ZARISKI-LIKE SPACES OF CERTAIN MODULES

H. FAZAELI MOGHIMI* AND F. RASHEDI

ABSTRACT. Let R be a commutative ring with identity and M be a unitary R-module. The primary-like spectrum $Spec_L(M)$ is the collection of all primary-like submodules Q such that M/Q is a primeful R-module. Here, M is defined to be RSP if rad(Q) is a prime submodule for all $Q \in Spec_L(M)$. This class contains the family of multiplication modules properly. The purpose of this paper is to introduce and investigates a new Zariski space of an RSP module, called a Zariski-like space. In particular, we provide conditions under which the Zariski-like space of a multiplication module has a subtractive basis.

1. Introduction

This paper focuses on rings, which all are commutative with an identity and modules are unitary. Let M be an R-module and N be a submodule of M. The colon ideal of M into N is the ideal $(N:M)=\{r\in R\mid rM\subseteq N\}$ of R. A proper submodule P of M is called p-prime if for p=(P:M), whenever $rm\in P, r\in R$ and $m\in M$, then $m\in P$ or $r\in p$. The collection of all prime submodules of M is denoted by Spec(M). If N is a submodule of M, then the radical of N, denoted rad(N), is the intersection of all prime submodules of M which contain N, unless no such primes exist, in which case rad(N)=M.

A proper submodule Q of M is said to be primary-like if $rm \in Q$ implies $r \in (Q:M)$ or $m \in rad(Q)$ [5]. We state that a submodule N of

MSC(2010): Primary: 13C05; Secondary: 13C13, 54B99

Keywords: RSP module, Multiplication module, Zariski-like space, Subtractive subsemi-module, Subtractive basis.

Received: 13 April 2013, Revised: 12 September 2013

*Corresponding author.

an R-module M satisfies the primeful property if for each prime ideal p of R with $(N:M)\subseteq p$, there exists a prime submodule P containing N such that (P:M)=p. In this case $\sqrt{(N:M)}=(rad(N):M)$ [10, Proposition 5.3]. For example the zero submodule of the \mathbb{Z} -module $M=\prod_{p\in\Omega}(\frac{\mathbb{Z}}{p\mathbb{Z}})$ is not a primary-like submodule of M, but it satisfies the primeful property [7, Example 1.1(6)]. On the other hand although $M'=\bigoplus_{p\in\Omega}(\frac{\mathbb{Z}}{p\mathbb{Z}})$ is a primary-like submodule of M, it dose not satisfy the primeful property [10, Example 1(5) and (6)]. In [5, Lemma 2.1] it is shown that, if Q is a primary-like submodule satisfying the primeful property, then $p=\sqrt{(Q:M)}$ is a prime ideal of R and so in this case, is Q called a p-primary-like submodule.

The primary-like spectrum $Spec_L(M)$ is defined to be the set of all primary-like submodules of M satisfying the primeful property. For example if M is the \mathbb{Z} -module $\mathbb{Q} \oplus \mathbb{Z}_p$, where \mathbb{Q} is the abelian group of rational numbers and \mathbb{Z}_p is the cyclic group of order p, then $Spec(M) = {\mathbb{Q} \oplus 0, 0 \oplus \mathbb{Z}_p}$ by [15, Example 2.6] and $Spec_L(M) = {\mathbb{Q} \oplus 0}$ by [6, Example 3.1]. In [6, Lemma 2.1], it is shown that if $Spec(M) = \emptyset$, then $Spec_L(M) = \emptyset$. However for the \mathbb{Z} -module \mathbb{Q} , we have $Spec(\mathbb{Q}) = \{0\}$ and $Spec_L(\mathbb{Q}) = \emptyset$.

There are different module theoretic generalizations of the well-known Zariski topology on the spectrum of a ring R having $\{V(I) \mid I \text{ is an ideal of } R\}$ as the collection of closed sets, where $V(I) = \{p \in Spec(R) \mid I \subseteq p\}$ (see for example [1, 2, 3, 12]).

We set $\eta^*(M) = \{\nu^*(N) \mid N \text{ is a submodule of } M\}$, where $\nu^*(N) = \{Q \in Spec_L(M) \mid N \subseteq rad(Q)\}$. This collection of varieties of submodules is not closed under finite unions. An R-module M is called top-like if $\eta^*(M)$ satisfies the axioms of a Zariski-like topology \mathcal{T}^* for closed sets [6].

A module M over a ring R is called a multiplication module if each submodule of M is of the form IM, where I is an ideal of R. In this case, we can take I = (N : M) [4]. Multiplication modules are top-like [7, Theorem 2.2]. Also if R is an Artinian ring, then Bezout R-modules and distributive R-modules are top-like [6, Proposition 4.1].

From an algebraic point view, some Zariki spaces have been studied related to these topologies [14, 16]. It is easily seen that $\eta^*(M)$ with the binary operation $\nu^*(N) + \nu^*(N') = \nu^*(N+N') = \nu^*(N) \cap \nu^*(N')$ is a semigroup with zero. Moreover $\eta^*(R)$ with the similar addition and multiplication as $\nu^*(I) * \nu^*(J) = \nu^*(IJ) = \nu^*(I \cap J)$ is a semiring.

An R-module M is called RSP if the radical of each element of $Spec_L(M)$ is prime. In Section 2, we introduce a Zariski-like space over RSP modules. In fact we show that for an RSP module M, the semigroup

 $(\eta^*(M), +)$ with the scalar multiplication $\nu^*(I) * \nu^*(N) = \nu^*(IN)$ is an $\eta^*(R)$ -semimodule (Theorem 2.4). In this case $(Spec_L(M), \eta^*(M))$ also means an $\eta^*(R)$ -space, called the Zariski-like space. In this section we provide some background material and results regarding subtractive subsemimodules of $\eta^*(M)$.

The notion of Z*-radical of a submodule N of M, defined in Section 3 and denoted by $\sqrt[z]{N}$, is the intersection of all elements of $\nu^*(N)$, unless $\nu^*(N) = \emptyset$, in which case $\sqrt[z]{N} = M$. It is proved that for submodules N and N' of a multiplication module M, $\sqrt[z]{N} \cap N' = \sqrt[z]{N} \cap \sqrt[z]{N'}$. Moreover, if $|Spec_L(M)| < \infty$, then $\sqrt[z]{\sqrt[z]{N}} = \sqrt[z]{N}$ (Lemma 3.9). Since these identities are frequently needed to examine the new notion of a subtractive basis for a Zariski-like space, in a main part of Section 3, we restrict ourselves on the class of multiplication modules as a subclass of RSP modules. Such bases provide a means of generating Zariski-like Spaces, which exploits both the algebraic and topological-type properties of these spaces.

It is shown that if M is a Z^* -radical Noetherian multiplication R-module with $|Spec_L(M)| < \infty$ such that for every submodule N of M and $Q \in Spec_L(M)$, $N \subseteq \sqrt[z^*]{N}$ and $rad(Q) \cap N = rad(Q \cap N)$, then $\eta^*(M)$ has a subtractive basis (Corollary 3.14).

