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FINITENESS PROPERTIES OF FORMAL LOCAL
COHOMOLOGY MODULES

SH. REZAEI* AND A. RIAHINI-KOMACHALI

ABSTRACT. Let a be an ideal of Noetherian local ring (R, m), M
a finitely generated R-module. In this paper, we prove some re-
sults concerning finiteness of formal local cohomology modules.
In particular, we investigate some properties of top formal local

cohomology module %ﬁhm M/ aM(M ). Among other things, we de-

termine Attp( flﬁm M/aM(M)), in the case that sﬂim M/aM(M) is

an artinjan R-module. Also, we show that o™ M/aM(M) is an

artinian R-module if and only if it is minimax.

1. INTRODUCTION

Throughout this paper, (R,m) is a commutative Noetherian local
ring with identity, a is an ideal of R and M is a finitely generated
R-module. Recall that, the i-th local cohomology module of M with
respect to a is denoted by H:(M). For basic facts about commutative
algebra see [1], [0]; for local cohomology refer to [3]. Let a be an
ideal of a local ring (R, m) and M a finitely generated R-module. For
each i > 0; F (M) = l&ann(M/a”M) is called the i-th formal local

cohomology of M with respect to a.
The basic properties of formal local cohomology modules are found

in [1], [2], [°] and [9].
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In this paper, we investigate some artinianness and finiteness proper-
ties of formal local cohomology modules. At first, we obtain a relation
between attached primes of artinian formal local cohomology modules
and attached primes of local cohomology modules, see Theorem 2.3
below. Then by using it, we determine attached primes of top formal

local cohomology module Fa™ ™/ “M(M) and we show that

Attp(FImM/eM (A1) = Assh(M/aM) = Min V(Anng(FEmM/eM()r)).

Note that, by [9, Theorem 4.5], [ := dim M /aM is the largest integer i
such that §i(M) # 0.

In the second main result, we investigate a relation between coas-
sociated primes of finitely generated formal local cohomology mod-
ules and attached primes of local cohomology modules, see Theorem
2.16 below. By applying this result, we show that for any ideal b,

if pglimM/ ClM(]W ) # 0 then pgdim M/ ClM(]\/[ ) is not finitely generated.

Also, we prove that o™ ™/*M (A1) is artinian if and ony if it is mini-

max. Recall that an R-module M is called minimax, if there is a finite
submodule N of M such that M/N is Artinian (see [12]).

2. MAIN RESULTS

In this section, we obtain some results about artinianness and finite-
ness properties of formal local cohomology modules. We show that
for any ideal b and any integer i, if bF. (M) is artinian then the set
Coassy b (M) is a subset of Upey Attz(H: (M/a*M)). By using this
result, we show that if (M) is artinian, then it is finitely gener-
ated. Also, we determine attached primes of top formal local coho-
mology module Fa™™/*M (M), For two ideals a and b and any integer
i, we obtain some properties of bF.(M). For example, we prove that

if bFamM/eM (V1) £ 0 then it is not finitely generated. Finally, it is

shown that @™ ™/*M (A1) is minimax if and only if it is artinian.

We first recall the concept of coassociated primes, cosupport and
attached primes of an R-module M. A module is called cocyclic if it
is a submodule of E(R/m) for some maximal ideal m of R. A prime
ideal p is called coassociated to a non-zero R-module M if there is
a cocyclic homomorphic image 7' of M with p = Anng T [10]. The
set of coassociated primes of M is denoted by Coassg(M). Also,
Yassemi [10] defined the cosupport of an R-module M, denoted by
Cosuppgr(M), to be the set of primes p such that there exists a co-
cyclic homomorphic image L of M with Anng(L) C p. In [10] we
can see that Coassgp(M) C Cosuppyp(M) and every minimal element
of the set Cosuppy(M) belongs to Coassg(M). Recall that, a prime
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ideal p of R is said to be an attached prime of M if p = Anng(M/N)
for some submodule N of M. If M has a secondary representation,
this definition agrees with the usual definition of attached primes and
Coassg(M) = Attg(M), ([0, Theorem 1.14]).

