p^{m-1}(p+1)-1$. Also, to determine the number of smallest disconnecting set of edges, we should pick up all edges incident on a vertex. Thus, for an arbitrary vertex v on $G, \kappa(G)=\kappa^{\prime}(G)=\operatorname{deg}(v)$ which is $2^{n-1} p^{m-1}(p+1)-1$.

Proposition 3.2. $T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$ is a claw-free graph.
Proof. By decomposition of G in Theorem 2.8, some stars $K_{1,3}$ are visible in $T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$. One can show that they are not induced subgraphs of $T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$, by the light discussion in the following cases.
Case 1: All vertices of $K_{1,3}$ are present in one $K_{2^{n-1} p^{m}}$.
Case 2: The center vertex of $K_{1,3}$ is in one of $K_{2^{n-1} p^{m}}$ and the leaves are in the other one.
Case 3: There is a leaf of $K_{1,3}$ in one $K_{2^{n-1} p^{m}}$ and the other vertices are in the other one.
By the adjacencies in complete graphs we are done.
Lemma 3.3. (See [5], Lemma 3.1.21) In a graph G, $S \subseteq V(G)$ is an independent set if and only if \bar{S} is a vertex cover, and hence $\alpha(G)+$ $\beta(G)=n(G)$.

Theorem 3.4. (See [5], Theorem 3.1.22) If G is a graph without isolated vertices, then $\alpha^{\prime}(G)+\beta^{\prime}(G)=n(G)$.

Proposition 3.5. (See [5], Corollary 3.1.24) If G is a bipartite graph with no isolated vertices, then $\alpha(G)=\beta^{\prime}(G)$.

Corollary 3.6. Let $G=T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$, then
(i) $\alpha(G)=\gamma(G)=2$,
(ii) $\beta(G)=2^{n} p^{m}-2$,
(iii) $\alpha^{\prime}(G)=\beta^{\prime}(G)=2^{n-1} p^{m}$,
(iv) $i(G)=2$, and G is domination perfect.
(v) G is well-covered.

Proof. Using the structure of G decomposed in Theorem 2.8, it is a simple matter to verify that the largest independent sets are of size two, which contain a pair of even and odd nonadjacent vertices present in the different two $K_{2^{n-1} p^{m}}$ s, like $\{(2 k+1) p,(2 k+1) p-1\}$. Also, they can be the smallest dominating sets. So, $\alpha(G)=\gamma(G)=2$. By Proposition 3.2, G is claw-free. So by the main theorem in [1] for claw-free graphs, $i(G)=\gamma(G)$ and G is domination perfect. Also, since $i(G)=\alpha(G), G$ is a well-covered graph. Furthermore, the maximum size of matchings is the number of independent edges between two $K_{2^{n-1} p^{m}} \mathrm{~s}$, which is equal to $\left|V\left(K_{2^{n-1} p^{m}}\right)\right|$, i.e. $\alpha^{\prime}(G)=2^{n-1} p^{m}$. The equalities mentioned in Lemma 3.3 and Theorem 3.4 yield the remaining items.

Remark 3.7. The chromatic number of complete bipartite graphs and complete graphs are well-known by [5] and [3], as follows

$$
\chi\left(K_{m, n}\right)=2, \quad \chi\left(K_{n}\right)=n .
$$

Corollary 3.8. Let $G=T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$, then $\chi(G)=2^{n-1} p^{m}$.
Proof. According to the decomposition of Theorem 2.8 and Corollary 3.6, there are $2^{n-1} p^{m}$ independent sets of vertices of size two in G, each contain a pair of even and odd nonadjacent vertices from different two $K_{2^{n-1} p^{m}}$ s. Thus, we can color the vertices of each independent set by the same color. Since each independent set contains a vertex of a complete graph, by Remark 3.7, we need $2^{n-1} p^{m}$ different colors for coloring of the vertices of G. Thus, $\chi(G)=2^{n-1} p^{m}$.

In the next two results, we mention some simple properties about the complement of G. Anderson and Badawi in [2], described the total graph of R completely. They showed that if $2 \in Z(R)$, then the structure of $\operatorname{Reg}(\Gamma(R))$ is different from that without 2 in $Z(R)$. And since in this paper, $\left.2 \in Z\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$, we need the next lemma.