2. The Zariski-like Space of RSP modules and $\eta^*(R)$ -homomorphisms

The saturation of a submodule N of an R-module M with respect to a prime ideal p of R is the contraction of N_p in M and designated by $S_p(N)$. It is known that $S_p(N) = \{m \in M \mid rm \in N \text{ for some } r \in R \setminus p\}$ [11]. Hereafter we will use \mathcal{X} to represent $Spec_L(M)$. Hence for any $Q \in \mathcal{X}$, the ideal $\sqrt{(Q:M)} = (rad(Q):M)$ is prime and so is $rad(Q) \neq M$.

Lemma 2.1. Let M be an R-module and Q be a primary-like submodule of M. Then $S_p(Q) \subseteq rad(Q)$ for every $p \in V(Q:M)$. In particular, if $S_p(Q)$ is a prime submodule of M for some $p \in V(Q:M)$, then $S_p(Q) = rad(Q)$.

Proof. Straightforward.

Lemma 2.2. Let M be an R-module and Q be a submodule of M. Consider the following statements.

- (1) rad(Q) is a p-prime submodule of M.
- (2) rad(Q) is a p-primary-like submodule of M.
- (3) Q is a p-primary-like submodule of M

Then (1) \Leftrightarrow (2). Furthermore, if $Q \in \mathcal{X}$ and (Q : M) is a radical ideal of R, then (1) - (3) are equivalent.

Proof. (1) \Leftrightarrow (2) is clear since rad(rad(Q)) = rad(Q).

 $(1) \Rightarrow (3)$ Clear. $(3) \Rightarrow (1)$ Since $S_p(Q) \subseteq rad(Q)$, then $S_p(Q) \neq M$. Thus by [11, Proposition 2.4] and Lemma 2.1 rad(Q) is prime. The verification of the other implications is straightforward.

Recall that an R-module M is called RSP if the radical of each element of \mathcal{X} is prime. In the following we list some conditions under which an R-module M is RSP.

Theorem 2.3. Let M be an R-module. Then M is RSP in each of the following cases.

- (1) R is a zero-dimensional ring.
- (2) For each $Q \in \mathcal{X}$ and $p = \sqrt{(Q:M)}$, $(S_p(Q):M)$ is a radical ideal.
- (3) For each $Q \in \mathcal{X}$ and p = (Q : M), $S_p(Q) \neq M$.
- (4) M is a multiplication module.
- (5) R is a Noetherian domain and $Q \in \mathcal{X}$ is contained in only finitely many prime submodules of M.
- Proof. (1) Suppose $Q \in \mathcal{X}$. Since $\sqrt{(Q:M)} = (rad(Q):M)$ is prime and hence maximal, $\sqrt{(Q:M)} = (P:M)$ for all prime submodules P containing Q. Now if $rm \in rad(Q)$ and $m \notin rad(Q)$, there is a prime submodule P containing Q such that $rm \in P$ and $m \notin P$ and so $r \in (P:M) = \sqrt{(Q:M)} = (rad(Q):M)$. Thus rad(Q) is prime.
- (2) $p = \sqrt{(Q:M)} \subseteq \sqrt{(S_p(Q):M)} \subseteq (rad(Q):M) = \sqrt{(Q:M)} = p$. It follows that $\sqrt{(S_p(Q):M)} = p$. Now since $(S_p(Q):M)$ is a radical ideal, we have $(S_p(Q):M) = p$. It follows from [11, Theorem 2.3] and Lemma 2.1, rad(Q) is a prime submodule of M.
- (3) Suppose $S_p(Q) \neq M$. By [11, Proposition 2.4], $S_p(Q)$ is a prime submodule of M. It follows from Lemma 2.1 rad(Q) is a prime submodule of M.
- (4) Since (rad(Q): M) is a prime ideal of R for every $Q \in \mathcal{X}$, rad(Q) is a prime submodule of M by [4, Corollary 2.11].
- (5) By Lemma 2.2 we may assume that $(Q:M) \neq 0$. If P is a prime submodule containing Q, then $0 \subset \sqrt{(Q:M)} \subseteq (P:M)$ is a chain of prime ideals of R. If $\sqrt{(Q:M)} \subseteq (P:M)$ is a proper containment, then by [9, P.144] there are infinitely many prime ideals p with $(Q:M) \subset p \subset (P:M)$ and so we have infinitely prime submodules P containing Q, a contradiction. Hence we have $\sqrt{(Q:M)} = (P:M)$, for all prime submodules P containing N. Now if $rm \in rad(Q)$ and

 $m \notin rad(Q)$, there is a prime submodule P containing Q such that $rm \in P$ and $m \notin P$ and so that $r \in (P:M) = \sqrt{(Q:M)} = (rad(Q):M)$.

For the remainder of this section, we assume that M and M' are RSP R-modules.

Let (X,Ω) be a topological space, and let Γ be a collection of subsets of a set Y such that $Y \in \Gamma$ and Γ is closed with respect to finite intersections. Further suppose that there exists a mapping $*: \Omega *\Gamma \to \Gamma$ such that (Γ, \cap) is an Ω -semimodule. That is to say, for all $\tau, \tau' \in \Omega$ and for all $\gamma, \gamma' \in \Gamma$, the following properties hold.

- (1) $\tau * (\gamma \cap \gamma') = (\tau * \gamma) \cap (\tau * \gamma');$
- (2) $(\tau \cap \tau') * \gamma = (\tau * \gamma) \cap (\tau' * \gamma);$
- (3) $(\tau \cup \tau') * \gamma = \tau * (\tau' * \gamma);$
- (4) $\emptyset * \gamma = \gamma$;
- (5) $\tau * Y = Y = X * \gamma$.

Then (Y, Γ) is called an Ω -space [14].

Theorem 2.4. Let M be an R-module and let the $\eta^*(R)$ -action on $\eta^*(M)$ be given by $\nu^*(I) * \nu^*(N) = \nu^*(IN)$, where I is an ideal of R and N is a submodule of M. Then $(\mathcal{X}, \eta^*(M))$ is an $\eta^*(R)$ -space.

Proof. It is easy to see that $(\eta^*(M), \cap)$ is a commutative monoid with identity $\mathcal{X} = \nu^*(0)$. Now assume that $\nu^*(I) = \nu^*(J)$ and $\nu^*(N) = \nu^*(N')$, where I, J are ideals of R and N, N' are submodules of M. We must show that $\nu^*(IN) = \nu^*(JN')$. Suppose $Q \in \nu^*(IN)$. Therefore $IN \subseteq rad(Q)$. Since rad(Q) is prime, $N \subseteq rad(Q)$ or $I \subseteq (rad(Q):M)$ by [15, Lemma 1.1]. Hence $JN' \subseteq rad(Q)$ or $JN' \subseteq (rad(Q):M)N' \subseteq rad(Q)$. By symmetry we have $\nu^*(IN) = \nu^*(JN')$. Hence the operation (*) is well-defined. Now we check the condition (3) of the above definition. $\nu^*(I) * (\nu^*(J) * \nu^*(N)) = \nu^*(I) * \nu^*(JN) = \nu^*(IJ) * \nu^*(I) *$

The $\eta^*(R)$ -space $(\mathcal{X}, \eta^*(M))$ is called a Zariski-like space. As mentioned in the introduction, from another point view, $(\eta^*(M), +)$ may be considered as an semimodule over a semiring $\eta^*(R)$ with addition and multiplication defined as:

$$\nu^*(N) + \nu^*(N') = \nu^*(N + N') = \nu^*(N) \cap \nu^*(N'),$$

$$\nu^*(I) * \nu^*(N) = \nu^*(IN) = \nu^*(IM) \cup \nu^*(N).$$

Let \mathcal{R} be a semiring. By a \mathcal{R} -semimodule homomorphism, we mean a map $f: \mathcal{M} \to \mathcal{M}'$ of \mathcal{R} -semimodules \mathcal{M} and \mathcal{M}' which is \mathcal{R} -linear. Also subsemimodules and subspaces are defined naturally (For further

reading about semirings, semimodules, and Zariski spaces, see for example [8, 14, 13]).