In what follows, we always assume that (R, m) is a Noetherian local
ring.

The following lemma is used in the sequel.

Lemma 2.1. Let a be an ideal of R and M an R-module. If a*M =0
for some k € N, then F.(M) = H, (M) for alli > 0. Therefore F. (M)

is artinian for all 1 > 0.

Proof. It is clear that §,(M) = LimH, (M/a"M) = H, (M). But by
[3, Theorem 7.1.3] H (M) is artinian for all i > 0 and so the proof is
complete. O

Next Lemma plays a significant role in our proofs. It is well known
that, if {M,}ier is a direct system of R-modules then ASSR(hﬂMi) C

UAssg M;. In the following, by using the Matlis Duality functor,
we prove the following duality result. Recall that, for an R-module
M, E(R/m) denotes the injective envelope of R/m and D(.) denotes
the Matlis duality functor Hompg(., E(R/m)). It is well known that,
Assp D(M) = Coassg M and if A is an artinian R-module then
A ~DD(A), (see [10]).

Lemma 2.2. Let {M,};c; be an inverse system of artinian R-modules
and a be an ideal of R. Then
i) If al'glMi is artinian, then CoassR(al'&lMi) C UCoassg M;,

i) If l&nMZ is artinian, then CoassR(l'&nMi) C UCoassgi M;.
Proof. i) Since M; is artinian M; ~ D D(M;) and we have
alimM; ~ alim D D(M;) ~ D(alim D(;)).
By assumption alim; is artinian, and so alim D(MM;) is finitely gener-
ated. Now, by [10, Theorem 1.18] we have
CoassR(al'glMi) = CoassR(D(aligrl D(M;)) = AssR(alig D(M;).

But
ASSR(aligl D(M;) C ASSR(hng(Mi)) C UAssg D(M;) = UCoassg M;,
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and so we get the result.
ii) By putting a = R in the part (i). O

Theorem 2.3. Let a and b be two ideals of R and M « finitely generated
R-module. Let i be a natural number.
i) If b (M) is artinian, then

Attg bFL (M) C Upen Attg(H. (M/aF M),
i) If § (M) is artinian, then Attg (M) C Upen Attr(H: (M /a*M)).
Proof. i) By definition §(M) = limH, (M/a*M). Since bF,(M) is
k

artinian we have Attp bF; (M) = Coassg bF;(M) by [10, Theorem 1.14]

also by [3, Theorem 7.1.3] Hy (M/ ak M) is artinian for any integer k

and so Coassg(HL (M/a*M)) = Attg(H. (M/a*M)). Now by lemma

2.2 (i), we have

Attg bF: (M) C Upen Coassp(H: (M/aF M) = Uren Attg(HE (M/a¥ M),
ii) It follows by (i) with b = R. O

Theorem 2.4. Let a and b be two ideals of R and M a finitely generated

R-module. If 6FY(M) is artinian, then bFV(M) is finitely generated.
In particular, if (M) is artinian, then FO(M) is finitely generated.

Proof. Tt is well known that HY(M/a*M) is of finite length and so
Attr(HS (M /a*M)) C {m} for any integer k, by [3, Corollary 7.2.12].
By Lemma 2.3(i) we have

Attr(bF2(M)) C Upen Attg(HS (M/aFM)) C {m}.

By assumption, bF°(M) is artinian and so by [3, Corollary 7.2.12] we
conclude that bF%(M) is finitely generated. O

In [2, Theorem 3.1], we proved that Attg FImM (M) = Asshg(M) N
V(a), where Asshr(M) := {p € Assg M|dim(R/p) = dim M }. In the

following main result, we determine the set Atty o™ ™/ *M (A1).

