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A NEW PROOF OF THE PERSISTENCE PROPERTY
FOR IDEALS IN DEDEKIND RINGS AND PRÜFER

DOMAINS

M. NASERNEJAD

Abstract. In this paper, using elementary tools of commutative
algebra, helps us prove the persistence property for two especial
classes of rings. In fact, this paper has two main sections. In the
first section, we let R be a Dedekind ring and I be a proper ideal of
R. We prove that if I1, . . . , In are non-zero proper ideals of R, then
Ass∞(Ik1

1 . . . Ikn
n ) = Ass∞(Ik1

1 )∪· · ·∪Ass∞(Ikn
n ) for all k1, . . . , kn ≥

1, where for an ideal J of R, Ass∞(J) is the stable set of associated
primes of J . Moreover, we prove that every non-zero ideal in a
Dedekind ring is Ratliff-Rush closed, normally torsion-free and also
has a strongly superficial element. Especially, we show that if
R = R(R, I) is the Rees ring of R with respect to I, as a subring
of R[t, u] with u = t−1, then uR has no irrelevant prime divisor. In
the second section, we prove that every non-zero finitely generated
ideal in a Prüfer domain has the persistence property with respect
to weakly associated prime ideals. Finally, we extend the notion of
persistence property of ideals to the persistence property for rings.

1. Introduction

Assume that R is a commutative Noetherian ring and I is an ideal of
R. It is known by Brodmann [3] that the sets of associated prime ideals
of Ik, which denote by AssR(R/Ik), stabilize, that is, there exists a
positive integer k0 such that AssR(R/Ik) = AssR(R/Ik0) for all k ≥ k0.
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The smallest number k0 for which this equality occurs is called the index
of stability of I and AssR(R/Ik0) is called the stable set of associated
prime ideals of I, which is denoted by Ass∞(I).

An ideal I is said to satisfy the persistence property if
Ass(R/I) ⊆ Ass(R/I2) ⊆ · · · ⊆ Ass(R/Ik) ⊆ · · · .

It is shown that not all ideals satisfy the persistence property (see
[7]), but for some classes of monomial ideals such as edge ideals of
graphs, vertex cover ideals of perfect graphs and polymatroidal ideals
persistence have been shown(see [5], [8], [11], [14]).

Up to now, by using combinatorial tools, several papers have been
published in order to describe the stable set of associated prime ideals
for a monomial ideal and a square-free monomial ideal (see [1], [4], [6],
[9]).

The whole of those papers are related to the polynomial ring while in
this paper we examine the persistence property for ideals in two rings
such that one of them is a Noetherian ring other than the polynomial
ring and the other one is a non-Noetherian ring.

This paper has two main sections. In the first section, we let R be
a Dedekind ring. Clearly, the class of Dedekind rings lies properly be-
tween the class of principal ideal domains and the class of Noetherian
integral domains. If I1, . . . , In are non-zero proper ideals of R, then
we prove that Ass∞(Ik11 . . . Iknn ) = Ass∞(Ik11 ) ∪ · · · ∪ Ass∞(Iknn ) for all
k1, . . . , kn ≥ 1 (see Corollary 2.7). In the sequel, we show that ev-
ery non-zero ideal in a Dedekind ring is Ratliff-Rush closed, normally
torsion-free (see Corollaries 2.5 and 3.7), and also has a strongly su-
perficial element (see Corollary 4.4).

In the second section, we assume that R is a Prüfer domain. In fact, a
Prüfer domain is a type of commutative ring that generalizes Dedekind
rings in a non-Noetherian context. In other words, a commutative ring
is a Dedekind ring if and only if it is a Prüfer domain and a Noetherian
ring. Since, in general, Prüfer domains are not Noetherian rings, we
consider weakly associated prime ideals and prove that every non-zero
finitely generated ideal in a Prüfer domain has the persistence property
(see Theorem 5.8).

It is necessary to note that some results of this paper can be found in
[16]. Throughout this paper the symbol N (respectively N0) will always
denote the set of positive integers (respectively nonnegative integers).
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2. Persistence property and the stable sets in Dedekind
rings

We first give some necessary definitions and theorem which used
throughout this paper.

