Journal of Algebraic Systems Vol. 9, No. 2, (2022), pp 335-345

ON THE m_c -TOPOLOGY ON THE FUNCTIONALLY COUNTABLE SUBALGEBRA OF C(X)

A. VEISI

ABSTRACT. In this paper, we consider the m_c -topology on $C_c(X)$, the functionally countable subalgebra of C(X). We show that a Tychonoff space X is countably pseudocompact if and only if the m_c -topology and the u_c -topology on $C_c(X)$ coincide. It is shown that whenever X is a zero-dimensional space, then $C_c(X)$ is first countable if and only if C(X) with the m-topology is first countable. Also, the set of all zero-divisors of $C_c(X)$ is closed if and only if X is an almost P-space. We show that if X is a strongly zerodimensional space and U is the set of all units of $C_c(X)$, then the maximal ring of quotients of $C_c(U)$ and $C_c(C_c(X))$ are isomorphic.

1. INTRODUCTION

As usual, all topological spaces in this article are infinite Hausdorff completely regular (i.e., infinite Tychonoff) spaces. We denote by C(X) $(C^*(X))$ the ring of all real-valued, continuous (bounded) functions on a space X. The subring of C(X) consisting of those functions with countable (resp. finite) image, denoted by $C_c(X)$ (resp. $C^F(X)$), is called the functionally countable subalgebra of C(X). The subring $C_c^*(X)$ of $C_c(X)$ consists of bounded elements of $C_c(X)$. In fact, we have $C_c^*(X) = C_c(X) \cap C^*(X)$. The rings $C_c(X)$ and $C^F(X)$ are introduced and fully investigated in [6], [7] and [10]. For each $f \in C(X)$, the zero-set of f, denoted by Z(f), is the set of zeros of

DOI: 10.22044/jas.2021.10325.1510.

MSC(2010): Primary: 54C40, 54C30; Secondary: 13C11, 16H20.

Keywords: Functionally countable subalgebra, m_c -topology, pseudocompact space, zerodimensional space.

Received: 2 December 2020, Accepted: 10 June 2021.

f and $coz(f) = X \setminus Z(f)$ is the *cozero-set* of f and the set of all zero sets in X is denoted by Z(X). An ideal I in C(X) is called a *z-ideal* if whenever $f \in I$, $g \in C(X)$ and $Z(f) \subseteq Z(g)$, then $g \in I$.

We recall that a zero-dimensional space is a Hausdorff space with a base consisting of clopen (closed-open) sets. In [6], a Hausdorff space X is called countably completely regular (briefly, c-completely regular) if whenever $F \subseteq X$ is a closed set and $x \notin F$, then there exists $f \in C_c(X)$ such that $f(F) = \{0\}$ and f(x) = 1. In [6, Proposition 4.4], it is shown that X is zero-dimensional if and only if for each closed set F and $x \notin F$ there is some $f \in C_c(X)$ (or equivalently $f \in C^F(X)$) such that f(x) = 1 and $f(F) = \{0\}$. Therefore a completely regular space is zero-dimensional if and only if it is c-completely regular. It is shown in [6, Theorem 4.6] that for any topological space X (not necessarily completely regular), there exists a zero-dimensional space Y which is a continuous image of X with $C_c(X) \cong C_c(Y)$ and $C^F(X) \cong C^F(Y)$. Also, in [6, Remark 7.5], it is shown that there is a topological space X such that there is no space Y with $C_c(X) \cong C(Y)$. Let us put $Z_c(X) = \{Z(f) : f \in C_c(X)\}$ and

$$Z_c^*(X) = \{ Z(g) : g \in C_c^*(X) \}.$$

These two latter sets are in fact equal since $Z(f) = Z(\frac{f}{1+|f|})$, where $f \in C_c(X)$. A Tychonoff space X is called *strongly zero-dimensional* if for every finite cover $\{U_i\}_{i=1}^k$ of X by cozero-sets there exists a finite refinement $\{V_i\}_{i=1}^m$ of mutually disjoint open sets, see [3]. Two subsets A and B of a space X are said to be *completely separated* (from one another) in X if there exists a function $f \in C^*(X)$ such that $0 \le f \le 1$, $f(A) = \{0\}$ and $f(B) = \{1\}$, see [8, 1.15].

We remind that X is *pseudocompact* if each element of C(X) is bounded, i.e., $C(X) = C^*(X)$. A topological space X is called *countably pseudocompact* (in brief, *c-pseudocompact*) whenever $C_c(X) = C_c^*(X)$. For instance, all spaces in Example 2.5 are *c*-pseudocompact. Clearly, if X is pseudocompact then it is *c*-pseudocompact. But the converse may be false. To see this, take X = (0, 1) and notice that $C_c(X) = C_c^*(X) = \mathbb{R}$, while $f(x) = \frac{1}{x} \in C(X) \setminus C^*(X)$.