Lemma 2.5. Let M, M' be R-modules and $f: \eta^*(M) \to \eta^*(M')$ be an $\eta^*(R)$ -homomorphism. If N, N' are submodules of M such that $\nu^*(N) \subseteq \nu^*(N')$, then $f(\nu^*(N)) \subseteq f(\nu^*(N'))$.

Proof. Since $\nu^*(N) \subseteq \nu^*(N')$, we have $\nu^*(N) = \nu^*(N) \cap \nu^*(N') = \nu^*(N) + \nu^*(N')$. Hence $f(\nu^*(N)) = f(\nu^*(N) + \nu^*(N')) = f(\nu^*(N)) + f(\nu^*(N')) = f(\nu^*(N)) \cap f(\nu^*(N')) \subseteq f(\nu^*(N'))$.

Lemma 2.6. Let M, M' be R-modules and $f: \eta^*(M) \to \eta^*(M')$ be an $\eta^*(R)$ -surjective homomorphism. Then $f(\nu^*(M)) = \nu^*(M')$.

Proof. Since f is surjective, there exists a submodule N of M such that $f(\nu^*(N)) = \nu^*(M')$. Hence $f(\nu^*(M)) = f(\nu^*(M+N)) = f(\nu^*(M) + \nu^*(N)) = f(\nu^*(M)) + f(\nu^*(N)) = f(\nu^*(M)) + \nu^*(M') = \nu^*(M')$. \square

Lemma 2.7. Let M, M' be R-modules and $f: \eta^*(M) \to \eta^*(M')$ be an $\eta^*(R)$ -injective homomorphism. If N, N' are submodule of M such that $f(\nu^*(N)) \subseteq f(\nu^*(N'))$, then $\nu^*(N)) \subseteq \nu^*(N')$.

Proof. Since $f(\nu^*(N)) \subseteq f(\nu^*(N'))$, we have $f(\nu^*(N)) = f(\nu^*(N)) \cap f(\nu^*(N')) = f(\nu^*(N) \cap \nu^*(N'))$. Hence $\nu^*(N) = \nu^*(N) \cap \nu^*(N')$ because f is injective. Thus $\nu^*(N) \subseteq \nu^*(N')$.

A subsemimodule Δ is a subtractive subsemimodule of $\eta^*(M)$ if for submodules N, N' of M the conditions $\nu^*(N) \in \Delta$ and $\nu^*(N) + \nu^*(N') \in \Delta$ implies that $\nu^*(N') \in \Delta$. In this paper, we use Bourne factor semimodule of a semimodule Γ over a semiring Ω (that is, the elements of $\frac{\Gamma}{\Delta}$ are the equivalency classes $[\gamma]$ ($\gamma \in \Gamma$) of the congruence $\gamma \sim \gamma' \Leftrightarrow \exists \delta, \delta' \in \Delta$: $\gamma + \delta = \gamma' + \delta'$. Also addition and scalar multiplication is defined naturally; $[\gamma] + [\gamma'] = [\gamma + \gamma']$ and $\omega * [\gamma] = [\omega * \gamma]$.

Lemma 2.8. Let $f: \eta^*(M) \to \eta^*(M')$ be an $\eta^*(R)$ -homomorphism. Then Kerf is a subtractive subsemimodule of $\eta^*(M)$. Conversely, if Δ is a subtractive subsemimodule of $\eta^*(M)$, then $\pi: \eta^*(M) \to \frac{\eta^*(M)}{\Delta}$ which is defined by $\pi(\nu^*(N)) = [\nu^*(N)]$ is an $\eta^*(R)$ -surjective homomorphism with $Ker\pi = [0]$.

Proof. It is clear that Kerf is a subtractive subsemimodule of $\eta^*(M)$ by [8]. Conversely, it is easy to see that π is a surjective homomorphism. Now we have $\pi(\nu^*(N) + \nu^*(N')) = [\nu^*(N) + \nu^*(N')] = [\nu^*(N)] + [\nu^*(N']] = \pi(\nu^*(N)) + \pi(\nu^*(N'))$ and $\pi(\nu^*(I) * \nu^*(N)) = [\nu^*(I) * \nu^*(N)] = \nu^*(I) * [\nu^*(N)] = \nu^*(I) * \pi(\nu^*(N))$. Thus π is an $\eta^*(R)$ -homomorphism. Also $Ker\pi = \{\nu^*(N) \in \eta^*(M) \mid [\nu^*(N)] = [0]\} = \{\nu^*(N) \in \eta^*(M) \mid \nu^*(N) \in [0]\} = [0]$.

Lemma 2.9. Let Δ be a subspace of $\eta^*(M)$. Then the following are equivalent.

- (1) Δ is a subtractive subsemimodule of $\eta^*(M)$;
- (2) For submodules N, N' of M the conditions $\nu^*(N) \in \Delta$ and $\nu^*(N) \subseteq \nu^*(N')$ implies that $\nu^*(N') \in \Delta$.

Proof. (1) \Rightarrow (2) By Lemma 2.8, Δ is the kernel of the $\eta^*(R)$ -surjective homomorphism $\pi:\eta^*(M)\to \frac{\eta^*(M)}{\Delta}$. Suppose $N,\ N'$ are submodules of M. Assume $\nu^*(N)\in\Delta$ and $\nu^*(N)\subseteq\nu^*(N')$. Hence $\pi(\nu^*(N))+\pi(\nu^*(N'))=\nu^*(0)$. Thus $\pi(\nu^*(N'))=\nu^*(0)$ and so $\nu^*(N')\in\Delta$. (2) \Rightarrow (1) Assume $N,\ N'$ are submodules of M. Suppose $\nu^*(N)\in\Delta$ and $\nu^*(N)\cap\nu^*(N')\in\Delta$. Since $\nu^*(N)\cap\nu^*(N')\subseteq\nu^*(N')$, then $\nu^*(N')\in\Delta$. Thus Δ is a subtractive subsemimodule of $\eta^*(M)$.

Proposition 2.10. Every proper subtractive subspace of $\eta^*(M)$ is contained in a maximal subtractive subspace.

Proof. Suppose Δ is a proper subtractive subspace of $\eta^*(M)$. Put $\mathcal{A} = \{\Phi \mid \Delta \subseteq \Phi\}$. Assume $\mathcal{C} = \{\Phi_i \mid i \in I\}$ is a chain of elements of \mathcal{A} . It is easy to see that $\Delta \in \mathcal{A}$ and $\bigcup_{i \in I} \Phi_i \in \mathcal{A}$. Thus the assertion holds by Zorn's lemma.