Remark 2.1. Assume that I1, . . . , In are ideals in a commutative ring
R which are pairwise coprime. Then, for all 1 ≤ i, j ≤ n with i ̸= j,√

Ikii + I
kj
j =

√√
Ii +

√
Ij =

√
Ii + Ij = R for all ki, kj ∈ N. Hence

Ik11 , . . . , Iknn are also pairwise coprime for all k1, . . . , kn ∈ N.

The following theorem is very useful and will be used frequently
throughout the paper.

Theorem 2.2. [10, Theorem 6.10] The following conditions on an in-
tegral domain R are equivalent.

(i) R is a Dedekind domain;
(ii) every proper ideal in R is uniquely a product of a finite number

of prime ideals;
(iii) every non-zero ideal in R is invertible;
(iv) every fractional ideal of R is invertible;
(v) the set of all fractional ideals of R is a group under multiplica-

tion;
(vi) every ideal in R is projective;
(vii) every fractional ideal of R is projective;
(viii) R is Noetherian, integrally closed and every non-zero prime

ideal is maximal;
(ix) R is Noetherian and, for every non-zero prime ideal p of R, the

localization Rp of R at p is a discrete valuation ring.

Now, we investigate the persistence property in Dedekind rings.

Theorem 2.3. Let R be a Dedekind ring and I be a proper ideal of
R. Then I has the persistence property. Furthermore, Ass∞(I) =
AssR(R/I).

Proof. If I is a non-zero ideal of R, then, by Theorem 2.2 (ii), I =
pα1
1 . . . pαn

n , where p1, . . . , pn are distinct prime ideals ofR and α1, . . . , αn

are positive integers. Also, by Theorem 2.2 (viii), pi is a maximal
ideal of R for all i = 1, . . . , n. Fix k ∈ N. Then, by Remark 2.1,
pkα1
1 , . . . , pkαn

n are pairwise coprime, and so, by [12, Theorem 1.4], we
have the following isomorphism

R/pkα1
1 . . . pkαn

n
∼= R/pkα1

1 ⊕ · · · ⊕R/pkαn
n .
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Hence

AssR(R/Ik) = AssR(R/pkα1
1 . . . pkαn

n )

= AssR(R/pkα1
1 ⊕ · · · ⊕R/pkαn

n )

= {p1, . . . , pn}.

Thus AssR(R/Ik) = AssR(R/I) for all k ∈ N, and so Ass∞(I) =
AssR(R/I). □

Now, we recall the following definition.

Definition 2.4. Let I be an ideal in a commutative Noetherian ring
R. Then I is called normally torsion-free if AssR(R/Ik) ⊆ AssR(R/I)
for all k ∈ N.

Theorem 2.3 has the following immediate consequence.

Corollary 2.5. Let R be a Dedekind ring and I be a proper ideal in
R. Then I is normally torsion-free.

Theorem 2.6. Let R be a Dedekind ring and I1, . . . , In be non-zero
proper ideals of R. Then

Ass∞(Ik11 . . . Iknn ) =
n∪

i=1

AssR(R/Ii)

for all k1, . . . , kn ∈ N.

Proof. Since R is a Dedekind ring, by Theorem 2.2 (ii), we have Ii =
p
αi,1

i,1 . . . p
αi,ti
i,ti

, where pi,1, . . . , pi,ti are distinct prime ideals in R and
αi,1, . . . , αi,ti ∈ N for all i = 1, . . . , n. Also, by Theorem 2.2 (viii),
it follows that pi,1, . . . , pi,ti are maximal ideals in R for all i = 1, . . . , n.

So we can rewrite Ik11 . . . Iknn = qm1
1 . . . qms

s for some maximal ideals
q1, . . . , qs of R and m1, . . . ,ms ∈ N, where

{q1, . . . , qs} = {pi,j|i = 1, . . . , n, j = 1, . . . , ti}.

