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SOME RESULTS ON STRONGLY PRIME
SUBMODULES

A. R. NAGHIPOUR

Abstract. Let R be a commutative ring with identity and let M
be an R-module. A proper submodule P of M is called strongly
prime submodule if (P +Rx : M)y ⊆ P for x, y ∈ M , implies that
x ∈ P or y ∈ P . It is shown that a finitely generated R-module M
is Artinian if and only if M is Noetherian and every strongly prime
submodule of M is maximal. We also study the strongly dimension
of a module which is defined to be the length of a longest chain of
strongly prime submodules.

1. Introduction

This paper focuses on all rings, which are commutative with identity
and all modules which are unitary. Also we consider R to be a ring
and M an R-module.

For a submodule N of M , let (N : M) denote the set of all elements
r in R such that rM ⊆ N . The annihilator of M , denoted by Ann(M),
is (0 : M). A proper submodule N of M is called prime if rx ∈ N ,
for r ∈ R and x ∈ M , implies that either x ∈ N or r ∈ (N : M).
This notion of prime submodule was first introduced and systematically
studied in [6] and recently has received a good deal of attention from
several authors, see for example [10], [11] and [17]. The collection of all
prime submodules of M is denoted by SpecR(M), and the collection of
all maximal submodules of M is denoted by MaxR(M).
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Unfortunately, unlike the rings, not every R-module contains a prime
submodule, for example SpecZ(Zp∞) = ∅ (see [12]). More generally, we
know that if R is a domain, then any torsion divisible R-module has
no prime submodule (see [15, Lemma 1.3(i)]). If SpecR(M) = ∅, we
call such modules M primeless.

Notation. Let N be a submodule of M and let x ∈ M . We denote
the ideal (N + Rx : M) by IM,N

x or simply by INx when no ambiguity
is possible.

Let M be an R-module. A proper submodule P of M is called a
strongly prime submodule if IPx y ⊆ P , for x, y ∈ M , implies that either
x ∈ P or y ∈ P . This notion inherits most of the essential properties of
the usual notion of prime ideal. In particular, the Generalized Principal
Ideal Theorem is extended to modules (see [18] and [20]). We need to
mention that this notion is different from the one proposed in [9].

The following remark is used widely in the sequel.

Remark 1.1. ([18, Propositions 1.1 and 1.3]) Let M be an R-module.
Then the following should be considered.

(1) Any strongly prime submodule of M is prime.
(2) Any maximal submodule of M is strongly prime. The converse

is true if R is a field.

The collection of all strongly prime submodules of M is called the
strongly spectrum ofM and is denoted by S-SpecR(M). If S-SpecR(M) =
∅, we call such modules M strongly primeless. For example, if R is an
integral domain which is not a field and F the field of quotients of R,
then SpecR(F ) = 0 (see [12, Theorem 1]). It is easy to see that (0) is
not a strongly prime submodule of F and hence S-SpecR(F ) = ∅.

The classical Krull dimension of a ring R, cl.K. dim(R), is the supre-
mum of lengths of chains of prime ideals of R. The classical Krull di-
mension of an R-module M is defined as the classical Krull dimension
of the ring R/Ann(M) and denoted by cl.K. dimR(M) (see [19]). The
notion of classical Krull dimension has a substantial role in commuta-
tive algebra and algebraic geometry, see for example [7, Part II]. Since
the classical Krull dimension of a ring is defined in terms of length of
ascending chains of prime ideals, one would naturally wonder whether
it is possible to define the classical Krull dimension of a module in
terms of lengths of ascending chain of prime submodules. Note that an
R-module M could have ascending chains of prime submodules of arbi-
trary length, while cl.K. dimR(M) = 0 (for example, when R is a field).
Abu-Saymeh in [1] defined the dimension of M as the supremum of
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lengths of chains of distinguished prime submodules. (We recall that if
p is an ideal of R, then M(p) = {x ∈ M : rx ∈ pM , for some r ∈ R\p}
is called a distinguished submodule of M). Also Behboodi in [5], intro-
duced a generalization of the classical Krull dimension for a module M .
This is defined to be the length of the longest strong chain of prime
submodules of M .