In Section 2, unless otherwise mentioned, each Tychonoff space X is assumed to be zero-dimensional and we concentrate on the m_c -topology on $C_c(X)$, the functionally countable subalgebra of C(X), and record the counterparts of some of the important results in the context of C(X) in [8, 2N]. We show that X is countably pseudocompact if and only if the m_c -topology and the u_c -topology on $C_c(X)$ coincide. It is also shown that when X is a zero-dimensional space, then the set of all zero-divisors of $C_c(X)$ is closed if and only if X is an almost

P-space. We show that if X is strongly zero-dimensional (so it is zerodimensional) and U is the set of all units of $C_c(X)$, then the maximal ring of quotients of $C_c(U)$ and $C_c(C_c(X))$ are isomorphic.

2. Main results

The *m*-topology on C(X) as a generalizing of a work of E.H. Moore was first introduced [9] by Hewitt. In his article, he demonstrated that certain classes of topological spaces X can be characterized by topological properties of C(X) with the *m*-topology. For example, he showed that X is pseudocompact if and only if C(X) with the *m*-topology is first countable. Several authors have investigated the topological properties of X via properties of C(X). For more information, see [12]. In what follows, we establish the countable analogue of some of the important and well-known facts in the context of C(X). First, we introduce the m_c -topology and the u_c -topology on $C_c(X)$. Before it, it is recalled that $u \in C_c(X)$ is a unit if and only if $Z(u) = \emptyset$ and $u \in C_c^*(X)$ is a unit if and only if u is bounded away from zero, i.e., $|u| \ge r$, for some r > 0. The m_c -topology (in brief, m_c) on $C_c(X)$ is determined by considering the sets of the form

 $B(f, u) = \{g \in C_c(X) : |f(x) - g(x)| < u(x) \text{ for all } x \in X\},\$ as a base for the neighborhood system at f, for each $f \in C_c(X)$ and each positive unit u of $C_c(X)$. The uniform topology on $C_c(X)$ which is called the u_c -topology (in brief, u_c), is defined by taking the sets of the form

$$B(f,\varepsilon) = \{g \in C_c(X) : |f(x) - g(x)| < \varepsilon \text{ for all } x \in X\},\$$

as a base for the neighborhood system at f, for each $f \in C_c(X)$ and each $\varepsilon > 0$. Equivalently, a base at f is given by all sets

 $B(f, u) = \{g \in C_c(X) : |f(x) - g(x)| < u(x) \text{ for all } x \in X\},\$ where u is a positive unit of $C_c^*(X)$. Now since every positive unit of $C_c^*(X)$ is a unit of $C_c(X)$, we infer

that the m_c -topology is finer than the u_c -topology, i.e., $u_c \subseteq m_c$. Remark 2.1. In [10, Theorem 6.3], it is shown that if X is a zero-

dimensional space, then X is pseudocompact if and only if $C_c(X) = C_c^*(X)$, i.e., a zero-dimensional space is pseudocompact if and only if it is *c*-pseudocompact.

Proposition 2.2. A Tychonoff space X is c-pseudocompact if and only if the m_c -topology and the u_c -topology on $C_c(X)$ coincide.

Proof. (\Rightarrow) . It is evident.

(\Leftarrow). Suppose that $f \in C_c(X)$. So $\frac{1}{f^2+1}$ is a unit of $C_c(X)$. Since

 $u_c = m_c$, it follows that there is some $\varepsilon > 0$ such that $B(0, \varepsilon) \subseteq B(0, \frac{1}{f^{2}+1})$. Set $\varepsilon_1 = \frac{\varepsilon}{2}$, then $\varepsilon_1 \in B(0, \varepsilon)$ and thus $\varepsilon_1 \in B(0, \frac{1}{f^{2}+1})$. Hence $\varepsilon_1 < \frac{1}{f^{2}+1}$, so $f^2 + 1 < \frac{1}{\varepsilon_1}$, and, therefore $f^2 + 1$ is bounded. It shows that f is bounded. Consequently, $f \in C_c^*(X)$ and thus X is c-pseudocompact.

Proposition 2.3. Let X be a Tychonoff space. Then $C_c^*(X)$ is a clopen subset of $C_c(X)$ with u_c and m_c -topologies.