By Remark 2.1, the ideals qm1d
1 , . . . , qmsd

s are pairwise coprime for all
d ∈ N. Now, by [12, Theorem 1.4], we have that

R/(Ik11 . . . Iknn )d = R/qm1d
1 . . . qmsd

s

∼= R/qm1d
1 × · · · ×R/qmsd

s

∼= R/qm1d
1 ⊕ · · · ⊕R/qmsd

s
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for all d ∈ N. Hence, by Theorem 2.3, we obtain

AssR(R/(Ik11 . . . Iknn )d) = AssR(R/qm1d
1 ⊕ · · · ⊕R/qmsd

s )

= {pi,j|i = 1, . . . , n, j = 1, . . . , ti}

=
n∪

i=1

AssR(R/Ii)

for all d ∈ N. Thus

AssR(R/Ik11 . . . Iknn ) = Ass∞(Ik11 . . . Iknn ) =
n∪

i=1

AssR(R/Ii)

for all k1, . . . , kn ∈ N. □
Corollary 2.7. Let R be a Dedekind ring and I1, . . . , In be non-zero
proper ideals in R. Then Ass∞(Ik11 . . . Iknn ) = Ass∞(Ik11 )∪· · ·∪Ass∞(Iknn )
for all k1, . . . , kn ∈ N.

Proof. For k1, . . . , kn ∈ N, consider the ideals Ik11 , . . . , Iknn of Dedekind
ring R. Then, by Theorems 2.3 and 2.6, we have the following equalities

Ass∞(Ik11 . . . Iknn ) =AssR(R/Ik11 . . . Iknn )

=
n∪

i=1

AssR(R/Ii)

=
n∪

i=1

AssR(R/Ikii )

=Ass∞(Ik11 ) ∪ · · · ∪ Ass∞(Iknn ).

□
Proposition 2.8. Let p1, . . . , pn be distinct non-zero prime ideals in a
Dedekind ring R. Then there exists an ideal I such that AssR(R/I) =
Ass∞(I) = {p1, . . . , pn}.

Proof. In view of Theorem 2.3, it is enough to put I := p1 . . . pn. □

3. A class of Ratliff-Rush closed ideals

We begin with the following Theorem.

Theorem 3.1. Let I be a non-zero ideal in a Dedekind ring R. Then
(Ik+i :R I i) = Ik for all k, i ∈ N.

Proof. Fix i ∈ N. It is easy to see that I i(Ik+i :R I i) = Ik+i for all
k ∈ N. By Theorem 2.2 (iii), I i is an invertible ideal, and so, by [10,
p. 401], there exists a fractional ideal J of R such that JI i = R.
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Now, by multiplying the equation I i(Ik+i :R I i) = Ik+i in J , we obtain
(Ik+i :R I i) = Ik for all k ∈ N, as desired. □

The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.2. Let I be a non-zero ideal in a Dedekind ring R. Then,
for all k ∈ N, we have the following equalities

(Ik+1 :R I) = Ik and (Ik+1 :R Ik) = I.

Notation 3.3. For an ideal I of a commutative ring R, we set

I∗ :=
∪
n∈N

(In+1 :R In).

Proposition 3.4. Let I be a non-zero ideal in a Dedekind ring R.
Then Ik

∗
= Ik for all k ∈ N.

Proof. Fix k ∈ N. By Theorem 3.1, we have that

(Ik)∗ =
∪
n∈N

((Ik)n+1 :R (Ik)n) =
∪
n∈N

(Ink+k :R Ink) = Ik.

□
Corollary 3.5. Let I be a non-zero ideal in a Dedekind ring R. Then
I∗ = I.

Let I be an arbitrary ideal in a commutative Noetherian ring R.
From the maximal condition on ideals of R, it follows that there exist
ideals I∗ in R which are maximal with respect to the condition

I∗n = In for all large n.

Ratliff and Rush, in [16, Theorem 2.1], proved that if I is a regular
ideal (that is, I contains a non-zerodivisor), then there exists a unique
such I∗, which can be presented in terms of I as follows:

I∗ :=
∪
n∈N

(In+1 :R In).