Proposition 2.11. Let M, M' be R-modules and $f: \eta^*(M) \to \eta^*(M')$ be an $\eta^*(R)$ -homomorphism. If Δ is a subtractive subspace of $\eta^*(M')$, then the following hold.

- (1) $f^{-1}(\Delta)$ is a subtractive subspace of $\eta^*(M)$ containing Kerf.
- (2) f induces an $\eta^*(R)$ -homomorphism $\phi: \frac{\eta^*(M)}{f^{-1}(\Delta)} \to \frac{\eta^*(M')}{\Delta}$ having $kernel\ f^{-1}(\Delta)$.

Proof. (1) Suppose N, N' are submodules of M. Assume $\nu^*(N) \in f^{-1}(\Delta)$ and $\nu^*(N) \cap \nu^*(N') \in f^{-1}(\Delta)$. Hence $f(\nu^*(N)) \in \Delta$ and $f(\nu^*(N)) \cap f(\nu^*(N')) \in \Delta$. Since Δ is a subtractive subspace of $\eta^*(M')$, then $f(\nu^*(N')) \in \Delta$. Thus $\nu^*(N') \in f^{-1}(\Delta)$ and so $f^{-1}(\Delta)$ is a subtractive subspace of $\eta^*(M)$. It is easy to see that $Kerf \subseteq f^{-1}(\Delta)$. (2) Use [8, Corollary 13.48].

It is common that if $\{\Delta_{\lambda}\}_{{\lambda}\in\Lambda}$ be a family of subtractive subspaces of $\eta^*(M)$, then $\cap_{{\lambda}\in\Lambda}\Delta_{\lambda}$ is subtractive. Let Υ be a subset of $\eta^*(M)$. The subtractive closure of Υ , denoted $\gamma(\Upsilon)$, is the smallest subtractive subspace of $\eta^*(M)$ which contains Υ . It is clear that if $\Upsilon \subseteq \Upsilon'$ be subsemimodules of $\eta^*(M)$, then $\gamma(\Upsilon) \subseteq \gamma(\Upsilon')$.

Lemma 2.12. Let N be a submodule of an R-module M and Δ be a subsemimodule of $\eta^*(M)$. Then the following hold.

$$(1) \ \gamma(\Delta) = \{ \nu^*(N') \mid \nu^*(N'') \subseteq \nu^*(N') \ for \ some \ \nu^*(N'') \in \Delta \}.$$

(2)
$$\gamma(\eta^*(R) * \nu^*(N)) = \{\nu^*(N') \mid \nu^*(N) \subseteq \nu^*(N')\}.$$

Proof. (1) Suppose $A = \{\nu^*(N') \mid \nu^*(N'') \subseteq \nu^*(N') \text{ for some } \nu^*(N'') \in \Delta \}$ and $\nu^*(N') \in A$. Therefore there exists $\nu^*(N'') \in \Delta$ such that $\nu^*(N'') \subseteq \nu^*(N')$. Since $\gamma(\Delta)$ is the smallest subtractive subspace of $\eta^*(M)$ which contains Δ , then $\nu^*(N') \cap \nu^*(N'') = \nu^*(N'') \in \Delta \subseteq \gamma(\Delta)$. Thus $\nu^*(N') \in \gamma(\Delta)$ and so $A \subseteq \gamma(\Delta)$. For the reverse inclusion we show that A is a subtractive subspace of $\eta^*(M)$ which contains Δ . It is clear that $\Delta \subseteq A$. Now assume $\nu^*(N_1)$, $\nu^*(N_2) \in A$ and $\nu^*(N_1'')$, $\nu^*(N_2'') \in \Delta$ such that $\nu^*(N_1'') \subseteq \nu^*(N_1)$ and $\nu^*(N_2'') \subseteq \nu^*(N_2)$. Hence $\nu^*(N_1'') \cap \nu^*(N_2'') \subseteq \nu^*(N_1) \cap \nu^*(N_2)$. Thus $\nu^*(N_1) \cap \nu^*(N_2) \in A$. Suppose $\nu^*(I) \in \eta^*(R)$. So $\nu^*(I) * \nu^*(N_1'') \subseteq \nu^*(I) * \nu^*(N_1)$. Hence $\nu^*(I) * \nu^*(N_1) \in A$. Thus A is a subspace of $\eta^*(M)$. Now suppose $\nu^*(N) \in \eta^*(M)$ and $\nu^*(N')$, $\nu^*(N) \cap \nu^*(N') \in A$. Then there exists $\nu^*(N'') \in \Delta$ such that $\nu^*(N'') \subseteq \nu^*(N) \cap \nu^*(N')$. Thus $\nu^*(N'') \subseteq \nu^*(N)$ and so $\nu^*(N) \in A$. Therefore A is a subtractive subspace of $\eta^*(M)$ containing Δ . Thus $A = \gamma(\Delta)$.

(2) We have $\eta^*(R) * \nu^*(N) = \{\nu^*(IN) \mid I \text{ is an ideal of } R\}$. Therefore $\eta^*(R) * \nu^*(N)$ is a subspace of $\eta^*(M)$. Hence $\gamma(\eta^*(R)\nu^*(N)) = \{\nu^*(N') \mid \nu^*(N'') \subseteq \nu^*(N') \text{ for some } \nu^*(N'') \in \eta^*(R) * \nu^*(N)\} = \{\nu^*(N') \mid \nu^*(IN) \subseteq \nu^*(N') \text{ for some ideal } I \text{ of } R\} \subseteq \{\nu^*(N') \mid \nu^*(N) \subseteq \nu^*(N')\} \text{ by (1)}$. By the similar argument we have $\{\nu^*(N') \mid \nu^*(N) \subseteq \nu^*(N')\} \subseteq \gamma(\eta^*(R) * \nu^*(N))$.

Proposition 2.13. Let N, N' be submodules of an R-module M and $\nu^*(N') \in \gamma(\nu^*(N))$. Then $\nu^*(N) \subseteq \nu^*(N')$.

Proof. It is clear by Lemma 2.12.

Proposition 2.14. Let N, N' be submodules of an R-module M and $N' \subseteq rad(N)$. Then $\nu^*(N') \in \gamma(\nu^*(N))$.

Proof. Suppose $N' \subseteq rad(N)$. Since $\nu^*(N) = \nu^*(rad(N))$, then $\nu^*(N) \subseteq \nu^*(N')$. Thus $\nu^*(N') \in \gamma(\nu^*(N))$ by Lemma 2.12.

Theorem 2.15. Let radical submodules of an R-module M satisfy ACC. Then every subtractive subspace of $\eta^*(M)$ is of the form $\gamma(\nu^*(N))$ for some submodule N of M.