By motivation of [18, Definition 2.2], we introduce a new generaliza-
tion of the classical Krull dimension of rings to modules via strongly
prime submodules such that all Artinian modules with a maximal
(strongly prime) submodule as well as, all semisimple modules lie in
the class of modules with dimension zero. We define the strongly di-
mension of M (s-dimR(M)) in terms of ascending chains of strongly
prime submodules as follow:
s-dimR(M) = sup{n|∃ P0, P1, . . . , Pn ∈ S-SpecR(M) such that P0 ⊊
P1 ⊊ · · · ⊊ Pn}, if S-SpecR(M) ̸= ∅, otherwise it is defined to be −1.
This dimension seems to be an adequate dimension for modules. Note
that if we consider R as an R-module, then strongly prime submod-
ules are exactly prime ideals of R and hence the notion of strongly
dimension of R and the classical Krull dimension of R coincides.

It is a well known fact that a ring R is Artinian if and only if R
is Noetherian and Spec(R) = Max(R) (see, for example [7, Corollary
9.1]). One of our main results of this note is to generalize this fact for
modules: If M is a finitely generated R-module, then M is Artinian if
and only if M is Noetherian and S-SpecR(M) = MaxR(M). For other
generalizations of this fact, the following interesting articles [5] and [23]
are suggested.

This article consists of three sections. In Section 2, we prove some
preliminary facts about strongly spectrum of modules. In Section 3,
by considering the results in Section 2, we prove some important facts
about the dimension of modules.

2. Strongly Spectrum of Modules

In this section, we give some facts about strongly spectrum of mod-
ules. We start with the following proposition which is similar to its
counterpart in prime submodules (see [16, Lemma 4.1]).

Proposition 2.1. Let M be an R-module and let N ⊆ P be submodules
of M . Then P is a strongly prime submodule of M if and only if P/N
is a strongly prime submodule of M/N .

Proof. Obvious. □
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Lemma 2.2. Let P be a proper submodule of M . Then the following
are equivalent.

(1) P is a strongly prime submodule of M .
(2) IPx I

P
y M ⊆ P , for x, y ∈ M , implies that either x ∈ P or y ∈ P .

Proof. (1)⇒(2) Let x, y ∈ M and IPx I
P
y M ⊆ P . If IPy M ⊆ P , then

y ∈ P , since P is a strongly prime submodule. If IPy M ⊈ P , then

there exists z ∈ IPy M such that z ̸∈ P . Since P is a strongly prime

submodule and IPx z ⊆ P , we must have x ∈ P .
(2)⇒(1) Let x, y ∈ M and IPx y ⊆ P . Then

IPx I
P
y M ⊆ IPx (Ry + P ) ⊆ P.

Therefore x ∈ P or y ∈ P and hence P is a strongly prime submodule.
□

If P is a strongly prime submodule of M and p = (P : M), we say
that P is a strongly p-prime submodule of M . The set of all strongly
p-prime submodule of M is denoted by S-Specp(M).

Theorem 2.3. Let M be an R-module and p ∈ Spec(R). Then the
following hold:

(1) S-Specp(M) = max{N ≤ M |Ann(M/N) = p}.
(2) If M/pM is a finitely generated R-module and Ann(M) ⊆ p,

then S-Specp(M) ̸= ∅.
Proof. (1) ⊆: Let P ∈ S-Specp(M). Suppose to the contrary that
P ̸∈ max{N ≤ M |Ann(M/N) = p}. Then there exists a submodule K
of M such that P ⊊ K and Ann(M/K) = p. Let y ∈ M and x ∈ K\P .
Then

IPx y = (P +Rx : M)y ⊆ Ann(M/K)y = py ⊆ P.

Since P is a strongly prime submodule, we must have y ∈ P . It follows
that P = M , which is a contradiction.
⊇: Let P ∈ max{N ≤ M |Ann(M/N) = p}. We claim that P is a
strongly prime submodule. Suppose to the contrary that P is not
a strongly prime submodule. Then by the above lemma, we have
IPx I

P
y M ⊆ P , for some x, y ∈ M \ P . By maximality of P , we

have p ⊊ IPx and p ⊊ IPy . Let r ∈ IPx \ p and s ∈ IPy \ p. Then

rsM ⊆ IPx I
P
y M ⊆ P . It follows that rs ∈ Ann(M/P ) = p. Hence

r ∈ p or s ∈ p, which is a contradiction.
(2): Set

Σ = {N ≤ M |pM ⊆ N and Ann(M/N) = p}.
By [11, Proposition 8], pM ∈ Σ and hence Σ ̸= ∅. Let