Proof. Since we always have $u_c \subseteq m_c$, we provide the proof for the case in which the topology on $C_c(X)$ is u_c . If $C_c(X) = C_c^*(X)$, the assertion is evident. Suppose that $f \notin C_c^*(X)$. For each $g \in B(f, 1)$, we have $|g| \ge |f| - |f - g| > |f| - 1$ and thus $g \notin C_c^*(X)$. Hence $B(f, 1) \cap C_c^*(X) = \emptyset$. It gives $B(f, 1) \subseteq C_c(X) \setminus C_c^*(X)$ and thus $C_c(X) \setminus C_c^*(X)$ is open, i.e., $C_c^*(X)$ is closed. Now suppose that $f \in C_c^*(X)$. For each $g \in B(f, 1)$, we have $|g| \le |f| + |f - g| < |f| + 1$ and thus $g \in C_c^*(X)$. Hence $B(f, 1) \subseteq C_c^*(X)$. This shows that $C_c^*(X)$ is open.

Corollary 2.4. If X is not c-pseudocompact, then $C_c(X)$ is disconnected with u_c and m_c -topologies.

In the next example, we give examples of topological spaces X, where one is zero-dimensional, another is connected, and the third is neither zero-dimensional nor connected, but $C_c(X)$ is connected.

Example 2.5. (i) Let X be a finite discrete space with n elements. Then $C(X) = C_c(X) = \mathbb{R}^n$.

- (ii) Let X be a connected space. Then $C_c(X) = \mathbb{R}$. To see this, suppose that $f \in C_c(X)$ and $a, b \in f(X)$ such that $a \neq b$. We claim that $[a, b] \subseteq f(X)$. Otherwise, there is $c \in (a, b)$ such that $c \notin f(X)$. So $X = f^{-1}(-\infty, c) \cup f^{-1}(c, +\infty)$, i.e., X is disconnected which is a contradiction. Hence $[a, b] \subseteq f(X)$, and, therefore f(X) is uncountable which is impossible, since $f \in C_c(X)$. So a = b and hence f is constant.
- (iii) Let $X = \mathbb{R} \setminus \{0\}$ with the usual topology. Then X is neither zero-dimensional nor connected, but $C_c(X) = \mathbb{R}^2$ is connected.

Theorem 2.6. Let X be zero-dimensional and the topology on $C_c(X)$ be the m_c -topology. Then $C_c(X)$ is first countable if and only if X is pseudocompact.

Proof. (\Rightarrow). Suppose that X is not pseudocompact, then $C^*(X) \subseteq C(X)$ and thus $C^*_c(X) \subseteq C_c(X)$ (see Remark 2.1). Let $f \in C_c(X) \setminus C^*_c(X)$. Since $f^2 + 1$ is unbounded, we can assume at

first that $f \geq 1$. We consider the constant function 0 and show that for any countable family \mathcal{F} consisting of open neighborhoods of 0, there exists an open neighborhood of 0 which does not contain any element of \mathcal{F} . Take a sequence $\{x_n : n \in \mathbb{N}\} \subseteq X$ and a strictly increasing sequence $\{a_n : n \in \mathbb{N}\} \subseteq \mathbb{R}$ such that $f(x_n) = a_n$ (note, the sequence a_n is divergent). Each a_n can be inserted in a bounded open interval, V_n say, such that $V_n \cap V_m = \emptyset$, where $n \neq m$. Furthermore, since f(X)is countable, each element of $f(X) \setminus \bigcup_{n=1}^{\infty} V_n$ is contained in a bounded open interval, W_n say, such that $W_n \cap V_m = \emptyset$ for each m. Set

$$T = \left(\bigcup_{n=1}^{\infty} V_n\right) \cup \left(\bigcup_{n=1}^{\infty} W_n\right).$$

So $f(X) \subseteq T$. Now let $\mathcal{F} = \{B(0, u_n) : n \in \mathbb{N}\}$ be a countable family of open neighborhoods of 0, where u_n is a positive unit of $C_c(X)$ and let $b_n = \frac{1}{3}u_n(x_n)$. Define $g: T \to \mathbb{R}$ by

$$g(t) = \begin{cases} \frac{1}{b_n} & t \in \bigcup_{n=1}^{\infty} V_n, \\ 1 & \text{otherwise.} \end{cases}$$

By [8, 1A(2)], g is continuous and it is obvious that the range of g is countable, so $g \in C_c(T)$. Letting $\alpha(x) = \frac{1}{g(f(x))}$ yields α is a positive unit of $C_c(X)$. We now claim that $B(0, \alpha)$ does not contain any element of \mathcal{F} . Otherwise, for some n, we have $B(0, u_n) \subseteq B(0, \alpha)$. Let us put $h(x) = \frac{1}{2}u_n(x)$. Then obviously $h \in B(0, u_n)$, while $h \notin B(0, \alpha)$ which is a contradiction (note, $h(x_n) = \frac{1}{2}u_n(x_n) \not < b_n = \alpha(x_n)$). This is the desired conclusion.