Definition 3.9. Let $G=T(\Gamma(R))$. Then \bar{G}, the complement of G, is a graph with vertex set $V(G)$ and two vertices x and y are adjacent if and only if $x+y \notin Z(R)$.
Lemma 3.10. Let R be a finite ring such that $|R|=n$. Let $G=$ $T(\Gamma(R))$. If $2 \in Z(R)$, then \bar{G} is a $(n-|Z(R)|)$-regular graph.
Proof. By Lemma 2.4 of [4], G is a $(|Z(R)|-1)$-regular graph. Let v be an arbitrary vertex of G. Evidently, by definition of complement, $\operatorname{deg}_{\bar{G}}(v)=\operatorname{deg}_{K_{n}}(v)-\operatorname{deg}_{G}(v)=(n-1)-(|Z(R)|-1)=n-|Z(R)|$.
Corollary 3.11. Let $G=T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$. Then the following statements hold.
(i) \bar{G} is a $2^{n-1} p^{m-1}(p-1)$-regular graph.
(ii) \bar{G} is a connected bipartite graph.
(iii) \bar{G} is triangle-free.
(iv) $\operatorname{diam}(\bar{G})=3$, except for $G=T\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$.
(v) $\operatorname{gr}(\bar{G})=4$, except for $G=T\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$.
(vi) $\alpha(\bar{G})=\beta(\bar{G})=\alpha^{\prime}(\bar{G})=\beta^{\prime}(\bar{G})=2^{n-1} p^{m}$.

Proof. By Lemma 3.10, the regularity of \bar{G} is $2^{n} p^{m}-2^{n-1} p^{m-1}(p+1)=$ $2^{n-1} p^{m-1}(p-1)$. Since every two even (odd) vertices of G are adjacent, they are nonadjacent in \bar{G}. Hence, \bar{G} is a triangle-free graph with no odd cycle and thus, \bar{G} is a bipartite graph with parts of even and odd vertices. In view of Example 3.2, one can obtain the complement of $G=T\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$ and see that $\bar{G} \cong C_{6}$ whose diameter is 2 and girth is 6 . This is the only exception graph for parts $[(i v)]$ and $[(v)]$. For $G \neq T\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$, any pair of even vertices has a common neighbour and so does any pair of odd vertices. If x and y are two nonadjacent even and odd vertices,respectively, then they don't have any common neighbour, so $\operatorname{diam}(\bar{G})>2$. On the other hand, there exist odd and even vertices z and t, respectively such that $x \sim z \sim t \sim y$. Therefore \bar{G} is connected and $\operatorname{diam}(\bar{G})=3$. Furthermore, for $G \neq T\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$, there is a C_{4} in \bar{G}, like $0 \sim 1 \sim(2 k+1) p+1 \sim(2 k+1) p+2 \sim 0$ where $0 \leq k \leq(p-1) / 2$. Thus $\operatorname{gr}(\bar{G})=4$. For the last part, it is easy to see that the set of even vertices and the set of odd vertices are two only largest independent sets in \bar{G}, so $\alpha(\bar{G})=2^{n-1} p^{m}$. Looking at Lemma 3.3, we conclude that $\beta(\bar{G})=2^{n-1} p^{m}$. It is easy to check that $\alpha^{\prime}(\bar{G})=2^{n-1} p^{m}$ and in view of Lemma 3.4, $\beta^{\prime}(\bar{G})=2^{n-1} p^{m}$.
Remark 3.12. Let $G=T\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$. In view of Theorem 2.8, one can see some $K_{3,3}$ in $K_{2^{n-1} p^{m-1}, 2^{n-1} p^{m-1}}$ or some K_{5} in $K_{2^{n-1} p^{m}}$ where $G \neq T\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$. So, by Proposition 6.2.2 in [5], G is not planar. In Figure 3, we show a planar embedding for $T\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$ and draw its dual which is isomprphic to $K_{2,3}$.

$T\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$

$T^{*}\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$

Figure 3. $T\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$ and its dual.
Definition 3.13. Let R be a finite ring. Let $H=Z(\Gamma(R)) \cup R e g(\Gamma(R))$. The spanning subgraph of $G=T(\Gamma(R))$ with edge set $E(G)-E(H)$ is denoted by $\overline{Z R}(\Gamma(R))$.