Proof. Suppose Δ is a subtractive subspace of $\eta^*(M)$. If $\nu^*(M) \in \Delta$, then $\Delta = \eta^*(M) = \gamma(\nu^*(M))$. So assume that $\nu^*(M) \notin \Delta$. Let A be the collection of all radical submodules N of M such that $\nu^*(N) \in \Delta$, and note that $A \neq \emptyset$ since $\nu^*(N) = \nu^*(rad(N))$ for every submodule N of M. Now choose N' to be a maximal element of A. To see that $\Delta = \gamma(\nu^*(N'))$, let $\nu^*(N'') \in \Delta$, where N'' is a submodule of M. If S = rad(N' + N''), then $\nu^*(S) = \nu^*(N' + N'') = \nu^*(N') \cap \nu^*(N'') \in \Delta$.

Since S is a radical submodule of M, then $N'' \subseteq S = N' = rad(N')$. Hence $\nu^*(N'') \in \gamma(\nu^*(N'))$ by Lemma 2.12. Thus $\Delta \subseteq \gamma(\nu^*(N'))$. Since $\nu^*(N') \in \Delta$, then $\gamma(\nu^*(N')) \subseteq \Delta$. Thus $\Delta = \gamma(\nu^*(N'))$.

Lemma 2.16. Let M be an R-module and $\{N_i\}_{i\in I}$ be submodules of M. Then $\nu^*(\sum_{i\in I} N_i) = \sum_{i\in I} \nu^*(N_i)$.

Proof. For $Q \in \mathcal{X}$ we have $Q \in \sum_{i \in I} \nu^*(N_i)$ if and only if $Q \in \nu^*(N_i)$ for every $i \in I$ iff $N_i \subseteq rad(Q)$ for each $i \in I$ iff $\sum_{i \in I} N_i \subseteq rad(Q)$ iff $Q \in \nu^*(\sum_{i \in I} N_i)$.

Theorem 2.17. Let M be an R-module and $\{N_i\}_{i=1}^n$ be submodules of M. Then $\gamma(\sum_{i=1}^n \eta^*(R) * \nu^*(N_i)) = \gamma(\nu^*(\sum_{i=1}^n N_i))$.

Proof. Assume $\nu^*(N') \in \gamma(\sum_{i=1}^n \eta^*(R) * \nu^*(N_i))$. Hence by Lemma 2.12, $\nu^*(\sum_{i=1}^n J_i N_i) \subseteq \nu^*(N')$ for some ideal J_i of R. Since $\nu^*(\sum_{i=1}^n N_i) \subseteq \nu^*(\sum_{i=1}^n J_i N_i)$, then $\nu^*(\sum_{i=1}^n N_i) \subseteq \nu^*(N')$. So $\nu^*(N') \in \gamma(\nu^*(\sum_{i=1}^n N_i))$. Thus $\gamma(\sum_{i=1}^n \eta^*(R) * \nu^*(N_i)) \subseteq \gamma(\nu^*(\sum_{i=1}^n N_i))$. Now, we let $\nu^*(N') \in \gamma(\nu^*(\sum_{i=1}^n N_i))$. Then $\nu^*(\sum_{i=1}^n N_i) \subseteq \nu^*(N')$. By Lemma 2.16 we have $\nu^*(\sum_{i=1}^n N_i) = \sum_{i=1}^n \nu^*(N_i) \in \sum_{i=1}^n \eta^*(R) * \nu^*(N_i)$. Hence $\nu^*(N') \in \gamma(\sum_{i=1}^n \eta^*(R) * \nu^*(N_i))$. Thus $\gamma(\nu^*(\sum_{i=1}^n N_i)) \subseteq \gamma(i=1^n \eta^*(R) * \nu^*(N_i))$.

3. Subtractive Closure and Subtractive Bases

We define the Z*-radical of a submodule N of M, denoted by $\sqrt[z^*]{N}$, to be the intersection of all members of $\nu^*(N)$. A submodule N of M is a Z*-radical submodule if $\sqrt[z^*]{N} = N$. An R-module M is called Z*-radical if $\sqrt[z^*]{0_M} = 0$. Let \mathcal{Y} be a subset of \mathcal{X} . The closure of \mathcal{Y} in \mathcal{X} , denoted by $\overline{\mathcal{Y}}$, is the intersection of all closed subset of \mathcal{X} containing \mathcal{Y} . Also $\xi(\mathcal{Y})$ is the intersection of all elements in \mathcal{Y} (note that if $\mathcal{Y} = \emptyset$, then $\xi(\mathcal{Y}) = M$). It is easy to verify that, if $\mathcal{Y}_1, \mathcal{Y}_2 \subseteq \mathcal{X}$, then $\xi(\mathcal{Y}_1 \cup \mathcal{Y}_2) = \xi(\mathcal{Y}_1) \cap \xi(\mathcal{Y}_2)$.

Lemma 3.1. Let M be an R-module and N, N' be submodules of M. If $\nu^*(N) \subseteq \nu^*(N')$, then $\sqrt[z^*]{N'} \subseteq \sqrt[z^*]{N}$. The converse is true if $N' \subset \sqrt[z^*]{N'}$.

Proof. Suppose $\nu^*(N) \subseteq \nu^*(N')$. Hence $\xi(\nu^*(N')) \subseteq \xi(\nu^*(N))$ and so $\sqrt[z^*]{N'} \subseteq \sqrt[z^*]{N}$. Conversely, Suppose $Q \in \nu^*(N)$. Hence $\sqrt[z^*]{N'} \subseteq \sqrt[z^*]{N} \subseteq Q$. Thus $N' \subseteq rad(Q)$ and so $\nu^*(N) \subseteq \nu^*(N')$.

Lemma 3.2. Let M be a finitely generated R-module. Then $\sqrt[z^*]{N} \neq M$ if and only if $\nu^*(N) \neq \emptyset$ if and only if $N \neq M$.

Proof. Suppose $\sqrt[z^*]{N} \neq M$. Hence $N \neq M$. Now assume $N \neq M$. Then $(N:M) \neq R$ and so $(N:M) \subseteq p$ for some prime ideal p of R. Since M is finitely generated, M is primeful by [10, Theorem 2.2]. So there exists $Q \in Spec(M) \subseteq \mathcal{X}$ such that $N \subseteq rad(Q)$. Hence $Q \in \nu^*(N)$. Thus $\nu^*(N) \neq \emptyset$. If $\nu^*(N) \neq \emptyset$ and $Q \in \nu^*(N)$. Hence $N \subseteq rad(Q)$. Thus $\sqrt[z^*]{N} \subseteq Q \neq M$.

Lemma 3.3. Let M be an R-module. If $Q \in \mathcal{X}$ and N is a submodule of M such that $rad(Q) \cap N = rad(Q \cap N)$, then $N \subseteq Q$ or $Q \cap N$ is a primary-like submodule of N.

Proof. Suppose $N \nsubseteq Q$, $n \in N$ and $rn \in Q \cap N$ such that $r \notin (Q \cap N : N)$. Then $rn \in Q$ and $r \notin (Q : M)$. Since Q is primary-like, we have $n \in rad(Q)$. Thus $n \in rad(Q \cap N)$.

Lemma 3.4. Let M be a Z^* -radical R-module such that every submodule N of M is finitely generated and $N \subseteq \sqrt[Z^*]{N}$. If for every $Q \in \mathcal{X}$, $rad(Q) \cap N = rad(Q \cap N)$, then every direct summand of M is a Z^* -radical submodule of M.