(\Leftarrow). Assume that X is pseudocompact, so $C_c(X) = C_c^*(X)$. By Proposition 2.2, we have $m_c = u_c$. Since d, the function below

$$d(f,g) = ||f - g|| = \sup\{|f(x) - g(x)| : x \in X\},\$$

turns $C_c(X)$ into a metric space, the proof is now complete by this fact, the fact that every metric space is first countable.

Corollary 2.7. Let X be zero-dimensional. Then $C_c(X)$ with the m_c -topology is first countable if and only if C(X) with the m-topology is first countable.

Proof. It follows from Theorem 2.6 and [9, Theorem 3].

Proposition 2.8. Let X be a zero-dimensional space and $C_c(X)$ is equipped with the m_c -topology. Then the following statements hold.

(a) Let $x \in X$ be fixed and $e_x : C_c(X) \to \mathbb{R}$ be a map defined by $e_x(f) = f(x)$. Then e_x is continuous, i.e, $e_x \in C(C_c(X))$.

(b) Suppose that the topology on $C(C_c(X))$ is the m-topology and let $e: X \to C(C_c(X))$ defined by $e(x) = e_x$. Then e is continuous if and only if X is discrete.

Proof. (a). Let $a, b \in \mathbb{R}$. We claim that

$$e_x^{-1}((a,b)) = \{ f \in C_c(X) : a < f(x) < b \}$$

is an open set in $C_c(X)$. To see this, let $f_0 \in e_x^{-1}((a, b))$. Then $a < e_x(f_0) = f_0(x) < b$. A real number r > 0 can be taken such that $a < f_0(x) - r < f_0(x) < f_0(x) + r < b$. Now for each $g \in B(f_0, r)$, we have $|g - f_0| < r$, hence $a < f_0(x) - r < g(x) < f_0(x) + r < b$. It implies that $B(f_0, r) \subseteq e_x^{-1}((a, b))$. This gives $e_x^{-1}((a, b))$ is an open set in $C_c(X)$. So e_x is continuous.

 $(b)(\Rightarrow)$. Let $x \in X$. By our assumption, $e^{-1}(B(e_x, \frac{1}{2}))$ is an open set containing x. Now we claim that $e^{-1}(B(e_x, \frac{1}{2})) = \{x\}$. On the contrary, suppose that $e^{-1}(B(e_x, \frac{1}{2}))$ contains an element y distinct from x. By [6, Proposition 4.4], there is some $f \in C_c(X)$ such that f(x) = 0 and f(y) = 1, since $y \in e^{-1}(B(e_x, \frac{1}{2}))$, it follows that

$$1 = |f(x) - f(y)| = |e_x(f) - e_y(f)| = |e(x) - e(y)| < \frac{1}{2}$$

which is a contradiction.

 (\Leftarrow) . It is evident.

In sequel, whenever $C_c(X)$ (resp. $C_c^*(X)$) is referred to as a topological space, its topology is the m_c -topology (resp. the relative m_c -topology).

Proposition 2.9. Let X be zero-dimensional and U (resp. U^*) be the set of all units of $C_c(X)$ (resp. $C_c^*(X)$). Then

- (a) U (resp. U^*) is an open set in $C_c(X)$ (resp. $C_c^*(X)$).
- (b) The mapping $\psi : f \mapsto f^{-1}$ is a homeomorphism from U (resp. U^*) onto itself.

Proof. (a). Suppose that $f \in U$ (resp. $f \in U^*$). Then $\emptyset = Z(f) = Z(\frac{|f|}{2})$ (resp. $\frac{|f|}{2} \ge r$, for some r > 0). Hence $\frac{|f|}{2} \in U$ (resp. $\frac{|f|}{2} \in U^*$). Now for any $g \in B(f, \frac{|f|}{2})$ we have

$$|g| = |f - (f - g)| \ge \left| |f| - |f - g| \right| \ge |f| - |f - g| > |f| - \frac{|f|}{2} = \frac{|f|}{2}.$$

This yields $Z(g) \subseteq Z(\frac{|f|}{2}) = \emptyset$ (resp. |g| > r), and, therefore g is a unit, i.e., $g \in U$ (resp. $g \in U^*$). So $B(f, \frac{|f|}{2}) \subseteq U$ (resp. $B(f, \frac{|f|}{2}) \subseteq U^*$), and we are done.