In fact, the eventual stable value of the ascending chain (I2 :R I) ⊆
(I3 :R I2) ⊆ · · · ⊆ (I i+1 :R I i) ⊆ · · · is I∗.

Definition 3.6. The ideal I∗ is called the Ratliff-Rush ideal associated
with I or the Ratliff-Rush closure of I. A regular ideal I for which
I∗ = I is called Ratliff-Rush closed.

As an application of Corollary 3.5, we have the following result.

Corollary 3.7. Every non-zero ideal in a Dedekind ring is Ratliff-Rush
closed.
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4. Existence of a strongly superficial element

Suppose that I is an arbitrary ideal in a commutative ring R and
k ∈ N. An element x ∈ R is called a superficial element of degree k for
I if x ∈ Ik and there exists c ∈ N such that (In+k :R x) ∩ Ic = In for
all n ≥ c. Also, if (In+k :R x) = In for all n ∈ N, we say that x is a
strongly superficial element of degree k for I (see [13, Definition 4.1.2]).
In this section we show that every non-zero ideal in a Dedekind ring
has a superficial element. To do this, we recall the following definitions.

Definition 4.1. Let I = (b1, . . . , bk) be an ideal in a Noetherian ring
R, let t be an indeterminate and let u = t−1. Then the Rees ring
R = R(R, I) of R with respect to I is the subring R = R[tb1, . . . , tbk, u]
of R[t, u] (see [15, Definition 2.3]).

Definition 4.2. Let I be an ideal in a Noetherian ring R and let
R = R(R, I). Then a homogeneous idealH inR is said to be irrelevant
if H contains all homogeneous elements of sufficiently large degree;
otherwise, H is said to be relevant (see [15, Definition 3.1]).

Theorem 4.3. The following statements hold for a non-zero ideal I in
a Dedekind ring R:

(i) uR has no irrelevant prime divisor.
(ii) There exist k ∈ N and b in Ik such that (In+k :R b) = In for all

n ∈ N.
(iii) In+1 = In ∩ (In+1 :R p) ∩ (In+2 :R I) for all n ∈ N0 and all

prime ideals p in R such that I ⊆ p.

Proof. By Corollary 3.2, (In+1 :R I) = In for all n ∈ N. Now, by [15,
Remark 3.6.2], the statements hold. □
Corollary 4.4. Every non-zero ideal in a Dedekind ring has a strongly
superficial element.

Proof. Let I be a non-zero ideal in a Dedekind ring R. By Theorem
4.3 (ii), there exist k ∈ N and b in Ik such that (In+k :R bR) = In for
all n ∈ N. Thus I has a strongly superficial element of degree k. □

5. Persistence property in Prüfer domains

There are many equivalent definitions of a Prüfer domain. We begin
with the following one.

Definition 5.1. A Prüfer domain R is an integral domain in which
every non-zero finitely generated ideal is invertible.

Theorem 5.2. Let I be a non-zero finitely generated ideal in a Prüfer
domain R. Then (Ik+i :R I i) = Ik for all k, i ∈ N.
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Proof. Fix i ∈ N. It is easy to see that I i(Ik+i :R I i) = Ik+i for all
k ∈ N. Since I i is a non-zero finitely generated ideal of R, by [2,
Theorem 1.1(6)], I i is a cancellation ideal. Thus (Ik+i :R I i) = Ik for
all k ∈ N, as desired. □

The following result is an immediate consequence of Theorem 5.2.

Corollary 5.3. Let I be a non-zero finitely generated ideal in a Prüfer
domain R. Then (Ik+1 :R Ik) = I for all k ∈ N.

Proposition 5.4. Let I be a non-zero finitely generated ideal in a
Prüfer domain R and I∗ :=

∪
n∈N(I

n+1 :R In). Then Ik
∗
= Ik for all

k ∈ N.

Proof. Fix k ∈ N. By Theorem 5.2, we obtain

(Ik)∗ =
∪
n∈N

((Ik)n+1 :R (Ik)n) =
∪
n∈N

(Ink+k :R Ink) = Ik.

□

Corollary 5.5. Let I be a non-zero finitely generated ideal in a Prüfer
domain R. Then I∗ = I.