Example 3.14. In Figure 4, we see an edge decomposition of $T\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$ by $Z\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$ as dashed lines, $\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$ as a bold line, and $\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$ as ordinary lines.

Figure 4. $Z\left(\Gamma\left(\mathbb{Z}_{6}\right)\right), \operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$, and $\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$ in $T\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$
Theorem 3.15. $\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ is a disconnected graph consisting of two components; a tree and an isolated vertex.

Proof. First, in the graph $Z\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$, zero vertex is adjacent to the other zero-divisor vertices, so it is an isolated vertex in $\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$. We claim that the other $2 p-1$ vertices induce a connected graph with $2 p-2$ edges, so it is a tree, by Theorem 2.1.4 in [5]. Let u, v be two arbitrary non-adjacent vertices of $\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$. We show that there is a u, v-path in $\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$. The following cases can be considered:
(i) If both u and v are even vertices, then there exist distinct odd vertices $x \neq p$ and $y \neq p$ such that $x \nsim y$ and $x \sim u, y \sim$ v in $\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$, because the zero element is the only even vertex adjacent to p, and all other odd vertices are adjacent
in $\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$. So we have $x \sim p \sim y$, and the u, v-path $u \sim x \sim p \sim y \sim v$.
(ii) If both u and v are odd vertices other than p, then we have the u, v-path $u \sim p \sim v$.
(iii) If one of u or v is p, say $u=p$, then v is an even vertex, if not, $u \sim v$. Therefore, there exists odd vertex x such that $x \sim v$. So, we have $u \sim x \sim v$.
(iv) If u, v are even and odd vertices, respectively, and none of them is p, then there exists an odd vertex x such that $u \sim x \sim p$. So, we have the u, v-path $u \sim x \sim p \sim v$.
Furthermore, as we mentioned in Theorems 2.4, 2.5,

$$
\begin{aligned}
T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right) & =2 K_{p}+p K_{1,1} \\
Z\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right) & =K_{p}+K_{1,1} \\
\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right) & =K_{p-1}
\end{aligned}
$$

It follows that,

$$
\begin{aligned}
\mid E\left(\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right) \mid\right. & =\left|E\left(T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)\right)\right|-\left|E\left(Z\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right) \cup \operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)\right)\right| \\
& =2 \frac{p(p-1)}{2}+p-\left(\frac{p(p-1)}{2}+1+\frac{(p-1)(p-2)}{2}\right) \\
& =2 p-2 .
\end{aligned}
$$

So, $\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2 p}\right)-\{0\}\right.$ is a graph with $2 p-1$ vertices which is connected with $2 p-2$ edges, and it is a tree.

It is proved in Theorem 2.2.19 of [5] that a tree is a caterpillar if and only if it does not contain the tree Y below.

Figure 5. The Tree Y
Theorem 3.16. The tree in $\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ is not a caterpillar for $p \neq 3$.
Proof. It is clear that the tree which consists of $Z R\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)$ without its isolated vertex 0 , shown by bold lines $2 \sim 1 \sim 3 \sim 5 \sim 4$ in Example 3.14, is a P_{5} which obviously doesn't contain the tree Y. So it is a caterpillar. Consider $\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ without its isolated vertex 0 . As the argument in Theorem 3.15, it is a tree. Let $p \neq 3$. Since p is adjacent to all of the other odd vertices, and there are more than three odd vertices
in $Z R\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ where $p>3$, one can see the star subgraph $K_{1,3}$ whose center is p. Moreover, there is an even vertex adjacent to each one of the neighbours of p in this $K_{1,3}$, the degree of these neighbours is not one. So, Y shown in Figure 5 exists.

Definition 3.17. Let G be a graph. The subgraph of G obtained by removing all isolated vertices is called sociable subgraph of G, and denoted by $S(G)$.

Theorem 3.18. $\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)$ is a disconnected graph consisting of a bipartite graph and 2^{n-1} isolated vertices.