(b). Clearly, ψ is a bijection. Let $0 < v \in U$, then $u = \frac{vf^2}{2} \wedge \frac{|f|}{2} > 0$.

For each $g \in U$, |f-g| < u implies that $|f-g| < \frac{|f|}{2}$, and $|f-g| < \frac{vf^2}{2}$. Thus

$$|g| \ge |f| - |f - g| > |f| - \frac{|f|}{2} = \frac{|f|}{2}.$$

Hence

$$\left|\frac{1}{f} - \frac{1}{g}\right| = \frac{\left|f - g\right|}{\left|fg\right|} < \frac{vf^2}{2} \times \frac{1}{\left|f\right|} \times \frac{2}{\left|f\right|} = v$$

This shows that $\psi(B(f, u)) \subseteq B(f, v)$, and, therefore ψ is continuous. Since $\psi^{-1} = \psi$, it follows that ψ^{-1} is also continuous (note, if we at first put $u = \frac{f^2 v}{2(1+|f|v)}$, then by the chosen u, we can show that $\psi(B(f, u)) \subseteq B(f, v)$).

We have observed that $U \cap C_c^*(X)$ is an open set in $C_c^*(X)$ but its elements need not be units of $C_c^*(X)$. For example, the inverse of the identity $j = i^{-1}$ is a unit of $C(\mathbb{N}) = C_c(\mathbb{N})$, while it is not a unit of $C^*(\mathbb{N}) = C_c^*(\mathbb{N})$. Hence U^* may be contained in $U \cap C_c^*(X)$ properly.

An element a of a commutative ring R is called a zero-divisor, if for some $0 \neq b \in R$, we have ab = 0. In a commutative ring with identity R, the set of zero-divisors and units are disjoint. This is also easily seen in the context of C(X) by these facts: $f \in C(X)$ is a zero-divisor if and only if $\operatorname{int}_X Z(f) \neq \emptyset$. Also, $f \in C(X)$ is a unit if and only if $Z(f) = \emptyset$.

Proposition 2.10. Let X be a zero-dimensional space containing more than one point and S be a subring of C(X) containing $C^F(X)$ (the subring of C(X) consisting of elements with finite image). Then S is not an integral domain.

Proof. It is enough to show that $C^F(X)$ is not an integral domain, in other words, it has a zero-divisor element. Let $x_1, y_1 \in X$ and $x_1 \neq y_1$. According to [6, Proposition 4.4] there is some $f \in C^F(X)$ such that $x_1 \in \operatorname{int}_X Z(f)$ and $f(y_1) = 1$. So x_1 does not belong to the closed set $F := X \setminus \operatorname{int}_X Z(f)$. Therefore for some $g \in C^F(X)$ we have $g(x_1) = 1$ and $g(F) = \{0\}$. So $g \neq 0$. Moreover, fg = 0, since f(x) = 0 if $x \in Z(f)$ and g(x) = 0 if $x \notin Z(f)$. Hence f is a zero-divisor, or equivalently, $C^F(X)$ is not an integral domain. \Box

In what follows, clD means that $cl_{C_c(X)}D$.

Lemma 2.11. Let X be zero-dimensional and D (resp. U) be the set of all zero-divisors (resp. units) of $C_c(X)$. Then $clD = C_c(X) \setminus U$.

Proof. Since $D \subseteq C_c(X) \setminus U$, by Proposition 2.9(*a*), it follows that $clD \subseteq C_c(X) \setminus U$. For the reverse inclusion, let $g \in C_c(X) \setminus U$ and

consider an open neighborhood B(g, u) of g, where u is a positive unit of $C_c(X)$. Now we define a function $f: X \to \mathbb{R}$ by

$$f(x) = \begin{cases} g(x) - \frac{u(x)}{2} & \text{where } g(x) \ge \frac{u(x)}{2}, \\ 0 & \text{where } |g(x)| \le \frac{u(x)}{2}, \\ g(x) + \frac{u(x)}{2} & \text{where } g(x) \le -\frac{u(x)}{2} \end{cases}$$

From the continuity of f on the three closed sets $(g - \frac{u}{2})^{-1}([0, \infty)), (g + \frac{u}{2})^{-1}([0, \infty)) \cap (g - \frac{u}{2})^{-1}((-\infty, 0]), \text{ and } (g + \frac{u}{2})^{-1}((-\infty, 0]), \text{ which whose union is } X$, we infer that $f \in C(X)$. Moreover, since the ranges of g and u are countable, the range of f is also countable, i.e., $f \in C_c(X)$. Also, it is easy to see that $f \in B(g, u)$. Since g is not a unit of $C_c(X)$, it follows that $Z(g) \neq \emptyset$. Let $G = \{x \in X : |g(x)| < \frac{u(x)}{2}\}$. Since $\emptyset \neq Z(g) \subseteq G \subseteq Z(f)$ and G is open, it follows that $\operatorname{int}_X Z(f) \neq \emptyset$, in other words, f is a zero-divisor. Therefore $f \in B(g, u) \cap D$. So $g \in \operatorname{cl} D$, and the proof is complete.