Theorem 2.5. Let a be an ideal of R and M a finitely generated
R-module. If F2™ MM (M[) is artinian, then

At FIm MM ALY = Attp(HI™M/M(0ffaM)) = Asshp(M/ab).
Proof. Let | := dim M /aM. By Theorem 2.3(ii)

Attp FL(M) C Upen Attg(H. (M /akM)).
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But, by [3, Theorem 7.3.2]
Attp(HL (M/a"M)) = Asshr(M/a* M) = Asshr(M/aM)
for any integer k. It follows that
Attr §L(M) C Attgr(H., (M/aM)) = Asshp(M/aM).
On the other hand, the exact sequence
0—aM — M — M/aM — 0
induces a long exact sequence
o= M) — FL(M/aM) — T (aM) —
Since
sup{i € Ny : F:(aM) # 0} = dim(aM /a®>M) < dim(M/aM) =1

it follows that Fi*'(aM) = 0. On the other hand, since M/aM is an
a-torsion R-module by Lemma 2.1 §\(M/aM) ~ H' (M/aM). Thus,
from the above long exact sequence we obtain the exact sequence
(M) — H. (M/aM) — 0. Therefore

Attr(Hy (M/aM)) C Attr(§o(M)),
as required. O

Corollary 2.6. Let a be an ideal of R and M a finitely generated R-
module. Let | := dim M/aM. If §t (M) is artinian, then it follows that
Attg (M) = Min V(Anng(FL(M)).
Proof. Since §.(M) = 0 for all + > [, [3, Corollary 2.14] implies that
Ba(M) = By gty (M)-

At first, we show that dim(M/(Anng(gL(M)))M) = . By [2, Corol-
lary 2.10] it follows that V(Anng(FL(M)) C V(a). Therefore

V(Anng(F.(M))) N V(Anng M) C V(a) N V(Anng M)

and so

Supp(M/(Anng(§,(M))) M) C Supp(M/aM).
Thus dim(M/(AnnR(Sl( N)M) < L. If dim(M/(Anng(FL(M)))M) S
[ then it follows that F! ang (6L M))(M ) = 0 and by the above isomor-

phism we get (M) = 0 Wthh is a contradiction by [9, Theorem
4.5]. Thus, it follows that dim(M/(Anng(F,(M)))M) = I. Now, by
Theorem 2.5 we conclude that

Attr FL(M) = AttR(SgnnR(gg(M))(M)) = Asshp(M/(Anng(35(M)))M).
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But, it is easy to see that
Asshp(M/(Anng(F(M)))M) © Min Suppg(M/(Anng((M)))M).
On the other hand, since Anng M C Annp(Ft(M)) it follows that
V(Anng(§,(M))) N V(Anng(M)) = V(Anng(§,(M))).

Thus Supp(M/(Annp(ELM)M) = V(Annp(EL(M))) and so we
have Min Suppz(M/(Anng(FL(M)))M) = Min V(Anng(F,(M))). There-
fore we conclude that Attg §L (M) C Min V(Anng(FL(M))).

On the other hand, it is well known that for an artinian R-module
A the set of all minimal prime ideals containing Anng A is exactly the
set of all minimal elements of Attz A. Thus

Min V(Anng(FL(M))) = Min Attp(F5(M)) C Attr(FL(M)),
as required. O
Corollary 2.7. Let a and b be two ideals of R and M a finitely gener-
ated R-module such that | := dim(M/aM) = dim(M/6M). Let ' (M)
and FL(M) be artinian and Attr(FL(M)) = Attg(FL(M)). Then

i) Hy (M/aM) ~ §,(M/aM) =~ §(M/aM),
i) HL(M/6M) ~ GL(M/6M) ~ F,(M/bM).
Proof. i) By Theorem 2.5, Attr(FL(M)) = Asshr(M/aM) and
Attr(FL(M)) = Asshp(M/bM). By assumption we get
Asshp(M/aM) = Asshr(M/bM).

On the other hand, by [2, Theorem 3.1] we have

Attr FL(M/aM) = Asshp(M/aM)NV(a) = Asshp(M/aM),
also

Attr §L(M/aM) = Asshr(M/aM)NV(b)
= Asshr(M/6M)NV(b)
= Asshgr(M/bM).