Proof. Suppose that N is a direct summand of M and $N \subset \sqrt[z^*]{N}$. Hence $M = N \bigoplus N'$ for some submodule N' of M. Therefore there exists $m = (n, n') \in \sqrt[z^*]{N} \setminus N$. So $0 \neq (0, n') \in \sqrt[z^*]{N}$. Since $M/N \cong N'$, there is a one-to-one correspondence between the primary-like submodules of N' which satisfy the primeful property and the primary-like submodules of M/N satisfying the primeful property. Since $(0, n') \in \sqrt[z^*]{N}$, (0, n') belongs to every primary-like submodule of the module N' which satisfies the primeful property. Let $Q \in \mathcal{X}$. Then we show that $(0, n') \in Q$. If $N' \subseteq Q$, then $(0, n') \in Q$ because $(0, n') \in N'$. Suppose $N' \not\subseteq Q$. Hence by Lemma 3.3 and [10, Theorem 2.2], $Q \cap N' \in Spec_L(N')$. Thus $(0, n') \in Q \cap N' \subseteq Q$ and so $n' \in \sqrt[z^*]{0_M} = 0$, a contradiction. \square

Let M be an R-module and $\{N_i\}_{i=1}^n$ be submodules of M. If $\Delta = \{\nu^*(N_1), \dots, \nu^*(N_n)\}$ we recall the following definitions.

- (1) Δ is a subtractive generating set of $\eta^*(M)$ if $\eta^*(M) = \gamma(\sum_{i \in I} \eta^*(R) * \nu^*(N_i))$.
- (2) Δ is a subtractive linearly independent set of $\eta^*(M)$ if $\nu^*(0) \notin \Delta$ and $\gamma(\nu^*(N_i)) \cap \gamma(\sum_{j \neq i} \eta^*(R) * \nu^*(N_j)) = \{\nu^*(0)\}$ for each i, $(1 \leq i \leq n)$.
- (3) Δ is a subtractive linearly independent generating set of $\eta^*(M)$ if Δ satisfies both conditions (1) and (2).

Lemma 3.5. Let M be an R-module and $\{N_i\}_{i=1}^n$ be submodules of M. If $\Delta = \{\nu^*(N_1), \dots, \nu^*(N_n)\}$, then the following hold.

- (1) Δ is a subtractive generating set of $\eta^*(M)$ iff $\sum_{i=1}^n N_i = M$.
- (2) If M is a finitely generated, then Δ is a subtractive generating set of $\eta^*(M)$ iff $\sum_{i=1}^n N_i = M$.

Proof. (1) By Theorem 2.17, $\gamma(\sum_{i=1}^n \eta^*(R) * \nu^*(N_i)) = \gamma(\nu^*(\sum_{i=1}^n N_i))$. So Δ is a subtractive generating set of $\eta^*(M)$ if and only if $\eta^*(M) = \gamma(\sum_{i=1}^n \eta^*(R) * \nu^*(N_i)) = \gamma(\nu^*(\sum_{i=1}^n N_i))$ iff $\nu^*(\sum_{i=1}^n N_i) \subseteq \nu^*(M) = \emptyset$ iff $\nu^*(\sum_{i=1}^n N_i) = \emptyset = \nu^*(M)$ iff $\sum_{i=1}^n N_i = M$.

(2) By (1) Δ is a subtractive generating set of $\eta^*(M)$ iff $\sqrt[z^*]{\sum_{i=1}^n N_i} = M$. Since M is finitely generated, by Lemma 3.2 Δ is a subtractive generating set of $\eta^*(M)$ iff $\sum_{i=1}^n N_i = M$.

Theorem 3.6. Let M, M' be R-modules and $f: \eta^*(M) \to \eta^*(M')$ be an $\eta^*(R)$ -isomorphism. If $\Delta = \{\nu^*(N_1), \dots, \nu^*(N_n)\}$ is a subtractive linearly independent set of $\eta^*(M)$, then $\{f(\nu^*(N_1)), \dots, f(\nu^*(N_n))\}$ is a subtractive linearly independent set of $\eta^*(M')$.

Proof. Since f is an isomorphism, $f(\nu^*(0)) = \nu^*(0)$. Hence $\nu^*(0) \notin \{f(\nu^*(N_1)), \cdots, f(\nu^*(N_n))\}$ because $\nu^*(0) \notin \Delta$. Now, suppose that there exists $1 \le i \le n$ such that

$$\nu^*(N') \in \gamma(f(\nu^*(N_i))) \cap \gamma(\sum_{i \neq i} \eta^*(R)\nu^*(N_i)).$$

Since f is surjective, $\nu^*(N') = f(\nu^*(N))$ for some submodule N of M. Hence $f(\nu^*(N_i)) \subseteq f(\nu^*(N))$ and $f(\nu^*(\sum_{j\neq i} I_j N_j)) \subseteq f(\nu^*(N))$. By Lemma 2.7, $\nu^*(N_i) \subseteq \nu^*(N)$ and $\sum_{j\neq i} \nu^*(I_j N_j) \subseteq \nu^*(N)$. Thus $\nu^*(N) \in \gamma(\nu^*(N_i)) \cap \gamma(\sum_{j\neq i} \eta^*(R) * \nu^*(N_j))$. This implies that $\nu^*(N) = \nu^*(0)$. Therefore $f(\nu^*(N)) = \nu^*(0)$ and so $\nu^*(N') = \nu^*(0)$. Thus $\{f(\nu^*(N_1)), \cdots, f(\nu^*(N_n))\}$ is a subtractive linearly independent set of $\eta^*(M')$.

For the remainder of this section, we assume that all modules are multiplication. So that $\nu^*(N) = \{Q \in \mathcal{X} \mid \sqrt{(N:M)} \subseteq \sqrt{(Q:M)}\}$ for every submodule N of an R-module M.

Lemma 3.7. Let M be an R-module and $\mathcal{Y} \subseteq \mathcal{X}$. If $|\mathcal{X}| < \infty$, then $\nu^*(\xi(\mathcal{Y})) = \overline{\mathcal{Y}}$. In particular, \mathcal{Y} is closed if and only if $\nu^*(\xi(\mathcal{Y})) = \mathcal{Y}$.

Proof. Suppose $Q \in \mathcal{Y}$. Hence $\xi(\mathcal{Y}) \subseteq Q$. Therefore $\sqrt{(Q:M)} \supseteq \sqrt{(\xi(\mathcal{Y}):M)}$. Since M is multiplication, $Q \in \nu^*(\xi(\mathcal{Y}))$ and so $\mathcal{Y} \subseteq \nu^*(\xi(\mathcal{Y}))$. Next, let $\nu^*(N)$ be any closed subset of \mathcal{X} containing \mathcal{Y} . Then $\sqrt{(Q:M)} \supseteq \sqrt{(N:M)}$ for every $Q \in \mathcal{Y}$ so that $\sqrt{(\xi(\mathcal{Y}):M)} \supseteq \sqrt{(N:M)}$ since $|\mathcal{X}| < \infty$. Hence, for every $Q' \in \nu^*(\xi(\mathcal{Y}))$ we have $\sqrt{(Q':M)} \supseteq \sqrt{(\xi(\mathcal{Y}):M)} \supseteq \sqrt{(N:M)}$. Then $\nu^*(\xi(\mathcal{Y})) \subseteq \nu^*(N)$.