In [6, Definition 5.1], a topological space X (not necessarily zerodimensional) is called a CP-space if $C_c(X)$ is a regular ring (Von-Neumann). Also, it is shown in [6, Theorem 5.5] that X is a CP-space if and only if Z(f) is open for each $f \in C_c(X)$. Evidently, every P-space (see [8, 4J]) is a CP-space. The converse may be false (see [6, Example 5.2]). It is shown in [6, Corollary 5.7] that every zero-dimensional CPspace is a P-space.

Proposition 2.12. Every *P*-space is strongly zero-dimensional.

Proof. Let X be a P-space and $A, B \subseteq X$ be completely separated. Then for two disjoint zero-sets Z_1, Z_2 of X, we have $A \subseteq Z_1$ and $B \subseteq Z_2$, see [8, Theorem 1.15]. By the assumption, Z_1 is a clopen set and $A \subseteq Z_1 \subseteq X \setminus B$. Now it follows from [3, Theorem 6.2.4]. \Box

Proposition 2.13. Let X be strongly zero-dimensional and U be the set of all units of $C_c(X)$. Then U is a dense subset of $C_c(X)$.

Proof. Let $g \in C_c(X)$ and u be a positive unit of $C_c(X)$. We claim that $B(g, u) \cap U \neq \emptyset$. Suppose that

 $A = \{x \in X : g(x) \ge \frac{1}{3}u(x)\}, \text{ and } B = \{x \in X : g(x) \le -\frac{1}{3}u(x)\}.$

Since A and B are completely separated zero-sets and X is strongly zero-dimensional, there exists a clopen set C in X such that $A \subseteq C \subseteq X \setminus B$, see [3, Theorem 6.2.4]. Define a function $f: X \to \mathbb{R}$ by

$$f(x) = \begin{cases} g(x) + \frac{1}{3}u(x) & x \in C, \\ g(x) - \frac{1}{3}u(x) & x \notin C. \end{cases}$$

It is easy to show that $f \in C_c(X)$ and |f - g| < u, i.e., $f \in B(g, u)$. Clearly, $Z(f) = \emptyset$ and it yields that f is a unit. So $f \in B(g, u) \cap U$. This means that U is dense in $C_c(X)$.

We remind that the above proposition is the counterpart of this fact: If X is strongly zero-dimensional and U is the set of all units of C(X)with the *m*-topology, then U is dense in C(X).

We need the following definition in which a commutative ring B and A as its subring have the same identity.

Definition 2.14. ([5, Definition 1.4]) $B \supseteq A$ is a ring of quotients of A, provided that for every $b \in B$, the ideal $b^{-1}A := \{a \in A : ab \in A\}$ is dense in B, that is to say, for each $0 \neq b' \in B$ there exists $a \in A$ such that $ba \in A$ and $b'a \neq 0$.

Proposition 2.15. Suppose that X is strongly zero-dimensional and $C_c(X)$ with the m_c -topology is zero-dimensional. Let U be the set of all units of $C_c(X)$. Then $C_c(U)$ is a ring of quotients of $C_c(C_c(X))$. Moreover, the maximal ring of quotients of $C_c(U)$ and $C_c(C_c(X))$ are isomorphic.

Proof. By Propositions 2.9(*a*) and 2.13, *U* is open and dense in $C_c(X)$. Now use [14, Proposition 2.2(5) and Lemma 2.1] to obtain the result.

An almost P-space is a Tychonoff space in which every nonempty G_{δ} -set has a nonempty interior. This is equivalent to say that every nonempty zero-set has a nonempty interior. Any discrete space as well as the one-point compactification $D^* := D \cup \{x\}$ $(x \notin D)$ of an uncountable discrete space D is an almost P-space, since any nonempty G_{δ} -set of D^* contains an isolated point of the space and further $\{x\}$ is not a G_{δ} -set, otherwise, $\{x\} = \bigcap_{n=1}^{\infty} V_n$, where each $D^* \setminus V_n$ is finite, so D is countable which is a contradiction. Clearly, every P-space is an almost P-space.