Since Asshg(M/aM) = Asshr(M/bM) we conclude that
Attg FL(M/aM) = Attg F,(M/aM). Now by [2, Theorem 3.4] it follows
that §t(M/aM) ~ FL(M/aM). But M/aM is an a-torsion R-module
and so by Lemma 2.1, §,(M/aM) ~ H. (M/aM) and the proof of (i)

is complete.
ii) The proof is similar to the proof of (i). O

Theorem 2.8. Let a and b be two ideals of R and M a finitely generated
R-module. Let i be a natural number. If bF:(M) is artinian, then

a C /(0 bL(M)).
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Proof. By Theorem 2.3 (i),
Attp bF (M) C Upen Attg(H (M /a*M)).

But, a* C Anng(H.,(M/a*M))) and so Attg(H,(M/a*M))) C V(a)
by [3, 7.2.11], for any integer k > 0. Thus Attg(bF.(M))) C V(a), as
required. O

Theorem 2.9. Let a and b be two ideals of R such that a C b and
M a finitely generated R-module, and let n € N. Then the following
statements are equivalent:

i) bF (M) is artinian for all i < n,

i) (M) is artinian for all i < n.

Proof. )= ii): Let i < n be an integer. By Theorem 2.8 there ex-
ists an integer ¢ such that a’bF’ (M) = 0. But a C b implies that
a™F (M) = 0. Thus a C /(0:Fi(M)) for all ¢ < n. Now by
[2, Theorem 2.6] we conclude that (M) is artinian for all i < n.

ii) = i): It is clear. O

The formal grade of M with respect to a is defined to be the least
integer 7 such that F(M) # 0 and it is denoted by fgrade(a, M).

In the next result, there is a characterization of the artinianness of
fgrade(a,M) (M)
a .

Corollary 2.10. Let a and b be two ideals of R such that a C b and
M a finitely generated R-module, and let g := fgrade(a, M). Then
bF9(M) is artinian if and only if FI(M) is artinian.

Proof. Since F.(M) = 0 for all i < g, the result follows by Theorem
2.9. 0

Theorem 2.11. Let a and b be two ideals of R such that a C b and
M a finitely generated R-module, and let n € N. Then the following
statements are equivalent:

i) bF (M) is artinian for all i > n,

i) (M) is artinian for all i > n.

Proof. )= ii): Let i > n be an integer. By Theorem 2.8 there exists
an integer ¢ such that a’bF’ (M) = 0. Since a C b we conclude that
a1 (M) =0. Thus a C /(0 : Fi(M)) for all i > n. Now, the result
follows by [2, Theorem 2.9].

ii) = i): It is clear. O

Corollary 2.12. Let a and b be two ideals of R such that a C b and M
a finitely generated R-module . Let | :== dim(M/aM). Then bF' (M)
is artinian, if and only if FL(M) is artinian.
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Proof. Since §F.(M) = 0 for all i > [, the result follows by Theorem
2.11. 0

Corollary 2.13. Let a and b be two ideals of R such that b C a and
M a finitely generated R-module, and let 1 € N. Then the following
statements are equivalent:

i) there exists an integer k such that b*: (M) is artinian,

ii) there exists an integer k such that b*F. (M) = 0.

Proof. i)= ii): By Theorem 2.8 there exists an integer ¢ such that
albkFe (M) = 0. Since b C a it follows that b™*Fi (M) = 0.
ii) = i): It is clear. O

Theorem 2.14. Suppose that (R, m) is a local ring which is a homo-
morphic image of a Gorenstein local ring. Let a be an ideal of R and
M be a finitely generated R-module. Let j be an integer. If F2(M) is
artinian, then Attg(FL(M)) C {p € spec(R) : dim(R/p) < j}.