Thus $\nu^*(\xi(\mathcal{Y}))$ is the smallest closed subset of \mathcal{X} containing \mathcal{Y} , hence $\nu^*(\xi(\mathcal{Y})) = \overline{\mathcal{Y}}.$

Lemma 3.8. Let M be an R-module and N be a submodule of M. If $|\mathcal{X}| < \infty$, then $\nu^*(\xi(\nu^*(N))) = \nu^*(\sqrt[Z^*]{N}) = \nu^*(N)$.

Proof. It is clear by Lemma 3.7.

Lemma 3.9. Let M be an R-module and N, N' be submodules of M. Then the following hold.

- (1) $\nu^*(N) \cup \nu^*(N') = \nu^*(N \cap N')$.
- (2) If $|\mathcal{X}| < \infty$, then $\sqrt[z^*]{\sqrt[z^*]{N}} = \sqrt[z^*]{N}$. (3) $\sqrt[z^*]{N \cap N'} = \sqrt[z^*]{N \cap \sqrt[z^*]{N'}}$.

Proof. (1) Since M is multiplication, we have $\nu^*(N) = \{Q \in \mathcal{X} \mid$ $\sqrt{(N:M)} \subseteq \sqrt{(Q:M)}$ for a submodule N of M. Hence the assertion follows from the fact that (Q:M) is a primary ideal for $Q \in \mathcal{X}$. (2) $\nu^*(\sqrt[z^*]{N}) = \nu^*(N)$, by Lemma 3.8. Therefore $\xi(\nu^*(\sqrt[z^*]{N})) =$ $\xi(\nu^*(N))$. Thus $\sqrt[Z^*]{\sqrt[X]{N}} = \sqrt[Z^*]{N}$.

(3)
$$\sqrt[z^*]{N \cap N'} = \xi(\nu^*(N \cap N')) = \xi(\nu^*(N) \cup \nu^*(N')) = \xi(\nu^*(N)) \cap \xi(\nu^*(N')) = \sqrt[z^*]{N \cap z^*}\sqrt{N'}, \text{ by (1)}.$$

Lemma 3.10. Let M be an R-module such that $|\mathcal{X}| < \infty$ and for every submodule K of M, $K \subseteq \sqrt[z^*]{K}$. If N, N' are submodules of M, then $\gamma(\nu^*(N)) \cap \gamma(\nu^*(N')) = \gamma(\nu^*(\sqrt[2^*]{N}) \cap \sqrt[2^*]{N'}).$

Proof. Suppose $\nu^*(N'') \in \gamma(\nu^*(N)) \cap \gamma(\nu^*(N'))$. So $\nu^*(N'') \in \gamma(\nu^*(N))$ and $\nu^*(N'') \in \gamma(\nu^*(N'))$. Hence $\nu^*(N) \subseteq \nu^*(N'')$ and $\nu^*(N') \subseteq$ $\nu^*(N'')$. By Lemma 3.1, $z^*\sqrt{N''} \subseteq z^*\sqrt{N}$ and $z^*\sqrt{N''} \subseteq z^*\sqrt{N'}$. Therefore $z'^*\sqrt{N''} \subseteq z^*\sqrt{N} \cap z^*\sqrt{N'}$. So $\nu^*(z^*\sqrt{N} \cap z^*\sqrt{N'}) \subseteq \nu^*(z^*\sqrt{N''})$. Thus $\nu^*(N'') \in \gamma(\nu^*(\sqrt[z^*]{N} \cap \sqrt[z^*]{N'}))$. For the reverse inclusion, let $\nu^*(N'') \in \gamma(\nu^*(\sqrt[z^*]{N} \cap \sqrt[z^*]{N'})).$ Then $\nu^*(\sqrt[z^*]{N} \cap \sqrt[z^*]{N'}) \subseteq \nu^*(N'').$ Hence by Lemma 3.1 and Lemma 3.9 $\sqrt[z^*]{N''} \subseteq \sqrt[z^*]{\sqrt[z^*]{N}} \cap \sqrt[z^*]{N'}$ $\sqrt[z^*]{\sqrt[z^*]{N}} \cap \sqrt[z^*]{\sqrt[z^*]{N'}} = \sqrt[z^*]{N} \cap \sqrt[z^*]{N'}. \text{ Thus } \sqrt[z^*]{N''} \subseteq \sqrt[z^*]{N} \text{ and } \sqrt[z^*]{N''}$ $z^*\sqrt{N''} \subseteq z^*\sqrt{N'}$. By Lemma 3.1, $\nu^*(N) \subseteq \nu^*(N'')$ and $\nu^*(N') \subseteq z^*\sqrt{N''}$ $\nu^*(N'')$. Thus $\nu^*(N'') \in \gamma(\nu^*(N)) \cap \gamma(\nu^*(N'))$

Lemma 3.11. Let M be an R-module such that $|\mathcal{X}| < \infty$ and for every submodule N of M, $N \subseteq \sqrt[2^*]{N}$. If $\Delta = \{\nu^*(N_1), \cdots, \nu^*(N_n)\}$, then Δ is a subtractive linearly independent set of $\eta^*(M)$ if and only if $\nu^*(0) \notin \Delta \text{ and } \sqrt[z^*]{N_i} \cap \sqrt[z^*]{\sum_{j \neq i} N_j} = \sqrt[z^*]{0}, \text{ for each } i, (1 \leq i \leq n).$

Proof. Suppose $\Delta = \{\nu^*(N_1), \cdots, \nu^*(N_n)\}$. Therefore $\gamma(\sum_{i=1}^n \eta^*(R) * \nu^*(N_i)) = \gamma(\nu^*(\sum_{i=1}^n N_i))$ by Theorem 2.17. Thus Δ is a subtractive linearly independent set of $\eta^*(M)$ if and only if $\nu^*(0) \notin \Delta$ and $\gamma(\nu^*(N_i)) \cap \gamma(\nu^*(\sum_{j \neq i} N_j)) = \{\nu^*(0)\}$ for each $i, (1 \leq i \leq n)$. Therefore $\gamma(\nu^*(\sqrt[z^*]{N_i} \cap \sqrt[z^*]{\sum_{j \neq i} N_j})) = \{\nu^*(0)\}$ for each $i, (1 \leq i \leq n)$ by Lemma 3.10, so $\nu^*(\sqrt[z^*]{N_i} \cap \sqrt[z^*]{\sum_{j \neq i} N_j}) = \nu^*(0)$ for each $i, (1 \leq i \leq n)$. Thus by Lemma 3.1 and Lemma 3.9 we have $\sqrt[z^*]{N_i} \cap \sqrt[z^*]{\sum_{j \neq i} N_j} = \sqrt[z^*]{0}$ for each $i, (1 \leq i \leq n)$.