Definition 2.16. A Tychonoff space X is called an almost CP-space if $\emptyset \neq Z \in Z_c(X)$, then we have $\operatorname{int}_X Z \neq \emptyset$. Also, a point $p \in X$ is called an almost CP-point if $\operatorname{int}_X Z \neq \emptyset$, for each $Z \in Z_c(X)$ containing p.

It is clear that X is an almost CP-space if and only if every element of X is an almost CP-point. Any almost P-space is an almost CPspace. The converse does not hold in general. For instance, let $X = \mathbb{R}^n$ with the usual topology. Then $C_c(X) = \mathbb{R}$ (see Example 2.5(ii)), so the only nonempty element of $Z_c(X)$ is X while for $f(x) = ||x|| \in C(X)$, where $x = (x_1, x_2, \ldots, x_n)$ and $||x|| = (\sum_{i=1}^n x_i^2)^{\frac{1}{2}}$, we have $Z(f) = \{0\}$

and hence $\operatorname{int}_X Z(f) = \emptyset$.

The next result states that every zero-dimensional almost CP-space is an almost P-space.

Proposition 2.17. Let X be a zero-dimensional space. Then the following statements are equivalent.

- (a) X is an almost P-space.
- (b) If $\emptyset \neq G$ is a G_{δ} -set in X, then $\operatorname{int}_X G \neq \emptyset$.
- (c) If $\emptyset \neq Z \in Z_c(X)$, then $\operatorname{int}_X Z \neq \emptyset$.
- (d) X is an almost CP-space.

Proof. The equivalences $(a) \Leftrightarrow (b)$ and $(c) \Leftrightarrow (d)$ follow from definitions. It remains to show that $(b) \Leftrightarrow (c)$.

 $(b) \Rightarrow (c)$. Let $\emptyset \neq Z = Z(f)$ for some $f \in C_c(X)$. Then we have $Z = \bigcap_{n=1}^{\infty} f^{-1}((\frac{-1}{n}, \frac{1}{n}))$, i.e., it is a G_{δ} -set, so $\operatorname{int}_X Z \neq \emptyset$, and we are done.

 $(c) \Rightarrow (b)$. Let $p \in G$. Since $\{p\}$ is compact and G is a G_{δ} -set, there exists some $Z \in Z_c(X)$ such that $p \in Z \subseteq G$, see [6, Corollary 5.7]. The result now holds by the assumption.

Corollary 2.18. Let X be zero-dimensional. Then X is an almost P-space if and only if $int_X Z \neq \emptyset$ for each $\emptyset \neq Z \in Z_c(X)$.

Theorem 2.19. Let X be zero-dimensional and D be the set of all zero-divisors of $C_c(X)$. Then D is closed if and only if X is an almost P-space.

Proof. (\Rightarrow). By the assumption and Lemma 2.11, we have $D = \operatorname{cl} D = C_c(X) \setminus U$. Let Z(f) be a nonempty zero-set of X, for some $f \in C_c(X)$. Then f is not unit, so $f \in C_c(X) \setminus U = D$ and thus $\operatorname{int}_X Z(f) \neq \emptyset$. This implies that X is an almost P-space, by Corollary 2.18.

(\Leftarrow). Let $f \in \operatorname{cl} D = C_c(X) \setminus U$. Since $f \notin U$, we have that $Z(f) \neq \emptyset$, and, therefore by the hypothesis, $\operatorname{int}_X Z(f) \neq \emptyset$. This gives f is a zero-divisor, i.e., $f \in D$. So $\operatorname{cl} D \subseteq D$ and hence $\operatorname{cl} D = D$.

Acknowledgments

The author would like to express his sincere thanks to the referees for their valuable comments and advice toward the improvement of the paper.