There are several variant definitions of associated primes in the lit-
erature. The following definition is more standard for associated prime
ideals of non-Noetherian rings.

Definition 5.6. Let N ⊆ M be modules over a ring R. The set

{p ∈ Spec(R)| p is minimal over (N :R m) for some m ∈ M}

is called the set of weakly associated primes of M/N , and is denoted

ÃssR(M/N).
If I is an ideal, then the weakly associated primes of the ideal I are

the weakly associated primes of the module R/I.

Proposition 5.7. Let R be a (not necessary Noetherian) commutative
ring, I an ideal, J a finitely generated ideal of R, and p a prime ideal

of R. If p ∈ ÃssR(R/(I :R J)), then p ∈ ÃssR(R/I).

Proof. Suppose that J = (x1, . . . , xn) and choose p ∈ ÃssR(R/(I :R
J)). Then there exists y ∈ R such that p is minimal over ((I :R J) :R y).
On the other hand,

((I :R J) :R y) = (I :R yJ) =
n∩

i=1

(I :R xiy).
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Since
∩n

i=1(I :R xiy) ⊆ p, it follows that there exists i ∈ N with
1 ≤ i ≤ n such that (I :R xiy) ⊆ p. Since p is minimal over (I :R xiy),

we have that p ∈ ÃssR(R/I), as claimed. □
Now, we present the main result in this section.

Theorem 5.8. Every non-zero finitely generated ideal in a Prüfer do-
main has the persistence property.

Proof. Let I be a non-zero finitely generated ideal in a Prüfer domain
R. By Theorem 5.2, we have (In+1 :R I) = In for all n ∈ N. Fix n ∈ N
and consider p ∈ ÃssR(R/In). Then p ∈ ÃssR(R/(In+1 :R I)). Now,

by Proposition 5.7, it follows that p ∈ ÃssR(R/In+1) and the proof is
complete. □

Now, we extend the notion of persistence property of ideals to the
persistence property for rings.

Definition 5.9. Let R be a commutative ring. Then we say that R has
the persistence property when any finitely generated ideal of R has the
persistence property with respect to weakly associated prime ideals.

By Theorem 2.3 and Theorem 5.8, it follows that Dedekind rings
and Prüfer domains have the persistence property.

We conclude this section with a question focusing on further research.

Question 5.10. Let S be a commutative ring and R be a subring of
S such that R has not the persistence property with respect to weakly
associated prime ideals. Then is it true that S has not the persistence
property with respect to weakly associated prime ideals?

For example, suppose that K is a field and S = K[x1, x2, x3, . . .]
is the polynomial ring in infinitely many variables x1, x2, x3, . . .. It
is common that the ring S is a non-Noetherian ring and that S =
∪n∈NK[x1, . . . , xn] such that the subring R = K[x1, . . . , xn], for all n ∈
N, is a Noetherian ring. Now, suppose that the ideal I is generated by
monomials x1x

2
2x3, x2x

2
3x4, x3x

2
4x5, x4x

2
5x1, and x5x

2
1x2 in the Noether-

ian ring R = K[x1, x2, x3, x4, x5]. Note that ÃssR(R/I) = AssR(R/I)

and ÃssR(R/I2) = AssR(R/I2) . Also, we have that (x1, x2, x3, x4, x5) ∈
AssR(R/I), but (x1, x2, x3, x4, x5) /∈ AssR(R/I2). Therefore the poly-
nomial ring R = K[x1, x2, x3, x4, x5] has not the persistence property.
Now, can we conclude that S has not the persistence property with
respect to weakly associated prime ideals?
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2. S. Bazzoni and S. Glaz, Prüfer rings, Multiplicative Ideal Theory in Commu-
tative Algebra, Springer (2006), 55-72.

3. M. Brodmann, Asymptotic stability of Ass(M/InM), Proc. Amer. Math.
Soc. 74 (1979), 16-18.

4. J. Chen, S. Morey and A. Sung, The stable set of associated primes of the
ideal of a graph, Rocky Mountain J. Math. 32(1) (2002), 71-89.
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