K1 ⊆ K2 ⊆ K3 ⊆ · · · ,
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be an ascending chain of Σ and letK =
∪∞

i=1Ki. We claim thatK ∈ Σ.
Clearly p ⊆ Ann(M/K). Now let r ∈ Ann(M/K). Since M/pM is
finitely generated, there exists i ∈ N such that rM ⊆ Ki and hence
r ∈ p. Therefore p = Ann(M/K) and so K ∈ Σ. By Zorn’s Lemma Σ
has a maximal element P . Now Part (1) implies that P ∈ S-Specp(M)
and the proof is complete. □

An R-module M is called a multiplication module if for each sub-
module N of M , N = IM for some ideal I of R (see [4]). It is clear
that every cyclic R-module is a multiplication module. It is also easy
to check that an R-module M is a multiplication module if and only if
N = (N : M)M for all submodules N of M (see [22]). In the follow-
ing we give some conditions under which the prime and strongly prime
submodules coincide.

Proposition 2.4. Let M be an R module. If M is multiplication then
S-SpecR(M) = SpecR(M). The converse is true if M is finitely gener-
ated.

Proof. By considering Remark 1.1(1), it is enough to show that ev-
ery prime submodule of M is strongly prime. Let P ∈ SpecR(M)
and let IPx y ⊆ P for some x ∈ M and y ∈ M \ P . Because P is a
prime submodule, we must have IPx M ⊆ P . Since M is multiplication,
P +Rx = (P +Rx : M)M = IPx M ⊆ P and hence x ∈ P .
Now let M be a finitely generated R-module such that S-SpecR(M) =
SpecR(M). Then it is easy to see that
S-SpecR/m(M/mM) = SpecR/m(M/mM) for each m ∈ Max(R). There-
fore Remark 1.1(2) implies that M/mM is cyclic. Thus the assertion
follows from [8, Corollary 1.5]. □

We conclude this section by obtaining some conditions under which
S-SpecR(M) = MaxR(M). First, we observe that strongly prime sub-
modules behave naturally under localization. The following proposition
shows that the second part of [18, Theorem 1.5] is still true if we drop
the assumption “M is finitely generated”.

Proposition 2.5. Let M be an arbitrary R-module, and let S be a
multiplicatively closed subset of R. Then

S-SpecS−1R(S
−1M) = {S−1P |P ∈ S-SpecR(M) and (P : M) ⊆ R \S}.

Proof. ⊆: Follows easily from [18, Theorem 1.5].
⊇: Let P ∈ S-SpecR(M) and (P : M) ⊆ R \ S. We prove that

S−1P ∈ S-SpecS−1R(S
−1M). First, we show that S−1P ̸= S−1M . On

the contrary, suppose that S−1P = S−1M . Let x ∈ M \ P . Then
x/1 ∈ S−1P . Hence there exist s ∈ S and y ∈ P such that x/1 = y/s.
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Therefore stx ∈ P for some t ∈ S. Since st ̸∈ (P : M), we must
have x ∈ P , which is a contradiction. Now let x1/s1, x2/s2 ∈ S−1M

and IS
−1M,S−1P

x1/s1
IS

−1M,S−1P
x2/s2

S−1M ⊆ S−1P . Then IM,P
x1

IM,P
x2

M ⊆ P .

Therefore x1 ∈ P or x2 ∈ P and hence x1/s1 ∈ P or x2/s2 ∈ P , which
completes the proof. □
Theorem 2.6. LetM be an R-module. Then S-SpecR(M) = MaxR(M)
in each of the following cases:

(1) M is an Artinian module.
(2) M is a semisimple R-module.

Proof. (1): By considering Remark 1.1(2), it is enough to show that
S-SpecR(M) ⊆ MaxR(M). First take R to be a local ring with maximal
ideal m. Suppose to the contrary that P ∈ S-SpecR(M) \ MaxR(M).
Then there exists x ∈ M \ P such that P + Rx ̸= M . By [21, Exer-
cise 8.48], there exists a natural number n such that mnx = 0. Hence
(IPx )

nx ⊆ mnx = 0. Since P is a strongly prime submodule, it fol-
lows that x ∈ P , which is a contradiction. Therefore S-SpecR(M) =
MaxR(M). Now we go to the general case. Let R be any ring and
let P ∈ S-SpecR(M) and p = Ann(M/P ). If S = R \ p, then the
above proposition implies that S−1P ∈ S-SpecRp