Proof. In view of Remark 1, $Z\left(\mathbb{Z}_{2^{n} p}\right)=\left\{2 k ; \quad k=0, \ldots, 2^{n-1} p-1\right\} \cup$ $\left\{(2 k+1) p ; \quad k=0, \ldots, 2^{n-1}-1\right\}$. So $\operatorname{Reg}\left(\mathbb{Z}_{2^{n} p}\right)=\{2 k+1 ; \quad k=$ $\left.0, \ldots, 2^{n-1} p-1\right\}-\left\{(2 k+1) p ; \quad k=0, \ldots, 2^{n-1} p-1\right\}$. By the argument of Theorem 2.7 and looking at Figure 2, one can see that $A=\left\{2 k p ; \quad k=0, \ldots, 2^{n-1}-1\right\}$ is the set of isolated vertices in $\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)$. Let x be a vertex of $\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)$ and $x=2 k p$, then it is obvious that

$$
d e g_{T\left(\Gamma\left(\mathbb{Z}_{2} n_{p}\right)\right.}(x)=\operatorname{de} g_{Z\left(\Gamma\left(\mathbb{Z}_{2 n_{p}}\right)\right.}(x)=2^{n-1}(p+1)-1 .
$$

So, $\operatorname{deg}_{\overline{Z R}}\left(\Gamma\left(\mathbb{Z}_{2 n_{p}}\right)\right)(x)=0$. We put aside these isolated vertices, so it remains to show that $S\left(\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)\right)$ is a bipartite graph. By considering $V_{1}=Z\left(\mathbb{Z}_{2^{n} p}\right)-A$ and $V_{2}=\operatorname{Reg}\left(\mathbb{Z}_{2^{n} p}\right)$ as a partition for $S\left(\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)\right)$, we are done.

One may easily generalize the result for $\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$ as the following corollary.

Corollary 3.19. $\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$ is a disconnected graph consisting of a bipartite graph and $2^{n-1} p^{m-1}$ isolated vertices.

Proof. One can see that $A=\left\{2 k p ; \quad k=0, \ldots, 2^{n-1} p^{m-1}-1\right\}$ is the set of isolated vertices in $\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)$, and $S\left(\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)\right)$ is partitioned by $V_{1}=Z\left(\mathbb{Z}_{2^{n} p^{m}}\right)-A$ and $V_{2}=\operatorname{Reg}\left(\mathbb{Z}_{2^{n} p^{m}}\right)$.

Corollary 3.20. The following statements hold for $S\left(\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2^{n} p}\right)\right)\right)$.
(i) The even zero-divisor vertices are of degree 2^{n-1}.
(ii) The odd zero-divisor vertices are of degree $2^{n-1}(p-1)$.
(iii) The regular vertices are of degree 2^{n}.

Proof. (i) The even zero-divisors of $\mathbb{Z}_{2^{n} p}$ are of the form $2 k$, where $0 \leq k \leq 2^{n-1} p-1$. Let $x=2 k$ be an even zero-divisor vertex. Then

$$
\begin{aligned}
\operatorname{deg}_{S\left(\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2 n} n_{p}\right)\right)\right)}(x) & =d e g_{T\left(\Gamma\left(\mathbb{Z}_{2^{n}}\right)\right)}(x)-d e g_{Z\left(\Gamma\left(\mathbb{Z}_{2^{n}}\right)\right)}(x) \\
& =2^{n-1}(p+1)-1-\left(2^{n-1} p-1\right) \\
& =2^{n-1} .
\end{aligned}
$$

(ii) The odd zero-divisors of $\mathbb{Z}_{2^{n} p}$ are of the form $(2 k+1) p$, where $0 \leq$ $k \leq 2^{n-1}-1$. Let x be an odd zero-divisor vertex and $x=(2 k+1) p$, then by Theorem 2.7,

$$
\left.\begin{array}{rl}
d e g_{Z\left(\Gamma\left(\mathbb{Z}_{2^{n}}\right)\right)} \\
& (x)
\end{array}\right)=\operatorname{deg}_{K_{2^{n-1}, 2^{n-1}}}(x)+d e g_{K_{2^{n-1}}}(x) ~=2^{n-1}+\left(2^{n-1}-1\right) .
$$