Lemma 3.12. Let M be a Z^* -radical R-module such that $|\mathcal{X}| < \infty$ and for every submodule N of M, $N \subseteq \sqrt[z^*]{N}$. If $\Delta = \{\nu^*(N_1), \cdots, \nu^*(N_n)\}$ is a subtractive linearly independent set of $\eta^*(M)$, then $\sum_{i=1}^n N_i$ is direct.

Proof. By Lemma 3.11, $z^*\sqrt{N_i} \cap z^*\sqrt{\sum_{j\neq i} N_j} = z^*\sqrt{0} = 0$ for each i, $(1 \leq i \leq n)$. By assumption $N_i \cap \sum_{j\neq i} N_j = 0$. Thus $\sum_{i=1}^n N_i$ is direct.

Theorem 3.13. Let M be a Noetherian Z^* -radical R-module such that for every submodule N of M and $Q \in \mathcal{X}$, $N \subseteq {\mathbb{Z}}^*\sqrt{N}$ and $rad(Q) \cap N = rad(Q \cap N)$. If $|\mathcal{X}| < \infty$, then $\Delta = \{\nu^*(N_1), \dots, \nu^*(N_n) \mid N_i \neq 0\}$ is a subtractive linearly independent set of $\eta^*(M)$ if and only if $M = \bigoplus_{i=1}^n N_i$.

Proof. Suppose $\Delta = \{\nu^*(N_1), \cdots, \nu^*(N_n)\}$ is a subtractive linearly independent set of $\eta^*(M)$. Hence by Lemma 3.5(2), $M = \sum_{i=1}^n N_i$. Thus by Lemma 3.12, $M = \bigoplus_{i=1}^n N_i$. Conversely, assume $M = \bigoplus_{i=1}^n N_i$. Hence by Lemma 3.5(2), Δ is a subtractive generating set of $\eta^*(M)$. Moreover, for every i, $(1 \le i \le n)$ we have $\sqrt[2^*]{0} = 0 = N_i \cap \sum_{j \ne i} N_j = \sqrt[2^*]{N_i} \cap \sqrt[2^*]{\sum_{j \ne i} N_j}$ by Lemma 3.4. Since $N_i \ne 0$ for every i, $(1 \le i \le n)$ we have $\nu^*(0) \notin \Delta$. Thus Δ is a subtractive linearly independent set of $\eta^*(M)$ by Lemma 3.11.

Let $\Delta = \{\nu^*(N_1), \dots, \nu^*(N_n)\}$ be a subtractive linearly independent set of $\eta^*(M)$. Assume that for some j, $(1 \leq j \leq n)$ there exist submodules N'_{j_1} and N'_{j_2} of M such that $\Gamma = \{\nu^*(N_1), \dots, \nu^*(N_{j-1}), \nu^*(N'_{j_1}), \nu^*(N'_{j_2}), \nu^*(N_{j+1}), \nu^*(N_n)\}$ is likewise a subtractive linearly independent set of $\eta^*(M)$. Then Γ is said to be a simple refinement of Δ . A subtractive linearly independent set Δ of $\eta^*(M)$ is said to be a subtractive basis if there does not exist a simple refinement of Δ .

Corollary 3.14. Let M be a Noetherian Z^* -radical R-module such that for every submodule N of M and $Q \in \mathcal{X}$, $N \subseteq \sqrt[Z^*]{N}$ and $rad(Q) \cap N = rad(Q \cap N)$. If $|\mathcal{X}| < \infty$, then $\eta^*(M)$ has a subtractive basis.

Proof. Since M is Noetherian, it has a finite indecomposable direct sum decomposition such as $M = \bigoplus_{i=1}^{n} N_i$. Thus by Theorem 3.13 $\{\nu^*(N_i)\}_{i=1}^n$ is a subtractive basis for M.

Corollary 3.15. Let M be a Noetherian Z^* -radical R-module such that $|\mathcal{X}| < \infty$ and for every submodule N of M and $Q \in \mathcal{X}$, $N \subseteq \sqrt[z^*]{N}$ and $rad(Q) \cap N = rad(Q \cap N)$. If N' is a direct summand of M and N'' is a submodule of M such that $\sqrt[z^*]{N''} = N'$, then N'' = N'.

Proof. By Lemma 3.4, $\sqrt[z^*]{N'} = N'$. Hence $\sqrt[z^*]{N''} = N' = \sqrt[z^*]{N'}$. So by Lemma 3.1, $\nu^*(N') = \nu^*(N'')$. Hence by Theorem 3.13 N'' is a direct summand of M. Then by Lemma 3.4, $\sqrt[z^*]{N''} = N''$. Thus N'' = N'.

Acknowledgments

The author would like to thank the anonymous reviewers for their careful reading and many helpful suggestions on this paper.

References

- 1. J. Abuhlail, A dual zariski topology for modules, *Topology Appl.* **158** (2011), 457-467.
- 2. H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, On the prime spectrum of a module and zariski topologies, *Comm. Algebra* **38** (2010), 4461-4475.
- M. Behboodi and M. R. Haddadi, Classical zariski topology of modules and spectral spaces I, Int. Elec. J. Algebra 4 (2008), 104-130.
- 4. Z. A. El-Bast and P. F. Smith, Multiplication modules, *Comm. Algebra* 16 (1988), 755-779.
- 5. H. Fazaeli Moghimi and F. Rashedi, Primary-like submodules satisfying the primeful property, (to appear).
- 6. H. Fazaeli Moghimi and F. Rashedi, A module whose primary-like spectrum has the zariski-like topology, (submitted).
- 7. H. Fazaeli Moghimi and F. Rashedi, The zariski topolgy on the spectrum of primary-like submodules, (submitted).
- 8. J. S. Golan, The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science, Pitman monographs and surveys in pure and applied mathematics, John Wiley and Sons, New York, 1992.
- 9. I. Kaplansky, Commutative Rings, University of Chicago press, Chicago, 1974.
- C. P. Lu, A module whose prime spectrum has the surjective natural map, Houston J. Math. 33 (2007), 125-143.

- 11. C. P. Lu, Saturations of submodules, Comm. Algebra 31 (2003), 2655-2673.
- 12. C. P. Lu, The zariski topology on the prime spectrum of a module, *Houston J. Math.* **25** (1999), 417-425.
- 13. R. L. McCasland, M. E. Moore and P. F. Smith, Subtractive bases of zariski spaces, *Houston J. Math.* **32** (2006), 689-701.
- 14. R. L. McCasland, M. E. Moore and P. F. Smith, An introduction to zariski spaces over zariski topologies, *Rocky Mountain J. Math.* **28** (1998), 1357-1369.
- 15. R. L. McCasland, M. E. Moore and P. F. Smith, On the spectrum of a module over a commutative ring, *Comm. Algebra* **25** (1997), 79-103.
- 16. A. Nikseresht and A. Azizi, Zariski spaces of modules, *J. Pure Appl. Algebra* **217** (2013), 1187-1194.

Hosein Fazaeli Moghimi

Department of Mathematics, Department of Mathematics, University of Birjand, P.O. Box 97175-615, Birjand, Iran.

Email: hfazaeli@birjand.ac.ir

Fatemeh Rashedi

Department of Mathematics, University of Birjand, P.O. Box 97175-615, Birjand, Iran.

Email: fatemehrashedi@birjand.ac.ir