(Mp). By the local

case, S−1P ∈ MaxRp(Mp). It follows easily that P ∈ MaxR(M).
(2): By considering Remark 1.1(2), it is enough to show that

S-SpecR(M) ⊆ MaxR(M). Suppose to the contrary that
P ∈ S-SpecR(M) \MaxR(M). Let {Si}i∈I be an indexed set of simple
submodules of M such that M =

⊕
i∈I Si. By the proof of [2, Lemma

9.2], there is a subset J ⊆ I such that M = P
⊕

(
⊕

j∈J Sj). Since P

is not maximal, |J | ≥ 2, where |J | denotes the cardinality of J . Let
0 ̸= xj1 ∈ Sj1 and 0 ̸= yj2 ∈ Sj2 , where j1, j2 are two distinct elements
of J . Put x = (0, (xj)j∈J), where xj = 0 for all j ∈ J \ {j1} and
y = (0, (yj)j∈J), where yj = 0 for all j ∈ J \ {j2}. Then we have IPx y =

I
(P,0)
x y = {r ∈ R|rM ⊆ (P, 0) + Rx}y = (∩j ̸=j1Ann(Sj))y = {0} ⊆ P.
Since P is a strongly prime submodule, we should have x ∈ P or y ∈ P ,
which is a contradiction. □

A useful characterization of Artinian rings is that a ring is Artinian
if and only if it is Noetherian and every prime ideal is maximal. In the
following result we generalize this characterization for modules.

Corollary 2.7. Let M be a finitely generated R-module. Then M is
Artinian if and only if M is Noetherian and S-SpecR(M) = MaxR(M).

Proof. Suppose that M is Artinian. Then by Theorem 2.6, we have
S-SpecR(M) = MaxR(M). Further, by [21, Exercise 7.28], R/Ann(M)
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is an Artinian ring. It follows that R/Ann(M) is a Noetherian ring and
[21, Corollary 7.22(i)] implies that M is Noetherian as an R/Ann(M)-
module. Hence M is Noetherian as an R-module.

Conversely, suppose that M is Noetherian and every strongly prime
submodule of M is maximal. We claim that every prime ideal of
R/Ann(M) is maximal. Let p be a prime ideal of R/Ann(M). Set

Σ = {N ≤ M |Ann(M/N) = p}.
By [11, Proposition 8], pM ∈ Σ and hence Σ ̸= ∅. By Zorn’s Lemma
Σ has maximal element P . From Theorem 2.3, we have that P is a
strongly prime submodule of M and by the hypothesis P is a maximal
submodule of M . Hence p is a maximal ideal of R/Ann(M). There-
fore every prime ideal of R/Ann(M) is maximal and hence R/Ann(M)
is Artinian. Thus it follows from [21, Corollary 7.22(ii)] that M is
Artinian as an R/Ann(M)-module. Hence M is Artinian as an R-
module. □

3. Strongly Dimension

In this section, we study the connections between strongly dimension
and classical Krull dimension. The following lemma is used widely in
the sequel.

Lemma 3.1. Let M be an R-module and let P1 ⊆ P2 in S-SpecR(M).
If (P1 : M) = (P2 : M), then P1 = P2.

Proof. On the contrary, suppose that P1 ̸= P2. Choose x ∈ P2 \ P1.
Thus

IP1
x M ⊆ Rx+ P1 ⊆ P2.

It follows from the assumption that IP1
x M ⊆ P1 and hence x ∈ P1,

which is a contradiction. □
Theorem 3.2. Let M be an R-module. Then

s-dimR(M) ≤ cl.K. dimR(M).

Proof. If M is a strongly primeless module, then s-dimR(M) = −∞
and there is nothing to prove. If M is not a strongly primeless module,
consider the following chain of distinct strongly prime submodules of
M

P0 ⊊ P1 ⊊ · · · ⊊ Pn.

By the above lemma we have the following chain

(P0 : M) ⊊ (P1 : M) ⊊ · · · ⊊ (Pn : M)

of distinct prime ideals ofR. It follows that s-dimR(M) ≤ cl.K. dimR(M).
□
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Theorem 3.3. Let M be an R-module. Then
s-dimR(M) = cl.K. dimR(M) if one of the following conditions holds.

(1) M is a multiplication module.
(2) M is a finitely generated module.