It follows that

$$
\begin{aligned}
\operatorname{deg}_{S\left(\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2} n_{p}\right)\right)\right)}(x) & =\operatorname{deg}_{T\left(\Gamma\left(\mathbb{Z}_{2} n_{p}\right)\right)}(x)-\operatorname{deg}_{Z\left(\Gamma\left(\mathbb{Z}_{2} n_{p}\right)\right)}(x) \\
& =2^{n-1}(p+1)-1-\left(2^{n}-1\right) \\
& =2^{n-1}(p-1) .
\end{aligned}
$$

(iii) Let x be a regular vertex, then

$$
\begin{aligned}
\operatorname{deg}_{S\left(\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2} n_{p}\right)\right)\right)}(x) & =d e g_{T\left(\Gamma\left(\mathbb{Z}_{\left.2 n_{p}\right)}\right)\right.}(x)-\operatorname{deg}_{\operatorname{Reg}\left(\Gamma \left(\mathbb{Z}_{\left.\left.2 n_{p}\right)\right)}\right.\right.}(x) \\
& =2^{n-1}(p+1)-1-\left(2^{n-1}(p-1)-1\right) \\
& =2^{n} .
\end{aligned}
$$

At the end of article, one can easily generalize the recent results to $S\left(\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)\right)$.

Corollary 3.21. The following statements hold for $S\left(\overline{Z R}\left(\Gamma\left(\mathbb{Z}_{2^{n} p^{m}}\right)\right)\right)$.
(i) The even zero-divisor vertices are of degree $2^{n-1} p^{m-1}$.
(ii) The odd zero-divisor vertices are of degree $2^{n-1} p^{m-1}(p-1)$.
(iii) The regular vertices are of degree $2^{n} p^{m-1}$.

Proof. In the light of Theorem 2.5, Theorem 2.7, Corollary 2.9, and Theorem 3.20, one can easily check the items.

Acknowledgments

The authors gratefully acknowledge the many helpful suggestions of the referees for very detailed and useful comments.

References

[1] R. B. Allan and R. Laskar, On domination and independent domination numbers of a graph, Discrete Math., 23 (1978), 73-76.
[2] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706-2719.
[3] M. Behzad, G. Chartrand and J. K. Cooper, The colour numbers of complete graphs, J. London Math. Soc., 42 (1967), 226-228.
[4] M. H. Shekarriz, M. H. Shirdareh Haghighi and H. Sharif, On the Total graph of a finite commutative ring, Comm. Algebra, 40(8) (2012), 2798-2807.
[5] D. B. West, Introduction to Graph Theory, Second edition, Prentice-Hall, Upper Saddle river, NJ, 1996.

Mozhgan Taghidoost Laskukalayeh

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, P.O. Box 19141, Rasht, Iran.
Email: m.taghidoust.lk@gmail.com

Mona Gholamnia Taleshani

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, P.O. Box 19141, Rasht, Iran.
Email: m.gholamniai@gmail.com

Ahmad Abbasi
1. Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, P.O. Box 19141, Rasht, Iran.
2. Center of Excellence for Mathematical Modeling, Optimization and Combinatorial Computing (MMOCC), University of Guilan, Rasht, Iran.
Email: aabbasi@guilan.ac.ir

Journal of Algebraic Systems

ON SOME TOTAL GRAPHS ON FINITE RINGS

M. TAGHIDOOST LASKUKALAYEH, M. GHOLAMNIA TALESHANI AND A. ABBASI

درباره گرافهاى جامع روى حلقههاى متناهى
مزگان تقىدوست لسكوكلايه' ، مونا غلامنيا طالشانىَ و احمد عباسىّ
r, ז, ז, گروه رياضى محض، دانشكده علوم رياضى، دانشگاه گيلان، گيلان، ايران
 را تجزيه كرده، خواص آن و زيرگرافههاى اساسى آن را مورد مطالعه قرار مىدهييم.

كلمات كليدى: گراف جامع، تجزيه در گراف، گرافهاى روى حلقههاى تعويضپذير.

[^0]: DOI: 10.22044/jas.2021.10004.1495.
 MSC(2020): Primary: 13A15; Secondary: 05C75, 05C69.
 Keywords: Total graph, Decomposition, Graphs on commutative rings. Received: 22 August 2020, Accepted: 6 April 2021.

 * Corresponding author.