References

 A. R. Aliabad and R. Mohamadian, On SZ°-ideals in polynomial rings, Comm. Algebra, 39(2) (2011), 701–717.

- M. Elyasi, A. A. Estaji and M. Robat Sarpoushi, Locally functionally countable subalgebra of *R(L)*, Arch. Math. (BRNO), 56 (2020), 127–140.
- 3. R. Engelking, General Topology, Heldermann Verlag Berlin, (1989).
- A. A. Estaji, A. Karimi Feizabadi and M. Zarghani, Zero elements and z-ideals in modified pointfree topology, Bull. Iran. Math. Soc., 43(7) (2017), 2205–2226.
- N. J. Fine, L. Gillman and J. Lambek, *Rings of quotients of rings of functions*, Lecture Notes Series Mc-Gill University Press, Montreal, (1965).
- 6. M. Ghadermazi, O. A. S. Karamzadeh and M. Namdari, On the functionally countable subalgebra of C(X), Rend. Sem. Mat. Univ. Padova, **129** (2013), 47–69.
- 7. ----, C(X) versus its functionally countable subalgebra, Bull. Iran. Math. Soc., **45**(1) (2019), 173–187.
- L. Gillman and M. Jerison, *Rings of Continuous Functions*, Springer-Verlag, (1976).
- E. Hewitt, Rings of real-valued continuous functions, I, Trans. Amer. Math. Soc., 64 (1948), 45–99.
- O. A. S. Karamzadeh and Z. Keshtkar, On c-realcompact spaces, Quaest. Math., 42(8) (2018), 1135–1167.
- 11. O. A. S. Karamzadeh, M. Namdari and S. Soltanpour, On the locally functionally countable subalgebra of C(X), Appl. Gen. Topol., **16**(2) (2015), 183–207.
- G. D. Maio, L. Hola, D. Holy and R. A. McCoy, Topologies on the space of continuous functions, *Topology Appl.*, 86 (1998), 105–122.
- M. A. Mulero, Algebraic properties of rings of continuous functions, *Fund. Math.*, 149 (1996), 55–66.
- 14. M. Namdari and A. Veisi, Rings of quotients of the subalgebra of C(X) consisting of functions with countable image, *Int. Math. Forum*, 7 (2012), 561–571.
- 15. A. Veisi, The subalgebras of the functionally countable subalgebra of C(X), Far East J. Math. Sci. (FJMS), **101**(10) (2017), 2285–2297.
- 16. A. Veisi, Invariant norms on the subalgebras of C(X) consisting of bounded functions with countable image, JP Journal of Geometry and Topology, **21**(3) (2018), 167–179.
- 17. A. Veisi, e_c -Filters and e_c -ideals in the functionally countable subalgebra of $C^*(X)$, Appl. Gen. Topol., **20**(2) (2019), 395–405.

Amir Veisi

Faculty of Petroleum and Gas, Yasouj University, Gachsaran, Iran. Email:aveisi@yu.ac.ir

Journal of Algebraic Systems

ON THE m_c -TOPOLOGY ON THE FUNCTIONALLY COUNTABLE SUBALGEBRA OF C(X)

A. VEISI

C(X) توپولوژی روی زیرجبر شمارا تابعی m_c

امیر ویسی

دانشکدهی نفت و گاز، دانشگاه یاسوج، گچساران، ایران

در این مقاله، m_c -توپولوژی را روی $(C_c(X))$ ، زیرجبر شمارا تابعی (X) در نظر میگیریم. نشان میدهیم هر فضای تیخونوف X شمارا فشرده است اگر و تنها اگر m_c -توپولوژی و u_c -توپولوژی روی $-m_c$ میدهیم هر فضای تیخونوف X شمارا فشرده است اگر و تنها اگر m_c -توپولوژی و u_c -توپولوژی روی $-m_c$ میدهیم هر فضای تیخونوف X شمارا فشرده است اگر و تنها اگر $-m_c$ -توپولوژی و u_c -توپولوژی روی $-m_c$ میدهیم هر فضای تیخونوف X شمارا فشرده است اگر و تنها اگر $-m_c$ -توپولوژی و u_c -توپولوژی روی $-m_c$ معادل باشد. نشان داده میشود اگر X یک فضای صفر بعدی باشد، آنگاه $(C_c(X))$ با u_c - $u_c(X)$ توپولوژی شمارای نوع اول باشد. همچنین، نشان میدهیم مجموعهی تمام عناصر مقسوم علیه صفر در $(C_c(X))$ بسته است اگر و تنها اگر X یک فضای صفر بعدی باشد، آنگاه (X_c, X_c) با $-m_c$ -توپولوژی شمارای نوع اول باشد. همچنین، نشان میدهیم مجموعهی تمام عناصر مقسوم علیه صفر در $(C_c(X))$ با $-m_c$ و تنها اگر (X) با $-m_c$ -توپولوژی شمارای نوع اول باشد. همچنین، $-m_c$ نشان میدهیم مجموعهی تمام عناصر مقسوم علیه صفر در $(C_c(X))$ با $-m_c$ و تنها اگر (X) تقریبا $-m_c$ و تنها اگر (X) با $-m_c$ و تنها اگر (X) تقریبا $-m_c$ و تنها اگر (X) و تنها اگر (X) و تنها اگر و تنها اگر (X) تقریبا $-m_c$

کلمات کلیدی: زیرجبر شمارا تابعی، m_c -توپولوژی، فضای شبه فشرده، فضای صفر بعدی.