Proof. Assume that (1) holds. In view of the above theorem it is enough
to show that cl.K. dimR(M) ≤ s-dimR(M). Consider the following
chain of distinct prime ideals of R

p0 ⊊ p1 ⊊ · · · ⊊ pn,

where Ann(M) ⊆ pi for all i. By [22, Theorem 9] and [8, Corollary
2.11], we have the following chain of distinct prime submodules of M

p0M ⊊ p1M ⊊ · · · ⊊ pnM.

Now the assertion follows from Proposition 2.4.
Now assume that (2) holds. By Theorem 3.2, it is enough to show

that cl.K. dimR(M) ≤ s-dimR(M). Consider the following chain of
distinct prime ideals of R

p0 ⊊ p1 ⊊ · · · ⊊ pn,

where Ann(M) ⊆ pi for all i. By Theorem 2.3(2), S-Specp0(M) ̸=
∅. Let P0 ∈ S-Specp0(M), M = M/P0 and R = R/p0. Again,

by Theorem 2.3(2), we obtain that S-Specp1/p0(M) ̸= ∅. Let P 1 ∈
S-Specp1/p0(M). By Proposition 2.1, there exists P1 ∈ S-Specp1(M)

such that P 1 = P1/P0. Continuing this process we obtain the following
chain of strongly prime submodules of M

P0 ⊊ P1 ⊊ · · · ⊊ Pn.

Therefore cl.K. dimR(M) ≤ s-dimR(M). □
Corollary 3.4. Let M ⊆ M ′ be R-modules. Then the following hold.

(1) If M ′ is finitely generated, then s-dimRM ≤ s-dimRM
′.

(2) If M is finitely generated and Ann(M) ⊆
√

Ann(M ′), then
s-dimRM

′ ≤ s-dimRM .

Proof. Follows easily from Theorem 3.2 and Theorem 3.3(2). □
Corollary 3.5. The following statements hold.

(1) Let M1,M2, . . . ,Mn be R-modules. If
s-dimR(Mi) = cl.K. dimR(Mi) for all 1 ≤ i ≤ n, then

s-dimR(
n⊕

i=1

Mi) = cl.K. dimR(
n⊕

i=1

Mi).
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(2) Let {Mi}i∈I be a family of R-modules. If there is a finite subset
J of I such that

∩
i∈I Ann(Mi) =

∩
j∈J Ann(Mj) and s-dimR(Mj) =

cl.K. dimR(Mj) for all j ∈ J , then
(a) s-dimR(

⊕
i∈I Mi) = cl.K. dimR(

⊕
i∈I Mi).

(b) s-dimR(
∏

i∈I Mi) = cl.K. dimR(
∏

i∈I Mi).
(3) Let M be a free R-module. Then

s-dimR(M) = cl.K. dimR(M) = cl.K. dim(R).

(4) Let M be an R-module, and let M [x] (M [[x]]) be the set of
all formal polynomials (power series) in indeterminate x with
coefficients from M . If s-dimR(M) = cl.K. dimR(M), then

s-dimR(M [x]) = s-dimR(M [[x]]) = cl.K. dimR(M).

Proof. (1): It is easy to see that s-dimR(Mi) ≤ cl.K. dimR(
⊕n

i=1Mi)
for each 1 ≤ i ≤ n. Hence

cl.K. dimR(
n⊕

i=1

Mi) = max{cl.K. dimR(Mi)|1 ≤ i ≤ n}

= max{s-dimR(Mi)|1 ≤ i ≤ n}

≤ s-dimR(
n⊕

i=1

Mi).

Now the assertion follows from Theorem 3.2.
(2): Since the proofs of (a) and (b) are similar, we only prove (a).

By Theorem 3.2, it is enough to show that cl.K. dimR(
⊕

i∈I Mi) ≤
s-dimR(

⊕
i∈I Mi). From (1), we have

cl.K. dimR(
⊕
i∈I

Mi) = cl.K. dimR/(
∩
i∈I

Ann(Mi))

= cl.K. dimR/(
∩
j∈J

Ann(Mj))

= cl.K. dimR(
⊕
j∈J

Mj)

= s-dimR(
⊕
j∈J

Mj)

≤ s-dimR(
⊕
i∈I

Mi).

This completes part (a).
(3): The assertion follows easily from part 2(a).
(4): It is easy to see that M [x] ∼=

⊕
i∈NMi and M [[x]] ∼=

∏
i∈NMi,

where Mi = M . Now the assertion follows from part (2). □
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