Proof. i) By Theorem 2.3(ii), Attz (M) C Upen Attr(HZ (M /a*M)).
But by [3, Corollary 11.3.5] we have

Attr(Hy, (M/a*M)) C {p € spec(R) : dim(R/p) < j}
for any integer k£ and so the proof is complete. 0

Lemma 2.15. Let {M;};c; be an inverse system of artinian R-modules
and a be an ideal of R. Then
i) If al'glMi s a finitely generated R-module, then

CoassR(a@Mi) C UCoassgy M;.
i) If 1£1MZ s a finitely ge;zemted R-module, then
Z CoassR(l'LnMi) C U Coassg M;.
Proof. i) Since M; is artinian M; ~ D D(M;) for any i € I and so
ale(Mi) o~ aLmDD(Mi) o~ aD(ligl D(M;)) ~ D(aligl D(M;)).
By assumption alim}; is finitely generated and so alim D(M;) is
artinian R-module anid we have D D(aligl D(M;)) ~ alim DZ(M,) Thus

we conclude that
CoassR(a@Mi) = CoassR(D(alig D(M;)))

= Assg(D D(aﬁgzl D(M;)))
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= AssR(aligl D(M;))
i
C Assi(lim D(M)
i

C UAssg D(M;) = UCoassg M;.
ii) By using part (i) with a = R. O]

Theorem 2.16. Let a and b be two ideals of R and M a finitely
generated R-module. Let i be a natural number.
i) If b (M) is finitely generated, then

Coassp bF: (M) C Upen Attg(H: (M/aF M),
ii) If §:(M) is finitely generated, then
Coassp (M) C Ugen Attp(HL (M/a" M)).
Proof. i) Since §.(M) = @H%(M/akM) and bgF:(M) is finitely gen-
erated, by lemma 2.15 (i),kwe have
Coassg bF: (M) C Upen Coassg(HE (M /a*M))
= Upen Attp(H! (M/a"M)).
ii) It follows by (i) with b = R. O]
The following Theorem is a generalization of [, Theorem 2.6(ii)].

Theorem 2.17. Let a and b be two ideals of R and M a finitely
generated R-module. Let | :== dim(M/aM) > 0. If bF. (M) # 0 then
b3 (M) is not finitely generated.

Proof. Assume that bF. (M) is finitely generated. Thus by [10, Theo-
rem 2.10] ¢ # Coassg(bF,(M)) C {m} and so Coassg(bF,(M)) = {m}.
On the other hand, by Theorem 2.16(i) we have

Coassp bF (M) C Upen Attg(H. (M/aF M)
and by [3, Theorem 7.3.2] for any integer k we have
Attgp(HL (M/a*M)) = {p € Assg(M/aM)|dim R/p =1 > 0}.

Thus m € {p € Assgr(M/aM)|dim R/p =1 > 0} which is a contradic-
tion. 0

Theorem 2.18. Let a be an ideal of a R and M a finitely generated
R-module. Let | :== dim(M/aM) > 0. Then §.(M) is minimaz if and
only if (M) is artinian.
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Proof. Any artinian R-module is minimax. Now, assume that § (M)
is minimax. By [7, Theorem 2.2] we have Cosuppp(SL(M)) C V(a).
Thus Coassg(FL(M)) C V(a) and so there exists an integer k such that
abF! (M) is finitely generated by [11, Satz 2.4] and by Theorem 2.17
we have a*§! (M) = 0. Now, by using [2, Corollary 2.10] we conclude
that (M) is artinian, as required. O

Theorem 2.19. Let a be an ideal of R and M a finitely generated
R-module. Let g := fgrade(a, M). Let m ¢ Attgz(H%(M/a*M)) for
any integer k. If FI(M) is minimaz then FI(M) is artinian.

Proof. Since §9(M) is minimax,
Coassp(§3(M)) € Cosuppg(§¢(M)) € V(a),

by [7, Theorem 2.2]. Thus there exists an integer k such that a*F4(M)
is finitely generated by [11, Satz 2.4]. Assume that a*F9(M) # 0.
Then, we have Coassp(a*F¢(M)) = {m} and by Theorem 2.16(i),
m € UenAttr(H%(M/akM)) which is a contradiction.  Thus
akF9(M) = 0 and [2, Corollary 2.7] implies that FI(M) is artinian,
as required. O
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